
The complexity of game isomorphism✩,✩✩

Joaquim Gabarró, Alina Garćıa, Maria Serna∗

ALBCOM Research Group

Dept. Llenguatges i Sistemes Informàtics

Universitat Politècnica de Catalunya

Jordi Girona 1-3, Ω Building, E-08034 Barcelona, Spain

Abstract

We address the question of whether two multiplayer strategic games are equivalent and the computational
complexity of deciding such a property. We introduce two notions of isomorphisms, strong and weak. Each one
of those isomorphisms preserves a different structure of the game. Strong isomorphism are defined to preserve
the utility functions and Nash equilibria. Weak isomorphism preserve only the player’s preference relations
and thus pure Nash equilibria. We show that the computational complexity of the game isomorphism
problem depends on the level of succinctness of the description of the input games but it is independent on
which of the two types of isomorphisms is considered. Utilities in games can be given succinctly by Turing
machines, boolean circuits or boolean formulas, or explicitly by tables. Actions can be given also explicitly
or succinctly. When the games are given in general form, we asume a explicit description of actions and
a succinct description of utilities. We show that the game isomorphism problem for general form games
is equivalent to the circuit isomorphism when utilities are described by TMs and to the boolean formula
isomorphism problem when utilities are described by formulas. When the game is given in explicit form, we
show that the game isomorphism problem is equivalent to the graph isomorphism problem.

Key words: Game isomorphism, succinct representations, formula games, boolean formulas,
computational complexity, circuit isomorphism, boolean formula isomorphism, graph isomorphism

1. Introduction

Game Theory provides the mathematical tools and models to analyze strategic situations in which multi-
ple participants interact or affect each others. In the last years a huge amount of research has been devoted
to explore the usefulness of Game Theory in situations arising on the Internet. In those situations many
participants interact with competing goals and therefore can be modelled by strategic or cooperative games.
Computational issues arising in this framework is one of the main objectives of the Algorithmic Game Theory
community [19, 17, 26].

The informal idea of strategic equivalence [12] has been widely discussed and explored along the his-
tory of Game Theory. Traditionally the notion of equivalence is studied at diferent leves using different
types of isomorphism, depending on the family of games and the structural properties to be preserved. In
1951, J. Nash [16] gave a definition of automorphism between strategic games. J.C Harsanyi and R. Sel-
ten have introduced other definitions of isomorphism [11] for strategic games. Equivalence by the way of
transformations to a common form have been considered in [7]. More recently, B. Peleg, J. Rosemuller, and

✩This work was partially supported by FET pro-active Integrated Project 15964 (AEOLUS), the projects TIN2007-66523
(FORMALISM) and TIN2005-25859-E of“Ministerio de Ciencia e Inovación y el Fondo Europeo de Desarrollo Regional”.

✩✩Part of this work was presented as On the Complexity of Game Isomorphism. MFCS 2007: LNCS 4708:559-571, 2007
∗Corresponding author
Email addresses: gabarro@lsi.upc.edu (Joaquim Gabarró), agarcia@lsi.upc.edu (Alina Garćıa), mjserna@lsi.upc.edu

(Maria Serna)

Preprint submitted to Elsevier April 22, 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/46607534?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

P. Sudhölter [20, 29] consider a notion of isomorphisms for strategic and extensive games with incomplete
information, another notion of isomorphism for extensive games has been introduced in [8]. Further results
for cooperative games can be found in [9].

In this paper we are interested in the computational aspects of game equivalence for the case of strategic
games. Our motivation for selecting strategic games is twofold. First, strategic games are used as ingredient
of more complicated games, but usually there is a way to transform any game into a strategic game. Further-
more, in [7] equivalence between extensive games is defined in terms of strategic games. Therefore strategic
games are the first game structure to start analyzing game equivalence. Second, the combinatorial structure
of an strategic game is simple enough to allow such kind of analysis by comparison with isomorphism on
other combinatorial structures. In particular, to relate the problems with isomorphisms for well studied
structures as graphs [13], boolean formulas or boolean circuits [1, 4, 6].

In defining a concrete equivalence between games we have to pay attention to the structural properties
that are preserved in equivalent games. In this paper, we consider two versions of isomorphisms that preserve
at different levels the structure of the Nash equilibria. A strong isomorphism preserves utilities corresponding
to the notion introduced in [16]. A weak isomorphism preserves preferences. Each of them requires to preserve
less information about the relative structure of profiles while preserving still the structure of the Nash or
pure Nash equilibria. More precisely, as we will show later, strong isomorphisms preserve pure and mixed
Nash equilibria, while weak isomorphisms only preserve pure Nash equilibria.

In this paper we are interested in the computational complexity of deciding whether two games are
equivalent. We consider two problems related to isomorphisms. In the IsIso problem, given two games Γ
and Γ′ and a mapping ψ we have to decide whether ψ is an isomorphism. In the Iso problem we have to decide
whether two games are isomorphic. In order to study the computational aspects of isomorphism problems
on strategic games, we need first to determine the way in which games and morphisms are represented
as inputs to a program. For the representation of strategic games we adopt the proposal given in [2] an
consider the following two representation, each with a different level of succinctness. When a game is given
in general form the actions are listed explicitly but utilities and mappings are given by deterministic Turing
machines. In the explicit case utilities are stored in tables. In both cases morphisms are always represented
by tables. This is not a restriction as in polynomial time we can transform a morphism representation by
Turing machines into a tabular representation by tables, because the actions are given explicitly.

The main contributions of the paper are the following problem classification:

• The IsIso problem is coNP-complete, for games given in general form, and belongs to NC when games
are given in explicit form.

• The Iso problem belong to Σp
2, for games given in general form, and to NP when games are given in

explicit form.

• The Iso problem is equivalent to the boolean circuit isomorphism problem, for games in general form,
and to the graph isomorphism problem, for games given in explicit form.

The above results hold independently of the type of isomorphism considered, observe that the boolean
circuit isomorphism problem is believed not to be Σp

2-hard [1], and that the graph isomorphism problem is
conjectured not to be NP-hard [13]. Therefore the same results are valid for the Iso problem.

Besides the above generic forms of representing games we will also consider another particular class of
strategic games, that we call formula games. Our formula games are (as we will show) equivalent in power
of representation to a subfamily of the weighted boolean formula games introduced in [14]. We analyze the
complexity of the Iso problem when the games correspond to a general form, that is, the number of bits
controlled by each player is a constant. For formula games in general form we show that the Iso problem is
equivalent to boolean formula isomorphism. Recall that the complexity of the boolean formula isomorphism
problem is the same as that of circuit isomorphism, however it is conjectured that both problems are not
equivalent.

The paper is organized as follows. In Section 2 we introduce the definitions, problems and representations
that will be used through the paper, we also introduce the notion of game mappings and the definition of the

2

different notions of game isomorphism in which we are interested. In Section 3 we provide the complexity
results for the case of strong isomorphism. Section 4 is devoted to the weak isomorphism. Finally, Section 5
is devoted to state further results and open problems related to isomorphism and game classification. The
paper concludes with an appendix where some of the most technical details of the proofs are given.

2. Definitions and preliminaries

In this section we provide the definitions and terminology used in the paper. We start with strategic
games and their representations. We continue with game mapping and the definition of the two types of
isomorphism considered in this work. We finalize this section with the definition of several computational
problems.

Strategic games. We start stating the mathematical definition of strategic game as given in [18].

Definition 1. A strategic game Γ is a tuple (N, (Ai)i∈N , (ui)i∈N). The set of players is N = {1, . . . , n}.
Player i ∈ N has a finite set of actions Ai, we note ai any action belonging to Ai. The elements a =
(a1, . . . , an) ∈ A1 × . . . × An are the strategy profiles. The utility (or payoff) function ui, for each player
i ∈ N , is a mapping from A1 × . . .×An to the rationals.

In the context of computational complexity it is very important to fix how games are represented as
problem inputs. In all the different types of representations we will always assume that the actions for each
player are giving explicitly, by listing all its components. This leads us with two types of representations
depending on whether the utilities are given explicitly or succinctly.

Our fist representation is the generic representation of strategic games given in [2] where the pay-off
functions of a game is described by a deterministic Turing Machine.

Strategic game in general form. The game Γ is given by a tuple

Γ = 〈1n, A1, . . . , An,M, 1t〉.

The game has n players, and for each player i, where 1 ≤ i ≤ n, their set of actions Ai is given by listing
all its elements. Given a strategy profile and a player i, 1 ≤ i ≤ n, ui(a) is the output of M on input 〈a, i〉
after t steps.

In [2] a more succinct representation of games is obtained by defining implicitly the sets of actions Ai

as subsets of {0, 1}m, in such a case a game Γ is given by 〈1n, 1m,M, 1t〉, which is called implicit form. For
reasons that we will clarify later, we do not consider strategic games in implicit form.

Our second representation assumes that the pay-off functions are given explicitly by means of a table.

Strategic game in explicit form. A game is given by a tuple

Γ = 〈1n, A1, . . . , An, T 〉,

where T is a table of dimensions |A1| × · · · × |An| × n. Given a strategy profile and a player i, 1 ≤ i ≤ n,
ui(a) = T [a][i].

In the following we consider strategic games in which the utility functions are described by boolean
formulas. In [5], player i has a goal ϕi to fulfill. Goals are usually described by boolean formulas. The utility
of the player is binary. It is 1 if the goal is satisfied and 0 otherwise. Along the lines suggested by circuit
games [25] we consider the following family of strategic games, whose representation is close to a game given
in general form [2].

Formula game in general form. A game is given by a tuple

Γ = 〈1n, A1, . . . , An, 1
ℓ, (ϕi,j)1≤i≤n,0≤j<ℓ〉

The set of actions for player i, 1 ≤ i ≤ n is Ai = {0, 1}mi . The utility of player i is given by the boolean
formulas ϕi,j(a1, . . . , an) ∈ {0, 1}, 0 ≤ j < ℓ, by the equation ui(a1, . . . , an) =

∑

0≤j<ℓ ϕi,j(a1, . . . , an)2
j .

3

Another model for strategic games that use boolean formula was introduced in [14], the weighted boolean
formula games. Whose definition is as the following:

Weighted boolean formula game (WBFG) [14]. A game is given by a tuple

Γ = 〈1n, 1m, 1r, 1ℓ, (Fi)1≤i≤n〉

where player i has the set of actionsAi = {0, 1}m. For each player i, there is a set Fi = {(fi,1, wi,1), . . . , (fi,r, wi,r)}
such that fi,j : A1 × · · · × An → {0, 1}, 1 ≤ j ≤ r, are boolean formulas and wi,j ∈ {0, 1}ℓ, 1 ≤ j ≤ r. The
utility for player i is computed by the formula ui(a1, . . . , an) =

∑

(f,w)∈Fi
w · f(a1, . . . , an).

In the above definition the set of actions are described implicitly, in the rest of the paper we will restrict
to WBFG in which the set of actions are described explicitly. Following our previous notation we will refer
to such games as weighted boolean formula games in general form. Formula games and WBFG in general
form are equivalent as, given a WBFG we can build in polynomial time in the size of Γ a Formula Game
Γ′ with the same utilities and conversely. The details of the proof are given in the Claim 1 in Appendix A.
Thus our results for formula games will apply also to WBFG.

In the case that the number of players is constant, with respect to the number of actions, we can
obtain an explicit representation in polynomial time from a given general form representation, otherwise the
transformation requires exponential time.

Game mappings. We consider game mappings that provide the way to associate players and their actions in
one game to players and actions in the other, as usual those mappings are independent of the utilities. We
adapt notations and definitions given in [20, 29].

Definition 2. Given Γ = (N, (Ai)i∈N , (ui)i∈N) and Γ′ = (N, (A′
i)i∈N , (u

′
i)i∈N), a game mapping ψ from Γ

to Γ′ is a tuple ψ = (π, (ϕi)i∈N) where π is a bijection from N to N , the player’s bijection, and, for any
i ∈ N , ϕi is a bijection from Ai to A

′
π(i), the i-th player actions bijection.

Observe that the player bijection identifies player i ∈ N with player π(i) and the corresponding actions
bijection ϕi maps the set of actions of player i to the set of actions of player π(i). A game mapping ψ from
Γ to Γ′ induces, in a natural way, a bijection from A1 × · · · × An to A′

1 × · · · × A′
n where strategy profile

(a1, . . . , an) is mapped into the strategy profile (a′1, . . . , a
′
n) defined as a′π(i) = ϕi(ai), for all 1 ≤ i ≤ n.

We note this mapping as ψ(a1, . . . , an) = (a′1, . . . , a
′
n), overloading the use of ψ. A mixed strategy profile

p = (p1, . . . , pi, . . . , pn) is given by probabilities pi on Ai (such that
∑

ai∈Ai
pi(ai) = 1) for 1 ≤ i ≤ n. A

game mapping ψ also induces a mapping ψ(p1, . . . , pn) = (p′1, . . . , p
′
n) such that p′π(i) is a probability on A′

π(i)

defined by p′π(i)(ϕi(ai)) = pi(ai). Isomorphisms are game mappings fulfilling some additional restrictions on
utilities or preferences as we will see later.

In order to describe a game mapping, we consider the less succinct approach. Observe that for the information
on each game, we have to keep only the set of actions for each player.

Game mapping in explicit form. All the components of the mapping is given explicitly, action sets are given
by listing all its elements and permutations are given by tables, that is

ψ = 〈1n, A1, . . . , An, A
′
1, . . . , A

′
n, Tπ, Tϕ1

, . . . , Tϕn
〉

where Tπ, Tϕ1
, . . . , Tϕn

are tables such that Tϕi
[ai] = a′Tπ[i]

.

We have not considered the description of a mapping by Turing machines,

ψ = 〈1n, A1, . . . , An, A
′
1, . . . , A

′
n,Mπ,Mϕ1

, . . . ,Mϕn
, 1t〉

because in such a case we can construct an explicit coding of ψ with size bounded by 2|ψ| in time |ψ|2.

Observe that it is not trivial to consider an adequate description of mapping associated to a set with
exponentially many actions, in view of that we are not considering implicit form representation for mappings
and games.

4

Game isomorphism. We start defining the stronger version of an isomorphism introduced by J. Nash [16]
(see also [20, 29]).

Definition 3. Given two strategic games Γ = (N, (Ai)i∈N , (ui)i∈N) and Γ′ = (N, (A′
i))i∈N , (u

′
i)i∈N), a game

mapping ψ = (π, (ϕi)i∈N) is called a strong isomorphism ψ : Γ → Γ′ when, for any player 1 ≤ i ≤ n and
any strategy profile a, it holds ui(a) = u′π(i)(ψ(a)). In the particular case that Γ′ is Γ a strong isomorphism
is called a strong automorphism.

In Example 1 we provide an example of strong isomorphism.

Example 1. Given the following games Γ and Γ′

Player 1

Player 2
l r

t 0, 0 0, 1
b 1, 1 1, 0

Γ

ψ
−→ Player 1

Player 2
l′ r′

t′ 1, 0 0, 1
b′ 0, 0 1, 1

Γ′

Consider the morphism ψ : Γ → Γ′ defined as ψ = (π, ϕ1, ϕ2) where π = (1 → 2, 2 → 1), ϕ1 = (t → l′, b → r′) and

ϕ2 = (l → b′, r → t′). This morphism maps strategy profiles as: ψ(t, l) = (b′, l′), ψ(t, r) = (t′, l′), ψ(b, l) = (b′, r′) and
ψ(b, r) = (t′, r′). Therefore it is a strong isomorphism.

Given a strong isomorphism ψ between Γ and Γ′, observe that a mixed strategy profile p is a Nash
equilibrium in Γ iff ψ(p) is a Nash equilibrium in Γ′ and, of course, the same holds for pure Nash equilibria.
Thus the bijection induced by strong isomorphisms on the set of mixed strategy profiles preserves the
structure of the Nash equilibria. Observe that, furthermore, a strong isomorphism induces a isomorphism
among the Nash dynamics graphs of the two games.

There are several ways to relax the notion of strong isomorphism while maintaining the structure of Nash
equilibria. For instance, Harsanyi and Selten [11] substitute uπ(i)(ψ(a)) = ui(a) for uπ(i)(ψ(a)) = αiui(a)+βi.
In order to generalize this approach we consider, following [18], game isomorphism in which the preference
relations (�i)i∈N induced by the utility functions are preserved. We note strict preference as usual, a ≺i a

′

iff a �i a
′ but not a′ �i a. We note indifference by a ∼i a

′, as usual indifference occurs when a �i a
′ and

a′ �i a holds. The definition of isomorphism can be adapted to respect only preference relations instead of
utility functions.

Definition 4. A weak isomorphism ψ : Γ → Γ′ is a mapping ψ = (π, (ϕi)i∈N) such that any triple a, a′

and i verifies: a �i a
′ iff ψ(a) �π(i) ψ(a

′).

Example 2. We consider a �i a
′ iff ui(a) ≤ ui(a

′). Following there is an example of weak isomorphism ψ =
(π, ϕ1, ϕ2).

Player 1

Player 2
l r

t 0, 0 0, 1
b 1, 1 1, 0

Γ

ψ
−→ Player 1

Player 2
l′ r′

t′ 3, 3 2, 2
b′ 2, 3 3, 2

Γ′

where π = (1 → 2, 2 → 1), and ϕ1 = (t → r′, b → l′), ϕ2 = (l → t′, r → b′). Observe that ui(a) and ui(ψ(a)) are not

even related by a linear function.

Weak isomorphisms preserve preferences for any pair of strategy profiles and any player, therefore main-
tains the structure of pure Nash equilibria.

We consider the following computational problems related to games and morphisms.

Is Game Isomorphism (IsIso). Given two games Γ, Γ′ and a game mapping ψ : Γ → Γ′, decide whether ψ is
a game isomorphism.

5

Game Isomorphism (Iso). Given two games Γ, Γ′, decide whether there exists a game isomorphism between
Γ and Γ′.

The two problems can be formulated for strong and weak isomorphism introduced above and also for
games in general form (strategic or boolean formula) or games in explicit form. The game isomorphism
problem can also be considered for the case in which n = 1. For this particular case, the isomorphism
problem is computationally easy.

Theorem 1. The Iso problem for games with one player is polynomial time solvable, for strong and weak
isomorphism, and for general form strategic and formula games and for explicit form games.

Proof. Consider a 1-player game Γ({1}, A1, (u1)). Consider the vector x = (x1, . . . , xm) where xi = u1(i)
and m = |A1|. Define its characteristic vector S(Γ) as the vector obtained after sorting x in increasing order.
Then we have that two 1-player games are strongly isomorphic iff their characteristic vectors are identical.

For the case of weak isomorphism the condition is equivalent to the fact that the relative order of two
consecutive elements is the same in both characteristic vectors.

The vector can be obtained in polynomial time for any of the considered game representation, and thus
the problems can be solved in polynomial time. 2

Assumption In view of the above result we will assume for the rest of the paper that all the games have
at least two players.

Other problems. Our coNP-hardness results follow from reductions from the following coNP-complete prob-
lem [10]:

Validity problem(Validity): Given a boolean formula F decide whether F is satisfiable by
all truth assignments.

We also consider the following problems on boolean circuits. Recall that two circuits C1(x1, . . . , xn) and
C2(x1, . . . , xn) are isomorphic if there is a permutation π of {1, . . . , n} such that, for any truth assignment
x ∈ {0, 1}n, C1(x) = C2(π(x)).

Boolean circuit isomorphism problem (CircuitIso): Given two boolean circuits C1 and
C2 decide whether C1 and C2 are isomorphic.

A related problem is based on the notion of congruence. A congruence between two circuits on n variables,
C1(x1, . . . , xn) and C2(x1, . . . , xn) is a mapping ψ = (π, f1, . . . , fn), where π is a permutation of {1, . . . , n}
and, for any 1 ≤ i ≤ n, fi is a permutation on {0, 1} (either the identity or the negation function). As in the
case of game morphism, the image ψ(x) is obtained by permuting the positions of the input bits, according
to permutation π, and then applying to any bit i the permutation fi.

Boolean circuit congruence problem (CircuitCong): Given two circuits C1 and C2 decide
whether C1 and C2 are congruent.

The CircuitIso problem has been studied by B. Borchert, D. Ranjan and F. Stephan in [6], among many
other results they show that CircuitIso and CircuitCong are equivalent. It is known that CircuitIso ∈
Σp

2, but M. Agrawal and T. Thierauf prove that it cannot be Σp
2-hard unless the polynomial hierarchy

collapses (see Corollary 3.5 in [1]).
We also consider the isomorphism and congruence problems for boolean formulas. Recall that two

formulas Φ1(x1, . . . , xn) and Φ2(x1, . . . , xn) are isomorphic if there is a permutation π of {1, . . . , n} such
that, for any truth assignment x ∈ {0, 1}n, C1(x) = C2(π(x)). They are congruent if there is a mapping
ψ = (π, f1, . . . , fn), where π is a permutation of {1, . . . , n} and, for any 1 ≤ i ≤ n, fi is a permutation on
{0, 1} such that, for any truth assignment x ∈ {0, 1}n, C1(x) = C2(π(x)).

6

Boolean formula isomorphism problem (FormulaIso): Given two boolean formulas Φ1

and Φ2 decide whether Φ1 and Φ2 are isomorphic.

Boolean formula congruence problem (FormulaCong): Given two boolean formulas Φ1

and Φ2 decide whether Φ1 and Φ2 are congruent.

B. Borchert, D. Ranjan and F. Stephan in [6] show that FormulaIso and FormulaCong are equivalent.
It is known that FormulaIso ∈ Σp

2. but it cannot be Σp
2-hard unless the polynomial hierarchy collapses

(see Corollary 3.4 in [1]).
Two graphs are isomorphic if there is a one-to-one correspondence between their vertices and there is an

edge between two vertices of one graph if and only if there is an edge between the two corresponding vertices
in the other graph.

Graph isomorphism (GI): Given two graphs, decide whether they are isomorphic.

It is well known that GI is not expected to be NP-hard [13].

Notation. We finish this section with some additional definitions and notation that will be used in this paper.
A binary actions game is a game in which the set of actions for each player is {0, 1}. A binary game is a

binary actions game in which the utility functions range is {0, 1}. We will need to construct binary actions
games associated to general games, for doing so we use a binify process on the strategies of the original game.

Given a strategic game Γ = (N, (Ai)i∈N , (ui)i∈N), assume without loss of generality that N = {1, . . . , n}
and that, for any i ∈ N , Ai = {1, . . . , ki}. We “binify” an action j ∈ Ai, coding it with ki bits, as binify(j) =
0j−110ki−j . The binify process can be used in a strategy profile, given a = (a1, . . . , an), we write binify(a) =
(binify(a1), . . . , binify(an)). Observe that by setting k =

∑

i∈N ki, we have binify(a) ∈ A′ = {0, 1}k. We
define good(A′) = {binify(a)|a ∈ A} and bad(A′) = A′ \ good(A′). Note that binify : A → good(A′) is a
bijection and therefore the inverse function is also a bijection.

Example 3. Given Γ with 3 players A1 = A3 = {1, 2} and A2 = {1, 2, 3} we have binify(1, 2, 2) = (10, 010, 01) =
(1, 0, 0, 1, 0, 0, 1) and binify−1(10, 010, 01) = (1, 2, 2).

3. Complexity results for strong isomorphisms

Let us start with the complexity for IsIso problem in the case of strategic games.

Theorem 1. The IsIso problem for strong isomorphisms is coNP-complete for strategic games in general
form and for boolean formula formula games in general form. The problems belongs to NC whenever the
games are given in explicit form. The strong isomorphism is given in both cases in explicit form.

Proof. Let us first assume that the games are given in general form. In this case the input is formed by
two games Γ = 〈1n, A1, . . . , An,M1, 1

t1〉 and Γ′ = 〈1n, A′
1, . . . , A

′
n,M2, 1

t2〉 and a game mapping between
the two games ψ = 〈1n, A1, . . . , An, A

′
1, . . . , A

′
n, Tπ, Tϕ1

, . . . , Tϕn
〉. Then we have 〈Γ,Γ′, ψ〉 ∈ IsIso iff

∀ (a1, . . . , an) ∈ A1 × · · · ×An ∀ i ∈ N u′π(i)(ψ(a1, . . . , an)) = ui(a1, . . . , an).

Therefore IsIso belongs to coNP because it is enough to guess a strategy profile a = (a1, . . . , an) and a
player i, using polynomial space, and check u′π(i)(ψ(a)) 6= ui(a) in polynomial time.

To prove hardness we define two games, the first one is associated to a boolean formula, and a mapping
between them. Given a boolean formula F with n variables, consider the following game.

WinWhenTrue(F): This game has n players, N = {1, . . . , n}, and player i has Ai = {0, 1}. All the
players 1 ≤ i ≤ n have the same utility ui(a1, . . . , an) = F (a1, . . . , an).

The game is coded in general form as 〈1n, A1, . . . , An,Eval, 1
log n(n+|F |)2〉 where Eval is a tm that evaluates

a formula in time O((n+ |F |)2), we provide some additional time to get rid of th e constant. Observe that
this codification can be obtained in polynomial time given F .

7

AlwaysWin: This game has n players, N = {1, . . . , n}, and player i has Ai = {0, 1}. All the players
1 ≤ i ≤ n have the same utility ui(a1, . . . , an) = 1.

This game can be represented in general form as 〈1n, A1, . . . , An,One, 1
n+1〉 where One is a tm that, after

reading the input, outputs 1 in time n+ 1. Furthermore the representation can be computed in O(n) time.

Identity: This mapping combines the identity function on N = {1, . . . , n} with the identity function
on {0, 1}.

The mapping is represented by 〈1n, A1, . . . , An, A1, . . . , An, idπ, id1, . . . , idn〉, where idπ(i) = i and idi(ai) =
ai for i ≤ i ≤ n. Observe that such a representation can be obtained in time O(n).
We claim 〈WinWhenTrue(F),AlwaysWin, Identity〉 ∈ IsIso iff F is valid. When F is a valid formula
both games have the same utility functions, therefore the mapping Identity is an strong isomorphism.
When F is not valid there exists x1, . . . , xn such that F (x1, . . . xn) = 0, therefore the utility of this strategy
profile for player 1 in WinWhenTrue is 0, while the same player gets utility 1 in the AlwaysWin game.
Therefore, Identity is not an strong isomorphism.

When Γ1, Γ2 and ψ are formula games in general form, the same arguments shows that the IsIso problem
is coNP-complete.

When Γ1, Γ2 and ψ are given in explicit form the strong isomorphism can be verified in polylogarithmic
parallel. We have to compute in parallel for each a = (a1, . . . , an) the corresponding a′ = (a′1, . . . , a

′
n) such

that a′Tπ [i]
= Tϕi

[ai] and test if T1[a, i] = T2[a
′, Tπ[i]] for each player i. 2

Our next step is to provide upper bounds for the complexity of the Iso problem. Later on we show that
the bounds are best possible for the Iso problems.

Theorem 2. The Iso problem for strong morphism belong to Σp
2 for strategic and formula games in general

form. The problem belong to NP when the games are given in explicit form.

Proof. Let us consider first the membership proofs. We define a nondeterministic algorithm working in
polynomial space/time depending on the representation of the input game. Assume that we are given two
strategic games Γ1 = (N, (Ai)i∈N , (ui)i∈N) and that Γ2 = (N, (A′

i)i∈N , (u
′
i)i∈N), by definition, there is a

strong isomorphism between Γ1 and Γ2 iff

∃ψ = (π, ϕ1, . . . , ϕn) ∀a ∈ A1 × · · · ×An ∀i ∈ N ui(a) = u′π(i)(ψ(a)),

where ψ is a mapping of Γ1 to Γ2. Observe that it is possible to guess, using polynomial space, an isomorphism
ψ = 〈A1, . . . , An, A

′
1, . . . , A

′
n, Tπ, Tϕ1

, . . . , Tϕn
〉. Furthermore, given a strategy profile a = (a1, . . . , an) it is

possible to compute ψ(a) in polynomial time just doing a′Tπ[i]
= Tϕi

[ai]. To check the correctness of the

guess, we need to verify that, for every player i and strategy profile a, it holds ui(a) = u′π(i)(ψ(a)).
When the games are given in general form the strategy profile can be represented in polynomial space and

the test performed in polynomial time, both for utilities given by tm or formulas, therefore the Iso problem
belongs to Σp

2. When both games are given in explicit form, the number of strategy profiles is polynomial in
the size of the input and therefore we can check for all a the condition ui(a) = u′i(ψ(a)) in polynomial time
once the mapping has been guessed. Therefore, the Iso problem belongs to NP. 2

We prove that Iso is equivalent to CircuitIso for games in general form. This is done through a series
of reductions transforming the game while preserving the existence of strong isomorphism. First, we show
how to construct corresponding isomorphic binary actions games. Second, we show the construction from
a binary action game of a binary game preserving isomorphism. Finally, we show the equivalence with the
Boolean circuit congruence. All the transformations presented in the paper can be computed in polynomial
time, thus we avoid to mention this fact all through the paper. Let us start with the first transformation.

We start defining a construction for the first reduction that makes use of the binify process. Let Γ =
(N, (Ai)i∈N , (ui)i∈N) be a strategic game. In this case we get k =

∑

i∈N ki, were ki = |Ai|. The binify process
can be used in a strategy profile, given a = (a1, . . . , an) ∈ A, we write binify(a) = (binify(a1), . . . , binify(an)).
Recall that good(A′) = binify(A).

8

BinaryAct(Γ, µ) = (N ′, (A′
i)i∈N′ , (u′

i)i∈N′)
where N ′ = {1, . . . , k} and, for any i ∈ N ′, A′

i = {0, 1} and thus the set of action profiles is A′ = {0, 1}k.
The players are partitioned into B1, . . . , Bn blocks. Block i is formed by ki players. Given i ∈ Bj we say
that i belongs to block j of players and write block(i) = j. The utilities are defined by

u
′
i(a

′) =

{

ublock(i)(binify
−1(a′)) if a′ ∈ good(A′),

µ if a′ ∈ bad(A′).

Notice that, for a ∈ A, u′i(binify(a)) = ublock(i)(a), furthermore, all the players in a given block have
the same utility function. Each strategy profile a′ in BinaryAct(Γ, µ) can be factorized giving the actions
taken by the k players as a′ = (a′1, . . . , a

′
k) or grouping the actions according to the blocks B1, . . . , Bn as

a′ = (b1, . . . , bn) where bi ∈ {0, 1}ki . The value µ will be selected to create a gap on the utility that separates
the profiles in BinaryAct(Γ, µ) that codify correctly a profile of Γ, from those that do not.

Example 4. We give an example of the transformation from Γ to BinaryAct(Γ, µ). We take as Γ a version of BS

game with nonzero utilities and setting µ = 0 we have:

Player 1

Player 2
1 2

1 3, 2 1, 1
2 1, 1 2, 3

BS game

A′ u1 u2 u3 u4

1010 3 3 2 2

1001 1 1 1 1

0110 2 2 3 3

0110 1 1 1 1

a′ ∈ bad(A′) 0 0 0 0

In the BS game A1 = A2 = {1, 2} and binify(1) = 10, binify(2) = 01. Therefore good(A′) = {1010, 1001, 0110, 0101}
and bad(A′) = {0, 1}4 \ good(A′). The game BinaryAct(BS, 0) has N ′ = {1, 2, 3, 4}. The partition of players into

blocks is given by B1 = {1, 2} and B2 = {3, 4}.
Given a good strategy profile a and a player i we compute u′

i(a) as follows. Suppose a = 1010 = (binify(1), binify(1))
and i = 4. As player 4 belongs to B2 it holds block(4) = 2 and u′

4(1010) = u4(binify(1), binify(1)) = ublock(4)(1, 1) =
u2(1, 1) = 2.

Now we provide the reduction from the Iso problem for strong isomorphism to the same problem for
binary actions games. We provide here the main arguments of the proof and delay the more technical details
to Appendix B.

Lemma 1. Let Γ1, Γ2 be two strategic games given in general form and let t be max{t1, t2}, where ti,
1 ≤ i ≤ 2, is the time allowed to the utility tm of the game Γi. There is a strong isomorphism between
Γ1 and Γ2 iff there is a strong isomorphism between the games BinaryAct(Γ1, µ) and BinaryAct(Γ2, µ)
where µ = −2t.

Proof. When M is a tm computing the utilities in time t we have |ui(a)| ≤ t and when the output is in
binary, −2t ≤ ui(a) ≤ 2t. Moreover, whenM is a tm computing the utilities in time t, we can construct a tm
M ′ computing the utilities in time tk. Given Γ and Γ′ with utilities computed in times t and t′ and taking
t = max{t, t′} and µ = −2t we can find a tms for BinaryAct(Γ, µ) and BinaryAct(Γ′, µ) computing
utilities in O(t). Furthermore a description of both machines can be obtained in polynomial time.

Given a strong isomorphism ψ = (π, ϕ1, . . . , ϕn) of Γ into Γ′, let us define a mapping ψ′ = (p, f1, . . . , fk)
of BinaryAct(Γ, µ) into BinaryAct(Γ′, µ). Suppose that in ψ it holds π(i) = j, then as ϕi : Ai → A′

j is a
bijection, by construction blocks Bi and B

′
j in binary games have the same cardinality and we ask p to be a

bijection p : Bi → B′
j . Writing Ai = A′

j = {1, . . . , ℓ} and Bi = {i1, . . . , iℓ} and B′
j = {j1 . . . , jℓ}, the action

bijection ϕi(p) = q, 1 ≤ p ≤ ℓ, induces the bijection p(ip) = jq between both blocks. This concludes the
definition of p. In ψ′ we take all the fi for 1 ≤ i ≤ k to be identities. It holds that ψ′ is a strong isomorphism
which is proved as Claim 2 in Appendix B.

For the reverse implication, assume that ψ′ = (p, f1, . . . , fk) is an strong isomorphism between the games
BinaryAct(Γ1, µ) and BinaryAct(Γ2, µ) having players N ′

1 and N ′
2 with N ′

1 = N ′
2. The strategy profiles

in both binary action games are A′
1 and A′

2. Now we can define a mapping (π, ϕ1, . . . , ϕn) of Γ1 to Γ2. The

9

permutation of players π mimics the block permutation induced by p, thus if Bi is mapped to B′
p(i) we set

π(i) = p(i). The i action bijection is defined as follows. The action j in Ai corresponds in BinaryAct(Γ1, µ)
to the profile binify(j) in block Bi. As this block is mapped into B′

p(i), the profile is mapped into another

good profile binify(j′) and we define ϕi(j) = j′. The mapping (π, ϕ1, . . . , ϕn) is an strong isomorphism from
Γ1 to Γ2. Look at the Claim 3 of Appendix B for a detailed proof of this reverse part. 2

Let us now transform a binary actions game into a binary game. Given a game Γ = (N, (Ai)i∈N , (ui)i∈N)
in which Ai = {0, 1}, for any i ∈ N , and N = {1, . . . , n}. Given positive values t and m such that, for any
action profile a and any player i, |ui(a)| ≤ t and m ≥ {n, t}. We set k = n + tn +m + 2 and consider the
following game.

Binary(Γ, t,m) = (N ′, (A′
i)i∈N′ , (u′

i)i∈N′)
where N ′ = {1, . . . , k} and, for any i ∈ N ′, A′

i = {0, 1}. The set N ′ is partitioned into n+ 2 consecutive
intervals B0, . . . , Bn, Bn+1 so that the interval B0 has exactly n players, for 1 ≤ i ≤ n, the block Bi has
t players, finally block Bn+1 has m+ 2 players. Inside the blocks we use relative coordinates to identify
the players. In all the blocks coordinates start at 1 except for the last block that starts with 0. In this
situation a strategy profile a is usually factorized as a = x b1 . . . bn z where x = x1 . . . xn, bi = bi1 . . . bit
and z = z0 . . . zm+1. Sometimes, to improve readability, we write a = xb1 . . . bnz as a = (x, b1, . . . , bn, z).
We define the utility function by properties of the strategy profile, assume that a = x b1 . . . bn z is a
strategy profile of Binary(Γ, t,m).

• In the case that, for some ℓ, 0 ≤ ℓ ≤ m+ 1, the last ℓ bits of z are 1, all the players except the last
ℓ get utility 0. The remaining players get utility 1. Observe, that in the case ℓ = 0, we have that
z = 0m+2 and therefore all the players get utility 0.

• In the case that, for some j, 1 ≤ j ≤ t, the j-th bit of z is the unique 1 in z, all the players in blocks
B1, . . . , Bn that do not occupy position j in their block get utility 0, all the players in blocks B0

and Bn+1 get utility 1, all the remaining players get as utility their action.

• In the case that, the 0-th bit of z is the unique 1 in z, for any i, 1 ≤ i ≤ n, player i in block B0 and
all the players in block Bi get utility 1 when ui(x) = bi and 0 otherwise. All the players in block
Bn+1 get utility 0.

• In the remaining cases all the players get utility 1.

As in a strategy profile a = x b1 . . . bn z the parts x = x1 . . . xn, bi = bi1 . . . bit and z = z0 . . . zm+1 are
binary words, the whole profile a is also a binary string having length k = n+ tn+m+2. As the utilities
for all the players are either 0 or 1, we all the utilities together as a binary string u(a) = u1 . . . uk.

Example 5. We continue with the game used in Example 4. Consider the game Γ = BinaryAct(BS, 0) where

actions are binary but utilities are not. The values of the utilities are 1, 2 and 3 obtained from the utilities in BS

and 0 corresponding the utility of any bad profile. As expressed in binary the utilities are 00, 01, 10 and 11, two

bits suffices. The game Γ has n = 4. Therefore we can take t = 2 and m = 4. The game Binary(Γ, 2, 4) has

k = n+ tn+m+ 2 = 18 players.

The set N ′ is partitioned into 6 blocks. The block B0 contains 4 players, each Bi, 1 ≤ i ≤ 4 has 2 players and

B5 has 6 players. A strategy profile has the format a = xb1 . . . b4z with x = x1 . . . x4, bi = bi1bi2 for 1 ≤ i ≤ 4
and z = z0z1 . . . z4z5. The utilities are coded u(a) = u1 . . . u18. Let us consider examples of utilities in each of the

preceding four cases.

• Take for instance ℓ = 3, then a = xb1 . . . b40
313 and u(a) = 01513. We can display the block structure of the

preceding utility as

u(a) = 0 . . . 0
︸ ︷︷ ︸

B0

0 0
︸ ︷︷ ︸

B1,...,B4

000

ℓ
︷︸︸︷

111
︸ ︷︷ ︸

B5

When ℓ = 0 we have profiles like a = xb1 . . . b40
6. In this case all the players get utility 0.

• When z = z0z1z2z3z4z5 = 001000, the profile z “looks at” the second bit of each bi, 1 ≤ i ≤ 4. In this case

u(a) = 1 . . . 1
︸ ︷︷ ︸

B0

0b120b220b320b42
︸ ︷︷ ︸

B1,...,B4

1 . . . 1
︸ ︷︷ ︸

B5

10

When z = 000010, the profile z points to “out of range” position in blocks bi, 1 ≤ i ≤ 4. In this case

u(a) = 1 . . . 1
︸ ︷︷ ︸

B0

0 0
︸ ︷︷ ︸

B1,...,B4

1 . . . 1
︸ ︷︷ ︸

B5

• The connections between strategy profiles and utilities appears when z = 100000. Remind that in the game

Γ = BinaryAct(BS, 0) it holds

u1(1010) = u2(1010) = 11, u3(1010) = u4(1010) = 10

Let us consider profiles starting and ending as a = (1010, b1, . . . , b4, 100000). Consider for instance a =
(1010, 10, 11, 00, 10, 100000). As b1 = 10 6= u1(1010), player 1 and players in block B1 gets utility 0. As

b2 = 11 = u2(1010), player 2 and players in block B2 get 1 utility. Following this argument

u(a) = 0101
︸︷︷︸

B0

00
︸︷︷︸

B1

11
︸︷︷︸

B2

00
︸︷︷︸

B3

11
︸︷︷︸

B4

000000
︸ ︷︷ ︸

B6

• In all the remaining cases, all the players get utility 1.

Lemma 2. Let Γ1, Γ2 be two binary actions games given in general form, set t = max{t1, t2, 3}, where ti
is the time allowed to the utility tm of game Γi, and m = max{t, n1, n2}, where ni is the number of players
in game Γi. There is a strong isomorphism between Γ1 and Γ2 iff there is a strong isomorphism between
Binary(Γ1, t,m) and Binary(Γ2, t,m).

Proof. Given a mapping ψ = (π, ϕ1, . . . , ϕn) of Γ1 into Γ2, consider the mapping ψ′ = (p, f1, . . . , fk) of
Binary(Γ1, t,m) into Binary(Γ2, t,m) in which, for any 1 ≤ i ≤ n, fi = ϕi, and, for any i > n, fi is
the identity. The permutation p on B1,0 is exactly π. For any 1 ≤ i ≤ n, block B1,i is mapped to block
B2,π(i) and block B1,n+1 is mapped to block B2,n+1. Inside each block the players are assigned preserving
the relative order of positions in the block. It is straightforward to show that if ψ is an isomorphism then
ψ′ is also an isomorphism.

For the reverse implication, assume that ψ′ = (p, f1, . . . , fk) is a strong isomorphism between the games
Binary(Γ1, t,m) and Binary(Γ2, t,m). Observe that in such a case Γ1 and Γ2 have the same number n of
players. In this case we can show that permutation p preserves blocks, and relative positions inside interior
blocks, therefore we can define a mapping ψ = (π, ϕ1, . . . , ϕn) in which π is the restriction of p to block B1,0

and, for any 1 ≤ i ≤ n, ϕi = fi. In Claim 4 of Appendix B we prove that ψ is an isomorphism. 2

Given a binary game Γ = (N, (Ai)i∈N , (ui)i∈N) with n players, such that for any 1 ≤ i ≤ n, utility ui
has range {0, 1} and Ai = {0, 1}. We construct a circuit CΓ on 4n + 2 variables. Recall that, when ui(x)
is computed by a Turing machine in polynomial time, Ladner’s construction [23] gives us a polynomial size
circuit computing the same function.

Circuit CΓ. The variables in CΓ are grouped in four blocks, the X-block contains the first n-variables,
the Y -block is formed by the variables in positions n+ 1 to 2n, the C-block contain the following n+ 2
variables, and theD-block the remaining variables. For sake of readability we split the set of variables into
four parts a = (x, y, c, d) where x = (x1, . . . , xn), y = (y1, . . . , yn), c = (c1, . . . cn+2), and d = (d1, . . . , dn).

We define CΓ with the help of n+ 2 following circuits.

C1(x, y, d) = [(x1 = d1) ∧ · · · ∧ (xn = dn) ∧ (u1(x) = y1) ∧ · · · ∧ (un(x) = yn)]

C2(y) = [y1 ∨ · · · ∨ yn]

Ci+2(xi, yi, di) = [yi ∧ (xi = di)] for 1 ≤ i ≤ n.

Finally

CΓ(x, y, c, d) =

{
0 if

∑

1≤i≤n+2 ci = 0 or
∑

1≤i≤n+2 ci > 1

Cj if
∑

1≤i≤n+2 ci = 1 and cj = 1

The previous construction is used to reduce the Iso problem to the CircuitCong problem.

11

Lemma 3. Let Γ and Γ′ be two binary games in general form with at least two players each. There is a
congruence isomorphism between CΓ and CΓ′ iff there is a strong isomorphism between Γ and Γ′.

Proof. Assume that ψ = (π, ϕ1, . . . , ϕn) is a strong isomorphism from Γ to Γ′ and consider the following
variable transformation. The transformation preserves blocks. Variable xi is mapped to variable x′π(i) with

permutation ϕi, the same happens with block D. Variables yi is mapped to variable y′π(i) with permutation

the identity function, variable c1 is mapped to variable c′1, c2 to c′2, and c2+i to c
′
2+π(i) all the block c with

permutation the identity function.
For the reverse implication, let ψ′ = (p, f1, . . . , f4n+2) be a congruence morphism between CΓ and

C ′
Γ. Given a = (a1, . . . , a4n+2), for 1 ≤ i ≤ 4n + 2 the value p(i) points to the image of ai. When

ψ(a) = (a′1, . . . , a
′
4n+2) it holds a

′
p(i) = f(ai).

When a = (x, y, c, d), to avoid confusions we note p(xi) the position of the image of xi and we take similar
conventions for p(yi), p(ci) and p(di). Similarly the value of the image of xi will be f(xi). The congruence
verifies that for any truth assignment a to the variables of CΓ, we have that CΓ(a) = CΓ′(ψ′(a)). Congruence
Ψ′ allows us (as proved in Claim 5 of Appendix B) to prove that ψ preserves the structure of the C and Y
blocks. Furthermore the functions fi, for i in block C or Y , is the identity. This allows us to consider the
permutation π on {1, . . . , n} such that p(ci+2) = c′π(i)+2. Moreover this permutation verifies (proof in Claim

6 of Appendix B) p(xi) = x′π(i) iff p(di) = d′π(i) and p(xi) = d′π(i) iff p(di) = x′π(i).

Consider the mapping ψ′′ = (p′, f ′1, . . . , f
′
4n+2) such that the behavior of the permutation and bijections

coincides with ψ′ in blocks Y and C. In blocks X and D is given by

p′(xi) =

{

x′π(i) if p(xi) = x′π(i)
x′π(i) if p(xi) = d′π(i)

and p′(di) =

{

d′π(i) if p(di) = d′π(i)
d′π(i) if p(di) = x′π(i)

then p′ : X → X ′ and p′ : D → D′ and the behavior of p′ is the same in both blocks, that is p′(xi) = x′π(i)
iff p′(di) = d′π(i). The bijections are defined as

f ′(xi) =

{

f(xi) if p(xi) = x′π(i)
¬f(xi) if p(xi) = d′π(i)

and f ′(di) =

{

f(di) if p(di) = d′π(i)
¬f(di) if p(di) = x′π(i)

The morphism ψ′′ is a congruence. This trivially happens because for any strategy profile a it holds ψ′(a) =
ψ′′(a).

Finally, it is easy to prove that the morphism ψ given by ψ = (π, f ′1, . . . , f
′
n) is an isomorphism between

Γ and Γ′. 2

It is easy to show that CircuitCong is reducible to Iso, just consider a game with as many players as
variables in which the utilities for all the players are identical and coincide with the evaluation of the circuit.
Taking into account that CircuitCong is equivalent to CircuitIso putting all together we have:

Theorem 3. The strong isomorphism problem for strategic games in general form is polynomially equivalent
to the circuit isomorphism problem.

Observe that, for games in general form, the Iso problem for strong isomorphism remains equivalent to
the Iso problem for strong isomorphism when the games are restricted to be binary actions or binary games,
as the identity trivially reduces the latest problem to the former one.

We consider now formula games in general form, the results also apply to WBFG games [14] where actions
are given in explicit way. The proof follows the same steps as for the previous case. Now we have to show
that a description of the games provided in the reduction as formula games can be computed in polynomial
time.

Theorem 4. The strong isomorphism problem for formula games and WBFG in general form are equivalent
to the boolean formula isomorphism problem.

12

Proof. The game BinaryAct(Γ, µ) when Γ is a formula game in general form is a formula game. The game
Binary(Γ, t,m) when Γ is a binary actions formula game in general form is a formula game. A description
in general form of the games BinaryAct(Γ, µ) and Binary(Γ, t,m) can be computed in polynomial time.
Furthermore, a description of the circuit CΓ, for a binary formula game Γ, can be obtained in polynomial
time. A detailed proof all of this is given in Claim 7 of Appendix B. 2

Proving NP-completeness in the case of explicit form appears to be a difficult task. Observe, that a game
in explicit form can be seen as a graph with edge labels and weights. As the total number of different weights
appearing in both games is polynomial the problem can be reduced to the Graph isomorphism (GI) problem
[30]. Therefore the NP-hardness of Iso will imply the NP-hardness of GI. We have to prove the opposite
direction. We start by constructing a game from a graph.

Given an undirected graph G, let us define a strategic game Γ(G) associated to this graph.

Game Γ(G). Assume that G = (V,E) is a nondirected graph with V = {1, . . . , n} and m edges. Given
e ∈ E we write e = {i, j} to denote an edge connecting i and j. The game has 4 players with A1 = A2 =
{0, 1, . . . , n}, A3 = {0, 1}, A4 = E ∪{0}. Let A = A1 ×A2 ×A3 ×A4 and (i, j, k, l) ∈ A, the utilities are:

u1(i, j, k, l) = u2(i, j, k, l) =

{

1 if l = {i, j} and k = 0,

0 otherwise

u3(i, j, k, l) =

{

1 if i = 0, j 6= 0, k = 1 and l 6= 0,

0 otherwise

u4(i, j, k, l) =

{

1 if i = j = k = 0,

0 otherwise

Observe that the graph isomorphism problem is equivalent to the problem restricted to connected graphs G
and G′ that have n > 2 vertices. Otherwise, we add one after another new vertices connected to all the other
vertices in the graph (in both graphs) until the condition is fullfilled. This type of vertex addition preserves
isomorphism. With this construction we can also assume that, any vertex has at least one outgoing edge.

Lemma 4. Let G, G′ two connected undirected graphs, with at least two vertices. The games Γ(G) and
Γ(G′) are strongly isomorphic iff G and G′ are isomorphic.

Proof. Assume that p is an isomorphism between graphs G and G′. Let ψ = (π, ϕ1, . . . ϕ4) be an game
mapping defined as follows π and ϕ3 are the identity, ϕ1 = ϕ2 = p, ϕ4(0) = 0 and, for any edge {u, v} ∈ E(G),
ϕ4({u, v}) = {p(u), p(v)}. It is straightforward to show that ψ is a strong isomorphism between Γ(G) and
Γ(G′).

Let ψ = (π, ϕ1, . . . ϕ4) be a strong isomorphism between Γ(G) and Γ(G′), this verifies the following.
The player’s permutation verifies π : {1, 2} → {1, 2}, π : {3} → {3} and finally π : {4} → {4}. Denoting

by # the cardinality of a set, we have #{a|u1(a) = 1} = #{a|u2(a) = 1} = 2m, #{a|u3(a) = 1} = mn and
#{a|u4(a) = 1} = m + 1. When n > 2 and m > 2, these sets have different cardinality. As #{a|ui(a) =
1} = #{ψ(a)|u′π(i)(ψ(a)) = 1}, we get the result.

As players 1 and 2 have the same behavior we can assume π(1) = 1 and π(2) = 2, therefore π is the
identity.

The action’s bijection ϕ3 is the identity. As π is the identity, it holds the following bijection ψ(A1 ×
A2 × {0} × A4) = A′

1 × A′
2 × {1} × A′

4. Therefore, for any i′, j′, l′ holds u′3(i
′, j′, 1, l′) = 0 because

u3(ϕ
−1
1 (i′), ϕ−1

2 (j′), 0, ϕ−1
4 (l′)) = 0. This is a contradiction because u′3(i

′, 0, 1, e′) = 1 when 1 ≤ i ≤ n and
e′ ∈ E′.

The action’s bijections for players 1 and 2 verify ϕ1(0) = 0 and ϕ2(0) = 0. This is forced by the
rigid the structure of u4. As u4(0, 0, 0, l) = 1 we should have u′4(ϕ1(0), ϕ2(0), 0, ϕ1(l)) = 1 and this force
ϕ1(0) = ϕ1(0) = 0. Therefore ϕ1 and ϕ2 are permutations on vertices {1, . . . , n}.

The action’s bijection ϕ4 verifies ϕ4(0) = 0. When this does not hold, as ϕ4 is a bijection, there exists e
such that ϕ4(e) = 0. For j 6= 0 it holds that u3(0, j, 1, e) = 1 and, as ψ is a morphism, u′3(0, ϕ2(j), 1, 0) = 1,
but this is a contradiction. Therefore ϕ4 is a permutation on the m edges.

When ϕ4(e) = e′ and e = {i, j} it holds that e′ = {ϕ1(i), ϕ2(j)}. As u1(i, j, 0, {i, j}) = 1 and ψ is a
morphism, u′3(ϕ1(i), ϕ2(j), 0, ϕ4({i, j})) = 1, and ϕ4({i, j})) = {ϕ1(i), ϕ2(j)}.

13

ϕ1 and ϕ2 are the same permutation on {1, . . . , n}. We have to prove that, for all i ∈ {1, . . . , n} it hold
ϕ1(i) = ϕ2(i). Let i be a vertex, as every node has positive degree, exits j such that e = {i, j} is an edge
in G. As u1(i, j, 0, e) = u1(j, i, 0, e) = 1 it holds ϕ4(e) = {ϕ1(i), ϕ2(j)} = {ϕ1(j), ϕ2(i)}. There are two
possibilities, ϕ1(i) = ϕ2(i) and ϕ1(j) = ϕ2(j) or ϕ1(i) = ϕ1(j) and ϕ2(j) = ϕ2(i). But ϕ1(i) = ϕ1(j) is
impossible because ϕ1 is a permutation.

When ψ is an isomorphism, the mapping ϕ1 : {1, . . . , n} → {1, . . . , n} induces a graph isomorphism.
Consider and edge e = {i, j} in G as ψ is a game morphism u1(i, j, 0, e) = u′1(ϕ1(i), ϕ1(j), 0, ϕ4(e)) and this
forces ϕ4(e) = {ϕ1(i), ϕ1(j)}. 2

As a consequence of the previous results we get the following.

Theorem 5. The strong isomorphism problem for games given in explicit form is equivalent to the graph
isomorphism problem.

4. Weak isomorphisms

Replacing strong by weak isomorphisms does not modify complexity bounds. In this section we show
that, for the case of weak isomorphism, the IsIso problem is coNP-complete and that the Iso problem
is equivalent to the Iso problem for strong isomorphisms. The last equivalence will hold for any of the
considered representations of the games.

Theorem 6. The IsIso problem for weak isomorphism is coNP-complete, for games given in general form
(strategic, formula and WBFG), and it belongs to NC when the games are given in explicit form. The Iso
problem belongs to Σp

2, when the games are given in general form (strategic, formula and WBFG) and it
belongs to NP when the games are given in explicit form.

Proof. We adapt the proofs given in Theorems 1 and 2. Membership in coNP of the IsIso problem for
weak isomorphism and for games given in explicit or general form follows from the definitions.

When the games and the morphism are given in explicit form, a direct adaptation of the proof given in
Theorem 1 give us that IsIso belongs to NC for weak isomorphism.

To prove hardness, given a boolean formula F with n variables, we define a variation of the game
WinWhenTrue(F), WinWhenTrueW(F) in which we redefine utilities as follows:

ui(a1, . . . , an) =

{

2n if F (a1, . . . , an) is true,
∑n

i=1 ai2
n−i if F (a1, . . . , an) is false.

Observe that for any pair of strategy profiles a 6= a′, a ∼i a
′ holds when both F (a) = F (a′) = 1. When

F (a) = F (a′) = 0, a ≺i a
′ if and only if a < a′ in lexicographic order. When F (a) 6= F (a′) player i prefers

the satisfying assignment. On the other hand we consider the AlwaysWin game in which a ∼i a
′ always

holds.
Observe that the Identity morphism is a weak isomorphism between the games AlwaysWin and

WinWhenTrueW(F) iff F is valid. Thus, the IsIso problem for weak isomorphism and games in general
form is coNP-complete.

Finally observe that a description in general form of the WinWhenTrueW(F) and the AlwaysWin
games can be computed in polynomial time, both when the utility functions are described by Turing machines
or by formulas. 2

When considering the weak isomorphism we will show that the Iso problem, for strategic games in
general form, is equivalent to the boolean circuit isomorphisms, for formula games in general form to the
boolean formula isomorphism, and for strategic games in explicit form to the graph isomorphism problem.
Before proving those results we provide a series of game transformations that preserve weak isomorphism
establishing equivalence with the strong isomorphism. Later on we will show that those transformations are
indeed polynomial time reduction for the considered representations.

Assume that Γ = (N, (Ai)i∈N , (ui)i∈N) is a binary game where N = {1, . . . , n}. We consider the following
game.

14

CheckW(Γ) = (N ′, (A′
i)i∈N′ , (u′

i)i∈N′)
where N ′ = {1, . . . , n, n + 1} and, for any 1 ≤ i ≤ n, A′

i = {0, 1} and A′
n+1 = {0, 1, 2, 3}. The utilities

are defined as follows, for a player i, 1 ≤ i ≤ n,

u
′
i(a

′) =

{

1 if ui(a
′
1, . . . , a

′
n) = (a′n+1 mod 2),

0 otherwise,

For the last player,
u
′
n+1(a

′) = a
′
n+1.

We can look at the equality
(

ui(a
′
1, . . . , a

′
n) = (a′n+1 mod 2)

)

as a boolean expression taking values {0, 1},

under this point of view we write shortly u′i(a
′) =

(

ui(a
′
1, . . . , a

′
n) = (a′n+1 mod 2)

)

.
Also note that Γ is a binary game (both, actions and utilitites are binary), CheckW(Γ) is not a binary

game either a binary action game due to the last player. Player n+ 1 in CheckW(Γ) has four actions and
un+1 takes four values.

Lemma 5. Let Γ1 and Γ2 be two binary games. Γ1 and Γ2 are strongly isomorphic iff the games CheckW(Γ1)
and CheckW(Γ2) are weakly isomorphic.

Proof. Let Γ′
1 = CheckW(Γ1) and Γ′

2 = CheckW(Γ2). Assume that ψ = (π, ϕ1, . . . , ϕn) is a strong
isomorphism between Γ1 and Γ2. Define the mapping ψ′ = (p, f1, . . . , fn+1) where, for 1 ≤ i ≤ n, p(i) = π(i)
and fi = ϕi, p(n+1) = n+1 and fn+1 is the identity function. As we see in Claim 8 ψ′ is a strong (therefore
also a weak) isomorphism between Γ′

1 and Γ′
2.

Assume now that ψ′ = (p, f1, . . . , fn+1) is a weak isomorphism between Γ′
1 and Γ′

2. As p maps between
them players having the same number of actions, and the only player with 4 actions is the last one we are
forced to have p(n+ 1) = n+ 1. Let ψ be ψ′ restricted to players 1,. . . , n, that is ψ = (π, ϕ1, . . . , ϕn) such
that for 1 ≤ i ≤ n, π(i) = p(i) and ϕi = fi. For any a′ = (a, a′n+1) with a = (a1, . . . , an) we have that
ψ′(a′) =

(

ψ(a), fn+1(a
′
n+1)

)

. The definition of the preference relation of player n+ 1 forces fn+1 = Id (see

Claim 9). After that we have the factorization ψ′(a′) =
(

ψ(a), a′n+1

)

. Note that for any a′ = (a, an+1) it
holds

u′n+1(ψ
′(a′)) = u′n+1(ψ(a), an+1) = an+1 = u′n+1(a

′)

Given a = (a′1, . . . a
′
n), as Γ1 is a binary game it holds ui(a) ∈ {0, 1}. We define ui(a) = 1 − ui(ai) and in

this case ui(a) = (ui(a) mod 2) and ui(a) = (ui(a) mod 2). In CheckW(Γ1), given a = (a′1, . . . a
′
n) for any

player 1 ≤ i ≤ n it holds,

u′i(a, ui(a)) =
(

ui(a) = (ui(a) mod 2)
)

=
(

ui(a) = ui(a)
)

= 0

u′i(a, ui(a)) =
(

ui(a) = (ui(a) mod 2)
)

=
(

ui(a) = ui(a)
)

= 1

Therefore (a, ui(a)) ≺i (a, ui(a)). As ψ′ is a weak isomorphism ψ′(a, ui(a)) ≺π(i) ψ
′(a, ui(a)) as fn+1 is the

identity (ψ(a), ui(a)) ≺π(i) (ψ(a), ui(a)). This forces u
′
π(i)(ψ(a), ui(a)) < u′π(i)(ψ(a), ui(a)) and consequently

u′π(i)(ψ(a), ui(a)) = 0 and u′π(i)(ψ(a), ui(a)) = 1. According to the definition of u′π(i) it holds

u′π(i)(ψ(a), ui(a)) =
(

uπ(i)(ψ(a)) = (ui(a) mod 2)
)

=
(

uπ(i)(ψ(a)) = ui(a)
)

= 1

therefore uπ(i)(ψ(a)) = ui(a) for any 1 ≤ i ≤ n and ψ is a strong isomorphism. 2

As we have done in the previous section we start by defining a transformation to binary actions game.
The construction of the game follows the same lines as in the BinaryAct(Γ) (see Page 9), but now we have
to guarantee an adequate preference relation for each player. Assume that Γ = (N,A1, . . . , An, (ui)1≤i≤n).
We can assume, without loss of generality, that utilities are non negative. If this happens it is enough to
add a “big positive number”. When utilities computed by a tm with time t we can add 2t.

15

BinaryActW(Γ) = (N ′, (A′
i)i∈N′ , (u′

i)i∈N′) where N ′ = {1, . . . , k} and, for any i ∈ N ′, A′
i = {0, 1}

and thus the set of action profiles is A′ = {0, 1}k. We associate to Ai a block Bi of ki = |Ai| play-
ers each one taking care of one bit. Thus, k = k1 + · · · + kn. We split a strategy profile a′ into
n blocks, thus a′ = (b1, . . . , bn) where bi ∈ {0, 1}ki . We keep a′j to refer to the strategy of player
j. Recall that, if Ai = {0, 1}ki , good(Ai) = {binify(a) | a ∈ Ai} where binify(j) = 0j−110ki−j ,
good(A′) = {binify(a1) · · · binify(an) | a1 ∈ A1, . . . , an ∈ An}, and that, for a′ ∈ good(A′), binify−1(a′) =
(binify−1(b1), . . . , binify

−1(bn)). For a player α that occupies position j in block Bi, the player partitions
A′ in the following sets:

X0(α) = {a′ | bi 6∈ good(Ai)}

X1(α) = {a′ | bij = 0 and bi ∈ good(Ai) and a′ ∈ bad(A′)}

X2(α) = {a′ | bij = 1 and bi ∈ good(Ai) and a′ ∈ bad(A′)}

X3(α) = good(A′)

and the utility function is defined as

u
′
α(a

′) =

0 if a′ ∈ X0(α),

1 if a′ ∈ X1(α),

2 if a′ ∈ X2(α),

3 + ui(binify
−1(a′)) if a′ ∈ X3(α),

When |Ai| = ki = 1, we have Ai = {0, 1}, binify(1) = 1 and Bi has just one player. Let α be such a
player, in this case X1(α) = ∅. When ki > 1 all the sets X0(α), . . . , X3(α) are non empty.

Observe that player α prefers profiles in X3(α) to profiles in X2(α), profiles in X2(α) to profiles in X1(α),
and profiles in X1(α) to profiles in X0(α). Moreover, player α is indifferent among two profiles belonging to
the same set X0(α), X1(α), or X2(α). For profiles a

′
1 and a′2 both in X3(α), player α keeps the preferences

of player i in Γ among the profiles binify−1(a′1) and binify−1(a′2).

Lemma 6. Let Γ1 and Γ2 be two strategic games. Γ1 and Γ2 are weakly isomorphic iff BinaryActW(Γ1)
and BinaryActW(Γ2) are weakly isomorphic.

Proof. Let Γ′
1 = BinaryActW(Γ1) and Γ′

2 = BinaryActW(Γ2).
Assume that ψ = (π, ϕ1, . . . , ϕn) is a weak isomorphism between Γ1 and Γ2. Consider the mapping

ψ′ = (p, f1, . . . , fk) where, for 1 ≤ i ≤ n, p maps the bits in block i of Γ′
1 to the bits in block π(i) of Γ′

2

so that the j-th bit of Bi goes to bit ϕi(j) of Bp(i), and, for 1 ≤ j ≤ k, fj is the identity function. It is
straightforward to show that ψ′ is a weak isomorphism between Γ′

1 and Γ′
2.

Let us consider the reverse part. Assume that ψ′ = (p, f1, . . . , fk) is a weak isomorphism between Γ′
1

and Γ′
2. As we prove in the Claim 10 of Appendix C, all the fα, 1 ≤ α ≤ k, are identitites and p induces a

permutation into the blocks, therefore we consider a player permutation π on {1, . . . , n}. For a player α in
position j inside block Bi, let ϕ(j) be the position of player p(β) in block π(i). It holds that (π, ϕ1, . . . , ϕn)
is a weak isomorphism between Γ1 and Γ2. 2

Next is to transform weakly isomorphic games into strongly isomorphic games. The transformation
consists on coding precedence relations into utilitites. Given a binary actions game Γ = (N, (Ai)i∈N , (ui)i∈N)
where N = {1, . . . , n} and Ai = {0, 1}, consider the following game.

FlipW(Γ) = (N, (A′
i)i∈N , (u

′
i)i∈N) where A′

i = {0, 1}2. Let a′ = (a1b1, . . . , anbn) be a strategy profile in
game FlipW(Γ), define driver(a′) = (a1, . . . , an) = a and flipper(a′) = (b1, . . . , bn) = b. We note shortly
a′ = a ↑ b. For xy ∈ {0, 1}2 define

flip(xy) =

{

x if y = 0,

x if y = 1.

Let a′ = (a1b1, . . . , anbn) be a strategy profile in game FlipW(Γ), define

flip(a′) = (flip(a1b1), . . . , flip(anbn)).

16

Observe that flip(a′) is a strategy profile in game Γ. Given a strategy profile a′ = (a1b1, . . . , anbn), for
any player i, 1 ≤ i ≤ n, we define:

u
′
i(a

′) =

5 if ui(flip(a
′)) < ui(driver(a

′)) and bi = 1

4 if ui(flip(a
′)) = ui(driver(a

′)) and bi = 1

3 if ui(flip(a
′)) > ui(driver(a

′)) and bi = 1

2 if ui(flip(a
′)) < ui(driver(a

′)) and bi = 0

1 if ui(flip(a
′)) = ui(driver(a

′)) and bi = 0

0 if ui(flip(a
′)) > ui(driver(a

′)) and bi = 0

.

Example 6. Consider the game Γ

Player 1

Player 2
0 1

0 0, 0 1, 0
1 0, 1 0, 0

Γ

It holds (1, 0) ≺1 (0, 1). Let us see how this preference is coded as an utility in FlipW(Γ). To transform a = (1, 0) into
(0, 1), both bits in (1, 0) have to be flipped, therefore the fliper is b = (1, 1) and we code the transformation in FlipW(Γ)
with the strategy profile a′ = (11, 01) = (1, 0) ↑ (1, 1) = a ↑ b. We have driver(a′) = (1, 0), flipper(a′) = (1, 1) and

flip(a′) = (0, 1). To compute u′
1(a

′), we look at the flipper of first player, as b1 = 1 and u1(1, 0) < u1(0, 1) we get

u′
1(a

′) = 3. Consider a case of indiference, for instance (0, 0) ∼2 (0, 1). The driver is a = (0, 0), the flipper is

b = (0, 1) and a′ = (00, 01) = a ↑ b. As b2 = 1 we get u′
2(a

′) = 4.

Lemma 7. Let Γ1 and Γ2 be two binary actions games. Γ1 and Γ2 are weakly isomorphic iff the games
FlipW(Γ1) and FlipW(Γ2) are strongly isomorphic.

Proof. Let Γ′
1 = FlipW(Γ1) and Γ′

2 = FlipW(Γ2).
Let ψ = (π, ϕ1, . . . , ϕn) be a mapping between two binay action games Γ1 and Γ2. Let ψ

′ = (π, f1, . . . , fn)
be a mapping between Γ′

1 and Γ′
2 verifying fi(aibi) = ϕi(ai)bi for 1 ≤ i ≤ n. Taking µ = (π, id1, . . . , idn),

for any a′ = a ↑ b it holds ψ′(a′) = ψ(a) ↑ µ(b). Moreover flip(ψ′(a′)) = ψ(flip(a′)), look at Claim 11 of
Appendix C.

Assume that ψ = (π, ϕ1, . . . , ϕn) is a weak isomorphism between games Γ1 and Γ2. Consider the games
Γ′
1 and Γ′

2, and the morphism ψ′ = (π, f1, . . . , fn) where, for 1 ≤ i ≤ n, fi(aibi) = ϕi(ai)bi. It holds that ψ
′

is a strong isomorphism between Γ′
1 and Γ′

2, look at the Claim 12 of Appendix C.
If ψ′ = (π, f1, . . . , fn) is a strong isomorphism between Γ′

1 and Γ′
2 the definition of the utility functions

of player i forces that for any action aibi, fi(aibi) = ϕi(ai)bi for some permutation ϕi on {0, 1}. Consider
the morphism ψ = (π, ϕ1, . . . , ϕn) and a profile a′ = (a1b1, . . . , anbn), observe that flip(ψ′(a′)) = ψ(flip(a′)),
look at Claim 11 of Appendix C. Taking into account this fact and that ψ′ preserves utilities, we can show
that ψ is a weak isomorphism between Γ1 and Γ2, look at the Claim 13 of the Appendix C. 2

Taking into account all the previous results together, it remains to show that the previous transformation
can be performed in polynomial time when the input and output game representation is fixed to be one of
the considered in this paper, as stated in the following complexity equivalence.

Theorem 7. For strategic games given in general form, the Iso problem for weak isomorphism is equivalent
to the circuit isomorphism problem. For formula games given in general form, the Iso problem for weak
isomorphism is equivalent to the boolean formula isomorphism problem. For strategic games given in explicit
form, the Iso problem for weak isomorphism is equivalent to the graph isomorphism problem.

Proof. It is straightforward to show that for a strategic game in general form a description in general
form the games constructed in this section can be computed in polynomial time. The same happens when
the original and the target representation is a formula game in general form or a game in explicit form.

17

In consequence all the game constructions this section show polynomial time reductions between different
isomorphism problems.

Lemma 5 reduces strong isomorphism for boolean games to weak isomorphism. Lemma 6 reduces weak
isomorphism to weak isomorphism for binary actions games. Lemma 7 reduces weak isomorphism to strong
isomorphism. Finally, Lemmas 1 and 2 establish the reduction from strong isomorphism to strong isomor-
phism for binary games. Therefore, all the problems, for the same game representation, are polynomially
equivalent.

According to the complexity equivalences stated in in Section 3, the claim follows. 2

5. Further results and open problems

We are working towards extending the definitions of game isomorphism. There are still some other ways
to relax the notion of isomorphism while maintaining some structure of the Nash equilibria, besides the
strong and weak isomorphisms considered in this paper. In particular we are interested in isomorphism with
minimum requirement on maintaining partially the structure of Nash equilibria. On another line it is of
interest to extend the notion of game isomorphisms to other game families, in particular for strategic games
given in implicit form. The main difficulty here is to select a suitable succinct representation of permutations
on the set {0, 1}k to being able to represent a morphism. We expect the Iso problem for games in implicit
form (with utilities given by TM, circuits or formulas) to be computationally harder than for the case of
games given in general form. Observe, that for strategic games in implicit form the reductions in this paper
will not longer be polynomial time computable as the number of strategy profile will be exponential in the
size of the representation. Another family of interest is that of extensive games. We would like to study the
isomorphism problem for such games avoiding the use of strategic forms. An interesting open question is
finding suitable definition of game isomorphisms for games without perfect information.

A second line of research is to obtain more infromation about the classification of strategic games with
the same number of players according to the structure of classes induced by the type of isomorphism. the
pure Nash equilibria. A first naive approach is to consider games as equivalent if they have the same number
of Nash equilibria. The counting of pure Nash equlibria has been undertaken via probabilistic analysis by
I. Y. Powers [22]. She studied the limit distributions of the number of pure strategies Nash equilibria for n
players strategic games. Further results in [15]. Just counting pure Nash equilibria is different from strong
and weak isomorphism as the notions provide a finer classification.

There are several fields in computer science developping games, strategic or extensive, that can be used
to attain different goals in the Semantic Web. One clear example of this direction is the games with a
purpose approach [3, 27, 28]. Those games are used, for instance, to label a image, thus facilitating the
adquisition of terms for the semantic web. Games, strategic or extensive, are used in this approach to learn
from the strategic behaviour of the players. The games are defined in such a way that term agreement
provides higher utility. Observe that in this setting games designed by different research teams might lead
to different definitions on the game corresponding to the labeling of the same image. To asses the validity
of the final results we should check the equivalence among the games. This might lead to different notions
of equivalence from the ones presented in this paper. We believe that the results on this paper will provide
the basis for the analysis of the complexity of equivalence of such games and other web games.

Acknowledgement

The authors want to thank an anonymous referee for the careful reading that help us to improve the
readability of the paper and correct several inaccuracies.

References

[1] M. Agrawal and T. Thierauf. The formula isomorphism problem. SIAM Journal on Computing,
30(3):990–1009, 2000.

18

[2] C. Àlvarez, J. Gabarro, and M. Serna. Pure Nash equilibrium in strategic games with a large number of
actions. In Mathematical Foundations of Computer Science, MFCS 2005, volume 3618 of LNCS, pages
95–106. Springer Verlag, 2005.

[3] L. von Ahn. Games with a Purpose, Computer, Vol 39, Num 6, 92-94, 2006

[4] A. Beimel and E. Weinreb. Monotone circuits for monotone weighted threshold functions. Inf. Process.
Lett., 97(1):12–18, 2006.

[5] E. Bonzon, M.-C. Lagasquie-Schiex, J. Lang, and B. Zanuttini. Boolean games revisited. In ECAI 2006,
17th European Conference on Artificial Intelligence, pages 265–269, 2006.

[6] B. Borchet, D. Ranjan, and F. Stephan. On the computational complexity of some classical equivalence
relations on boolean functions. Theory Comput. Systems, 31:679–693, 1998.

[7] B. de Bruin. Game transformations and game equivalence. Technical Report X-1999-01, IIL Technical
Note, 1999.

[8] A. Casajus. Weak isomorphism of extensive games. Mathematical Social Sciences, Elsevier, 46(3),
267-290, 2003.

[9] Ch. Chang and S. Tijs. A note on isomorphism and strategic equivalence of cooperative games. TOP,
14(2): 333-342, 2006.

[10] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-completeness.
W.H.Freeman and Co, 1979.

[11] J. Harsanyi and R. Selten. A General Theory of Equilibrium Selection in Games. MIT Press, 1988.

[12] J. McKinsey. Isomorphism of games and strategic equivalence. In Contributions to the theory of games,
Vol 1 (Annals of Mathematics Studies, 24). Edited by H. W. Kuhn, A. W. Tucker. Princeton University
Press, pag 117-130, 1950.

[13] J. Kobler, U. Schoning, and J. Torán. The Graph Isomorphism Problem: Its Structural Complexity.
Birkhauser, 1993.

[14] M. Mavronicolas, B. Monien, and K. W. Wagner. Weighted boolean formula games. In Internet and
Network Economics, Third International Workshop, WINE 2007, volume 4858 of LNCS, pages 469–481,
2007.

[15] A. McLennan and J. Berg. Asymptotic expected number of Nash equilibria of two-player normal form
games. Games and Economic Behavior, 51:264–295, 2005.

[16] J. Nash. Non-cooperative games. In Classics in Game Theory, pages 14–26, 1997.

[17] N. Nisan, T. Roughgarden, E. Tardos, V. Vazirani. Algorithmic Game Theory, Cambridge University
Press, 2007.

[18] M. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, 1994.

[19] Ch. Papadimitriou. Algorithms, games, and the internet. STOC, 749-753, 2001,

[20] B. Peleg, J. Rosenmüller, and P. Sudhölder. The canonical extensive form of a game form: Part I
symmetries. In Current Trends in Economics, Advancement of Studies in Economics, pages 367–387,
1999.

[21] N. Pippenger. The complexity of computations by networks. IBM Journal of Research and Development,
31(2):235–243, 1987.

19

[22] I. Powers. Limiting distribution of the number of pure strategy Nash equilibria in n-person games.
International Journal of Game Theory, 19(3):277–286, 1990.

[23] J. J. R. Greenlaw and W. Ruzzo. Limits to Parallel Computation. Oxford University Press, 1995.

[24] J. H. Reif and S. R. Tate. On threshold circuits and polynomial computation. SIAM J. Comput.,
21(5):896–908, 1992.

[25] G. Schoenebeck and S. P. Vadhan. The computational complexity of Nash equilibria in concisely
represented games. In ACM Conference on Electronic Commerce, pages 270–279, 2006.

[26] Y. Shoham. Computer science and game theory. CACM 51(8), 74-79, 2008.

[27] K. Siorpaes and M. Hepp. Games with a purpose for the Semantic Web. IEEE Intelligent Systems:23(3),
50-60, 2008.

[28] K. Siorpaes and M. Hepp. OntoGame: Weaving the Semantic Web by online games. In The Semantic
Web: Research and Applications, LNCS 5021, 50-60, 2008.

[29] P. Sudhölter, J. Rosenmüller, and B. Peleg. The canonical extensive form of a game form. Part II.
Representation. Journal of Mathematical Economics, 33(3):299–338, 2000.

[30] J. Torán. Personal Communication.

20

Appendix

A. Technical results for Section 2

Claim 1. Given a WBFG Γ = 〈1n, 1r, 1ℓ, (Fi)1≤i≤n〉 we can build in polynomial time in the size of Γ a
Boolean Formula Game Γ′ = 〈1n, 1ℓ, (ϕi,j)1≤i≤n,0≤j<ℓ〉 with the same utilities and reciprocally.

Proof. We transform a WBFG to a formula game trough a sequence of steps. Let us start to consider a
restricted form of utility.
Given A = {0, 1}r, ai ∈ {0, 1} and a = (a1, . . . , ar) ∈ A and given v(a) =

∑

1≤i≤r wiai, where each wi has ℓ

bits, we can compute in time O(ℓr) formulas ϕj, 0 ≤ j < ℓ+ log r, such that v(a) =
∑

0≤j<ℓ+log r ϕj(a)2
j .

To prove the preceding fact, we use the ideas given in [4]. We define xi,j to take care in the future, of
the bit j of the word wi, eventually xi,j = wi,jai. Note that yi = (xi,ℓ−1, . . . , xi,0) is like a number of ℓ
bits. Using a result given in [21] or [24], we can easily build in polynomial time a nonuniform TC0 circuit
IteratedSum(y1, . . . , yr) giving the sum of the r numbers each one of ℓ bits. Let us compute the number of
outputs of such a circuit.

With ℓ bits the biggest number written with ℓ bits has value 2ℓ − 1. Therefore the sum of r num-
bers each one of ℓ bits is at most k(2ℓ − 1) and this sum can be written with ℓ + log k bits. Therefore
IteratedSum(y1, . . . , yr) outputs ℓ + log k bits. From this circuit can be easy obtained a TC0 circuit giving
the bit j of this iterated sum. As TC0 ⊆ NC1 and circuits in NC1 have logarithmic depth and polynomial
size, in polynomial time we can find a formula φj(y1, . . . , yr) giving the bit j of IteratedSum(y1, . . . , yr). To
get the final result we have to substitute xi,j for wi,jai and we get

ϕj(a1, . . . , ar) = φj((w1,ℓ−1a1, . . . , wr,ℓ−1ar), . . . , (w1,0a1, . . . , wr,0ar))

Let us consider another fact.
Given F = {(f1, w1), . . . (fr, wr)} such that, each wi has ℓ bits and fi : {0, 1}

n → {0, 1}, we can compute
in polynomial time in the size of F formulas ϕj such that u(a) =

∑

1≤i≤r wifi(a) =
∑

0≤j<ℓ+log r ϕj(a)2
j .

Let us prove it. Given b ∈ {0, 1}r consider the utility v(b) =
∑

1≤i≤r wibi and using the preceding fact,

find φj such that v(a′) =
∑

1≤j≤ℓ+log r φj(b)2
j . Now we identify bi = fi(a) and ϕj(a) = φj(f1(a), . . . , fr(a)).

The transformation can be done in polynomial time.
Finally, to transform WBFG into boolean formula games we apply the last fact to each Fi.
Transform a boolean formula game into a WBFG is easy. We define wi,j = 2j and fi,j = ϕi,j . 2

B. Technical results of Section 3

Recall that, a strong isomorphism ψ = (π, ϕ1, . . . , ϕn) of Γ into Γ′, allow us to define a mapping ψ′ =
(p, f1, . . . , fk) from game BinaryAct(Γ, µ) to game BinaryAct(Γ′, µ). If in ψ we have π(i) = j, as
ϕi : Ai → A′

j is a bijection, we ask p to be a bijection p : Bi → B′
j . Writing Ai = A′

j = {1, . . . , ℓ} and
Bi = {i1, . . . , iℓ} and B′

j = {j1 . . . , jℓ}, the action bijection ϕi(p) = q, 1 ≤ p ≤ ℓ, induces the bijection
p(ip) = jq between both blocks. This concludes the definition of the bijection between the players. All the
fi for 1 ≤ i ≤ k are identities.

Claim 2. Given a strong isomorphism ψ = (π, ϕ1, . . . , ϕn) from Γ to Γ′, the mapping ψ′ = (p, f1, . . . , fk)
from BinaryAct(Γ, µ) to BinaryAct(Γ′, µ) is a strong isomorphism.

Proof. We state the proof as a sequence of claims.
ψ′ maps any strategy profile bi for players in Bi into a strategy profile b′π(i) for players in B′

π(i), we write

ψ′ : Bi → B′
π(i) and ψ′(bi) = b′π(i). This is clear because p gives a bijection between Bi and B

′
π(i).

If |Bi| = ℓ, profile bi = 0p−110ℓ−p = binify(p) maps into ψ′(bi) = 0q−110ℓ−q = binify(q) iff ϕi(p) = q.
As all the fi’s are identities and p is a permutation of {1, . . . , ℓ}, a binified action is mapped into a binified

21

action. Moreover as p(ip) = jq the 1 in position p is mapped into the 1 in position q. As ψ′ maps strategy
profiles between blocks Bi and Bπ(i), we write ψ′(binify(p)) = binify(ϕi(p)).

Given a = (a1, . . . , an) ∈ A in Γ and binify(a) = (binify(a1), . . . , binify(an)), it holds for binary action
games ψ′(binify(a)) = (binify(a′1), . . . , binify(a

′
n)) such that binify(a′π(i)) = binify(ϕi(ai)).

For any a ∈ A in Γ, it holds ψ′(binify(a)) = binify(ψ(a)). For a = (a1, . . . , an) ∈ A in Γ, it holds
ψ(a) = (a′1, . . . , a

′
n) with a′π(i) = ϕi(ai). As binify(ψ(a)) = (binify(a′1), . . . , binify(a

′
n)) we get binify(ψ(a)) =

ψ′(binify(a)).
For p(ip) = jq it holds u

′
jq
(ψ′(binify(a))) = u′ip(binify(a)). Observe that, as we have that u′jq (ψ

′(binify(a))) =

u′jq (binify(ψ(a))) = uj(ψ(a)) and u
′
ip
(binify(a)) = ui(a) and ψ is a morphism the identity holds.

As ψ′ maps bijectively bad strategy profiles, in this case utilities are the penalty payoff µ and ψ′ is a
morphism. 2

Assume that ψ′ = (p, f1, . . . , fk) is an strong isomorphism between the games BinaryAct(Γ1, µ) and
BinaryAct(Γ2, µ). As we will prove in the following lemma, p maps bijectively blocks of players and we
can assume that all the fi, 1 ≤ i ≤ k are identities. Therefore we define a mapping (π, ϕ1, . . . , ϕn) of Γ1 to
Γ2 as follows. If Bi is mapped to B′

p(i) we set π(i) = p(i). If binify(j) in block Bi is mapped into binify(j′)

in B′
p(i), we define ϕi(j) = j′.

Claim 3. Given a strong isomorphism ψ′ = (p, f1, . . . , fk) between the games BinaryAct(Γ1, µ) and
BinaryAct(Γ2, µ), the mapping (π, ϕ1, . . . , ϕn) is an strong isomorphism from Γ1 to Γ2.

Proof. Assume that ψ′ = (p, f1, . . . , fk) is an strong isomorphism between the games BinaryAct(Γ1, µ)
and BinaryAct(Γ2, µ) having players N ′

1 and N ′
2 with N ′

1 = N ′
2. The strategy profiles in both binary action

games are A′
1 and A′

2. We state the proof as a sequence of claims.
ψ′ : A′

1 → A′
2 induces a bijection between ψ′ : bad(A′

1) → bad(A′
2). Let a

′ ∈ bad(A′
1) then u

′
i(a

′) = µ, as µ
is a penalty payoff and ψ′ is a morphism, u′p(i)(ψ(a

′)) = µ but this forces ψ(a′) ∈ bad(A′
2) and ψ

′(bad(A′
1)) ⊆

bad(A′
2). Given a′ ∈ bad(A′

2), any player gets µ and then ψ−1(a) ∈ bad(A′
1). As good(A′

1) = A′
1 \ bad(A

′
1)

there is also a bijection ψ′ : good(A′
1) → good(A′

2).
Note thatN ′

1 can be partitioned into the different blocks of players asN ′
1 = B1∪· · ·∪Bn andN2 = B′

1∪· · ·∪B
′
n

being n the number of players in Γ and Γ′.
Given a block Bk in N ′

1 and i, j ∈ Bk with i 6= j, it is impossible that p(i) and p(j) belongs to different blocks
of N ′

2. Suppose that Bk has ℓ players and 1 ≤ i < j ≤ ℓ. Consider the strategy profile bk = binify(i) =
0i−110j−i−100ℓ−j for block Bk. All other blocs take the corresponding binify(1). Then a′ = (b1, . . . , bn) ∈
good(A′

1) and ψ
′(a′) ∈ good(A′

2). Therefore we have a factorization ψ′(a) = (b′1, . . . , b
′
n) corresponding each

b′i, 1 ≤ i ≤ n, to a binify process. For block Bk define the profile ck = binify(j) = 0i−100j−i−110ℓ−j and
all other blocks keeps as before binify(1) then c = (c1 . . . , cn) is good, ψ(c) is also good and factorizes as
ψ(c) = (c′1, . . . , c

′
k). Let us compare ψ′(a) = (b′1, . . . , b

′
n) with ψ′(c) = (c′1, . . . , c

′
k). Let p(i) = i′ ∈ B′

k1
and

p(j) = j′ ∈ B′
k2

with k1 6= k2. In fact the bits in ψ′(a) and ψ′(c) coincides anywhere except in positions
corresponding to the players i′ ∈ B′

k1
and j′ ∈ B′

k2
. Suppose |B′

k1
| = ℓ1. Consider the bijection f associated

to the position i in Bk. This bijection can be an identity or a negation. When f is the identity, the 1
appearing in position i of block bk is mapped into the 1 in position i′ of b′k1

, as this profile is binified, we

have b′k1
= 0i

′−110ℓ1−i′ . Unfortunately the 0 appearing in position i of ck will give c′k1
= 0l1 turning a valid

profile into an invalid profile. When f is a negation b′k1
has a 0 in position i′ and c′k1

will have two 1’s, giving
a contradiction.
Permutation p maps bijectively each block Bi into another B′

j . Let k ∈ Bi and p(k) ∈ B′
j then p(Bi) ⊆ B′

j .

Suppose that exists l ∈ B′
j \ p(Bi), then i

′ = block(p−1(l)) verifies Bi ∩Bi′ = ∅. Let f and f ′ the bijections

associated to the positions k in Bi and p
−1(l) in Bi′ . Let us consider two cases depending on the size of Bi′ .

• Case |Bi′ | = 1. When f ′ is the identity, defining B′
j = binify(p(k)) we force Bi′ = 0. Fulfilling all the

other blocks in BinaryAct(Γ2, µ) with binify(1) we get that ψ′ maps a bad profile into a good one,
but this is a contradiction. Consider the case, f ′ is a negation. In this case take B′

j = binify(l) and we
get a similar contradiction. The same argument allow us to assume that |Bi| > 1.

22

• Case |Bi′ | > 1 and |Bi| > 1. When f ′ is the identity, any bijection associated to a position m in Bi is
a negation. Take Bi′ = binify(p−1(l)) and B′

j = binify(l) and Bi = binify(m) as good profiles map into

good profiles, the 1 in positionm inBi is transformed into a 0 in B′
j . ThereforeBi = binify(1) = 10|Bi|−1

will give |Bi| − 1 > 0 1’s in B′
j and the number of 1’s in such a block will be at least 2. Consider the

case, f ′ is a negation. As B′
i has at least two positions, take a position m in such a block such that

m 6= p−1(l) and fix Bi = binify(m). This profile fix a 0 in position p−1(l) of Bi′ and a 1 in position l
of Bj and we apply the preceding argument.

We can assume that all the bijections f are identities. Suppose that p(Bi) = B′
j . We consider three cases

depending on the size of Bi.

• Case |Bi| = 1. In this Bj′ has also 1 element. As good profiles map into good profiles, the bijection
associated to this element has to be the identity.

• Case |Bi| = 2. See in detail the different possibilities. Call Bi = {1, 2} and B′
j = {1′, 2′} and call the

corresponding bijections f1 and f2. There are two possibilities for p. Consider the case p(1) = 1′ and
p(2) = 2′ and look at the different possibilities for fi.

– When f1 = f2 are identities the property holds.

– When f1 is the identity and f2 is a negation we get a contradiction because Bi = binify(2) is
mapped into B′

j = 00. When f1 is a negation and f2 is the identity, the same argument applies
with Bi = binify(1).

– When f1 and f2 are negations, we have to deal with care. Remark that bad profiles maps into
bad profiles because 00 maps to 11 and 11 maps to 00. Also good profiles maps into good profiles
because 10 maps to 01 and 01 maps into 10. Nothing bad happens in this case. To get identities
we define another morphism ψ′′ such that p(1) = 2′, p(2) = 1′ and f1 = f2 identities. Note that,
under ψ′′, profiles bad maps into bad profiles because 00 maps to 00 and 11 maps into 11. Much
better good profiles map in ψ′ and in ψ′′ in the same because 10 maps to 01 and 01 maps to 10.
Note that ψ′′ and ψ′ are isomorphic, therefore we can take ψ′′ where f1 and f2 are identities.

When p(1) = 2′ and p(2) = 1′ the proof is similar to the preceding case.

• Case |Bi| > 2. If all the f ’s associated to Bi are identities the property holds, otherwise there is a
position l such that fl is a negation. As Bi = binify(l) maps to a good profile, exists l′ such that
B′

j = binify(l′), moreover as fl is a negation l′ 6= p(l) and fp−1(l′) is also a negation. As |Bi| > 2, there

is a position k 6∈ {l, p−1(l′)} in Bi and Bi = binify(k) give at least two 1’s corresponding to positions l
and p−1(l′), therefore we get a contradiction.

To summarize, given a strong isomorphism ψ′ = (p, f1, . . . , fk) between the games BinaryAct(Γ1, µ)
and BinaryAct(Γ2, µ) we have that p maps bijectively blocks of players and that we can assume that all
the fi, 1 ≤ i ≤ k are identities.

let us consider the mapping (π, ϕ1, . . . , ϕn) of Γ1 to Γ2. The permutation of players π mimics the block
permutation induced by p, thus if Bi is mapped to B′

p(i) we set π(i) = p(i). The i action bijection is defined

as follows. The action j in Ai corresponds in BinaryAct(Γ1, µ) to the profile binify(j) in block Bi. As this
block is mapped into B′

p(i), the profile is mapped into another good profile binify(j′) and we define ϕi(j) = j′.

It is straightforward to show that the mapping (π, ϕ1, . . . , ϕn) is an strong isomorphism from Γ1 to Γ2. 2

Let ψ′ = (p, f1, . . . , fk) be an isomorphism between Binary(Γ1, t,m) and Binary(Γ2, t,m). Observe
that in such a case Γ1 and Γ2 have the same number n of players. Based on ψ′ we can define an isomorphism
π from Γ to Γ′ as we see in the following claim.

Claim 4. Let ψ′ = (p, f1, . . . , fk) be a strong isomorphism between the two games Binary(Γ1, t,m) and
Binary(Γ2, t,m). The mapping ψ = (π, ϕ1, . . . , ϕn) in which π is the restriction of p to block B1,0 and, for
any 1 ≤ i ≤ n, ϕi = fi is a strong isomorphism from Γ to Γ′.

23

Proof. Let a = x b1 . . . bn z be a strategy profile for Binary(Γ1, t,m), where x = x1 . . . xn, bi = bi1 . . . bit
and z = z0 . . . zm+1 are binary words.

We represent the utilities of a as a binary string u(a) = u1, . . . , un+tn+m+2, when we speak in general
about a property of the construction we will not use subindices, however we will use u1(a) and u2(ψ(a)) to
denote vector utilities for the first or second game. As usual, for a binary string w we use |w|1 to denote the
number of 1’s present in w. Observe that, for a strategy profile a, |u1(a)|1 = |u2(ψ(a))|1. According with
the definition of utilities for Binary(Γ, t,m) we have that, for any profile a,

1. if z = 0m+2−ℓ1ℓ, then |u(a)|1 = ℓ, and at least one player in the block Bn+1 gets utility 1.

2. if z = 00j−110m+1−j , for some 1 ≤ j < t, then n+m+ 2 ≤ |u(a)|1 ≤ n+ t+m+ 2 and all the players
in the block Bn+1 get utility 1.

3. if z = 10m+1, then |u(a)|1 is a multiple of t+ 1 and all the players in the block Bn+1 get utility 0.

4. In the remaining cases, |u(a)|1 = n+ tn+m+ 2.

The permutation p maps the block n + 1 of Γ1 to the block n + 1 of Γ2, furthermore the restriction of p
to B1,n+1 is the identity and, for any j ∈ B1,n+1, fj is the identity. The claim follows from condition 1, as
this is needed to guarantee that, when z = 0m+2−ℓ1ℓ, |u1(a)|1 = |u2(ψ(a)|1.

Let bit(j) be the set of players that appear at the j − th position in some block B1, . . . , Bn.
For any 1 ≤ j ≤ t, the permutation p maps bit1(j) to bit2(j). Furthermore for any i ∈ bit1(j), fi is the

identity. The rigidity of ψ on block B1,n+1 forces that the profile a in which all the player i ∈ bit1(j) select
action 1 and z = 00j−110m+1−j , creates an utility string with exactly 2n + m ones, therefore the unique
possibility for ψ to remain as an isomorphism is the one expressed in the claim.

As a consequence of the previous claims we have that the permutation p maps the players in block B1,0

to block B2,0.
For any 1 ≤ i ≤ n, the permutation p maps the block B1,i to the block B2,p(i). Furthermore, for any

1 ≤ j ≤ n, the player in the j − th position of B1,i is mapped by ψ to the j − th position of B2,p(i). Consider
the profile a in which z = 10m+1, and x verifies that, bi = ui(x) and, for any ℓ 6= i, bℓ 6= uℓ(x). The rigidity
of ψ on block B1,n+1 forces that in |u1(a)| = t+ 1. In u2(ψ(a)) we know that the utility for player p(i) has
to be one and therefore all the utilities of all the players in B2,p(i) must be one. Again the unique possibility
is the one expressed in the first part of claim. The second part follows as a consequence of the first part and
the previous claim.

Putting all together, we can define a morphism ψ = (π, ϕ1, . . . , ϕn) in which π is the restriction of p to
block B1,0 and, for any 1 ≤ i ≤ n, ϕi = fi. Consider the profile a in which z = 10m+1, and x verifies that,
for any 1 ≤ i ≤ n, verifies b1,i = ui(x), then u1(a) has a 1 in all positions except the last m+ 2 that hold a
0. Furthermore, ψ(a) = π(x)b2,1 . . . b2,nz and, for any 1 ≤ i ≤ n, if b2,π(i) = b1,i. Therefore, we have that,
for any 1 ≤ i ≤ n, u1(x) = u2(ψ(x)), therefore ψ is an isomorphism. 2

Let us consider some technical detail for the reverse implication of Lemma 3. Let ψ′ = (p, f1, . . . , f4n+2)
be a congruence morphism between CΓ and CΓ′ . When a = (x, y, c, b), we note p(xi) the position of the
image of xi and we take similar conventions for p(yi), p(ci) and p(di). Similarly the value of the image of xi
will be f(xi). For simplicity we use C(x, y, c, d) to denote a boolean circuit or the output of a boolean circuit
when the input is set to a particular value. In general we use a minterm notation, for input assignments
instance. For example c = 010n is the input assignment in which only the second variable of block C is
activated.

Claim 5. Let ψ′ = (p, f1, . . . , f4n+2) be a congruence morphism between CΓ and CΓ′ . Then ψ preserves the
structure of the C and Y blocks. Furthermore the functions fi, for i in block C or Y , is the identity.

Proof. The values of the variables c1, . . . , cn+2 are used to activate the different circuits C1, . . . , Cn+2 that
form CΓ. Each of those circuits has different properties. As before we state the proof as a series of claims.

Permutation p maps the variables in the C-block of CΓ to the C-block of CΓ′ . Assume for contradiction
that there are k ≥ 1 variables mapped from outside the C-block of CΓ to the C-block of CΓ′ . Let us see
that we can force an assignment a in which there is only one 1 in position 2 of the C-block for which CΓ(a)
is true, while in ψ′(a) there are at least two 1’s, and that is impossible. Consider in detail the case k = 1.

24

As in a = (a1, . . . , a4n+2) one position leaves the block C, there is ai in blocks X, Y or D entering the block
C ′ in ψ′(a) and c′p(i) = f(ai). We have to consider two cases based on p(c2).

• Case p(c2) is a position in C ′. In this case c′p(c2) = f(c2). When the bijection f is the identity,

c′p(c2) = c2, we have to consider the different possible origins of ai.

– When ai is located in X we have ai = xi. Fix xi ∈ {0, 1} to the value such that f(xi) = 1.
Consider a = (x, y, c, d) such that x = 0i−1xi0

n−i, y = 10n, c = 010n and d = 0n. It holds
CΓ(a) = F2(a) = 1 but CΓ′(ψ(a)) = 0 because C ′ contains at least two ones in c′p(i) and c′p(c2).
When ai is located in D we have ai = di−3n+2, the analysis is similar.

– When ai is located in Y it holds yi−n = ai. Fix the value of yi−n such that f(yi−n) = 1. As the
Y block has at least two positions, there is j such that j 6= i− n and we can fix yj = 1. Then
a = (x, y, c, d) with x = 0n, y = 0 . . . 0yi−n0 . . . 0yj0 . . . 0 (case i− n ≥ j, other cases are similar)
c = 010n and d = 0n verifies CΓ(a) 6= CΓ′(ψ(a)).

Now we have to consider what happens when f is a negation, c′p(c2) = ¬c2. As just one position in C

is mapped out C ′, exists j such that p(cj) is not a position in C ′, therefore cj 6= c2. Taking C also as
a set, we have that for any ck ∈ C \ {c2, cj} it holds that p(ck) is located in C ′. We consider two cases

– For all ck ∈ C \{c2, cj} it holds that f(ck) is the identity, c
′
p(ck)

= ck. We can force the value c′p(i)
to be 0, therefore for C = 010n we get C ′ = 0n+2. As we can choose always choose the block Y
having at least one 1 we can easily build a profile a such that CΓ(a) 6= CΓ′(ψ(a)).

– Exists ck ∈ C \{c2, cj} such that f(ck) is a negation, c′p(ck) = ¬ck. Fixing C = 010n we get ck = 1.

Forcing c′p(i) to be 1, the block C ′ will have at least two 1. As Y has at least two positions, we
can easily build a not fulfilling the congruence.

• Case p(c2) is a position in X ′, Y ′ or D′. Intuitively c2 leaves the C block and we have to look at the
elements ck ∈ C \ {c2}. We consider two cases.

– For any ck ∈ C \ {c2}, the bijection f(ck) is the identity. Fixing c′p(i) to be 0 and C = 010n we

have C ′ = 0n+2 and we can build a not fulfilling the congruence.

– Exists ck ∈ C \ {c2} such that f(ck) is a negation. Fixing c′p(i) to be 1 and C = 010n we have

that C ′ has at least two 1 and we can build a not fulfilling the congruence.

This concludes analysis of the impossibility when k = 1. When k > 1 the analysis follows the same ideas.
All the functions associated to variables in the C-block are the identity. If there are more than two

negations, ψ′ transform an input with exactly one 1 in block C to a situation with two 1’s in block C. If
there is one negation, the situation in which all the bits in C are set to 0, is transformed into another one
in which there is only one 1.

We have p(c1) = c′1 and p(c2) = c′2. Let us consider the possible misplacements for p(c1). We have two
cases

• The index p(c1) = ci is located in one of the last n positions of C ′. Then C = 10n+1 is mapped into
C ′ = 0i−110n+2−i and the activated circuits are CΓ = C1 and CΓ′ = Ci. Fix x′i−2 = y′i−2 = 0 and
d′i−2 = 1 and CΓ′ = 1. As p maps C into C ′ it also maps X ∪ Y ∪D bijectively into X ′ ∪ Y ′ ∪D′. As
|X|+ |D| ≥ 4 and x′i−2 y

′
i−2 d

′
i−2 are fixed, only three antiimages have been fixed and there is at least

a “free” position in the X ∪D blocks. Suppose that xj is the free position (the case dj is similar) and
look at the corresponding dj . If dj is fixed take xj = dj , if dj is free define dj = xj = 1. In both cases
C1 = 0.

25

• The index p(c1) points to c
′
2, that is c2 = c1. The block C = 10n+1 is mapped to 010n and under this

situation CΓ = C1 and CΓ′ = C2. Fix an arbitrary bit y′i in Y
′ and look at the possible antiimage of

y′i. In the bijection p : X ∪ Y ∪ D → X ′ ∪ Y ′ ∪ D′ only the antiimage of y′i fixed. Suppose that the
antiimage is one is an xj , then fix dj = xj . When the antiimage belongs to Y , choose one xk and fix
it and the corresponding dk to 1. When the antiimage is dj fix xj to the same value. In all the cases
C1 = 0.

We have proved p(c1) = c′1. To prove p(c2) = c′2 follow the same ideas.
Permutation p maps the variables in the Y -block of CΓ to the Y -block of CΓ′ . Furthermore, the functions

associated to the variables in the Y -block are the identity. This is a consequence of the rigidity of ψ′ on c2
and the definition of the formula C2. 2

Claim 6. Let ψ′ = (p, f1, . . . , f4n+2) be a congruence morphism between CΓ and CΓ′ . Let π to be the
permutation on {1, . . . , n} such that p(ci+2) = c′π(i)+2, then p(xi) = x′π(i) iff p(di) = d′π(i) and p(xi) = d′π(i)
iff p(di) = x′π(i).

Proof. Consider π to be the permutation on {1, . . . , n} such that p(ci+2) = c′π(i)+2.

For any 1 ≤ i ≤ n, positions i in blocks X, Y and D of CΓ are mapped to positions π(i) of blocks X, Y
and D of C ′

Γ. Furthermore, p(yi) = y′π(i). This result is insured by the definition of the n formulas Ci+2, as
each of them forces to combine the input bits xi and yi with di. The last part follows taking into account
that the Y -block of CΓ is mapped to the Y -block of CΓ′ .

The above result implies that, for any 1 ≤ i ≤ 1, either p(xi) = xπ(i) or p(xi) = dπ(i). Furthermore, the
permutation associated to xi and di must be the same,

p(xi) = x′π(i) iff p(di) = d′π(i) and p(xi) = d′π(i) iff p(di) = x′π(i),

otherwise, we can find an input for which Ci+2(xi, yi, di) = 1 while we also have Cπ(i)+2(ψ
′(xi, yi, di)) = 0.

2

Claim 7. The game BinaryAct(Γ, µ) when Γ is a formula game in general form is a formula game The
game Binary(Γ, t,m) when Γ is a binary actions formula game in general form is a formula game A de-
scription in general form of the games BinaryAct(Γ, µ) and Binary(Γ, t,m) can be computed in polynomial
time. Furthermore, a description of the circuit CΓ, for a binary formula game Γ, can be obtained in polyno-
mial time.

Proof. To prove this theorem we show first that the game BinaryAct(Γ, µ), for a given formula game
in general form Γ = 〈1n, A1, . . . , An, 1

ℓ, (ϕi,j)1≤i≤n,0≤j<ℓ〉, as defined in Page 9, is a formula game whose
description can be computed in polynomial time.

Recall that the utility functions of BinaryAct(Γ, µ) are defined as follows:

u′i(a
′) =

{

ublock(i)(binify
−1(a′)) if a′ ∈ good(A′),

µ if a′ ∈ bad(A′).

Where good(A′) = {binify(a)|a ∈ A} and binify(j) = 0j−110ki−j . Observe that to compute the utilities we
will need to show that the function binify−1 can be represented by boolean formula as well as the property
a′ ∈ good(A′). For doing so, we show that they can be computed in NC1, and use the same argument used
in the proof of Lemma 1 to construct the formulas.

For a′ ∈ good(A′) it must happen that the sum of all its bits is one. And of course this can be computed
in NC1. To compute binify−1(a′) for some a′ ∈ good(A′), let’s assume that a′ = 0j−110ki−j . We compute
the suffix sum of the bits of a′, thus getting b = 1j0ki−j . Then j is the sum of the bits of b.

Finally, using the formula for a′ ∈ good(A′) and the ones that compute the bits of binify−1(a′), combined
with the fact that µ is a constant, and the formulas describing the utilities of the player’s in Γ, we can
construct the set of formulas that describe the utilities for BinaryAct(Γ, µ) in polynomial time. Therefore,

26

we have that the Iso problem for formula games in general form is equivalent to the the Iso problem for
formula games in general form with binary actions, according to Lemma 1.

Now we show that given Γ = 〈1n, A1, . . . , An, 1
ℓ, (ϕi,j)1≤i≤n,0≤j<ℓ〉, a formula game in general form with

binary actions, the game Binary(Γ, t,m), as defined in Page 10, is a formula game whose description can
be computed in polynomial time.

Recall that Binary(Γ, t,m) is the game (N ′, (A′
i)i∈N ′ , (u′i)i∈N ′) where N ′ = {1, . . . , k} and, for any

i ∈ N ′, A′
i = {0, 1} where k = n + tn +m + 2. The set N ′ is partitioned into n + 2 consecutive intervals

B0, . . . , Bn, Bn+1 so that the interval B0 has exactly n players, for 1 ≤ i ≤ n, the block Bi has t players,
finally block Bn+1 has m+ 2 players. As before a strategy profile a is usually factorized as a = x b1 . . . bn z

where now x = x1 . . . xn, bi = biℓ−1
. . . bi0 and z = z0 . . . zm+1. Observe that if the formula game uses ℓ

formulas per player then t = ℓ+ 1.
To express the utilities by a boolean formula, we consider the following auxiliary formulas, for z =

z0, . . . , zm+1:

fromi(z) =
(

i−1
∧

j=0

¬zj
)

∧
(

m+1
∧

j=i

zj
)

for 0 ≤ i ≤ m+ 1

onlyi(z) =
(

i−1
∧

j=0

¬zj
)

∧ zi ∧
(

m+1
∧

j=i+1

¬zj
)

for 0 ≤ i ≤ m+ 1

The previous formulas allow us to express the different conditions considered in the definition of the game
Binary(Γ, t,m).

one(z) = ∨m+1
i=0 fromi(z)

two(z) = ∨t
i=1onlyi(z)

three(z) = only0(z)

four(z) = ¬(one(z) ∨ two(z) ∨ three(z))

Note that, predicates one, two, two, four give us a partition of the strategy profiles. Recall that the
utility of player i in Γ is given by the equation ui(a1, . . . , an) =

∑

0≤j<ℓ ϕi,j(a1, . . . , an)2
j . We also consider

the formula
equti(x, bi) = ∧ℓ

j=0(ϕij(x) ∧ bij) ∨ (¬ϕij(x) ∧ ¬bij),

which express the fact that bi is the utility of player i in game Γ.
Now we provide a formula for each “type of player” that allows to compute their utility in game

Binary(Γ, t,m).

• Utility for player α in position β of block j (1 ≤ j ≤ n). The formula is expressed as disjonction of the
four cases.

– When one(z) holds, the utility is 0. This give us a term one(z) ∧ 0 equivalent to 0.

– When two(z) holds there are two cases. When onlyβ(z) holds, the position of the player α inside
the block j coincides with the position of the 1 in z and then the utility is bjβ . When onlyβ(z)
is false the utility is 0. Therefore this part contributes with a term two(z) ∧ onlyβ(z) ∧ bjβ .

– When three(z) holds, all the players is block j have the same boolean utility defined as the value
of the expression (uj(x) = bj). This part is encoded as three(z) ∧ equtj(x, bj).

– When four(z) holds, the value of the utility is 1, therefore we have a term four(z) ∧ 1.

Using basic properties of boolean functions we obtain

Ψα(a) = (two(z) ∧ onlyβ(z) ∧ bjβ) ∨ (three(z) ∧ equtj(x, bj)) ∨ four(z)

27

• Utility for player α in position β of block 0

Ψα(a) = two(z) ∨ (three(z) ∧ equtβ(x, bβ)) ∨ four(z)

• Utility for player α in position β of block n+ 1

Ψα(a) = (one(z) ∧ fromβ(z)) ∨ two(z) ∨ four(z)

It is straightforward to show that the previous formulas can be written in polynomial time. Thus using
Lemma 2, we have that the Iso problem for formula games in general form is equivalent to the the Iso
problem for binary formula games.

The last step is to show that given a binary formula game Γ the boolean circuit CΓ as defined in Page 11
can be described by a formula. From the definition of CΓ it follows trivially that Ck (1 ≤ k ≤ n+ 2) can be
described by formulas as the utility for the player are given by a formula. Consider the formulas:

onlyi(c1, . . . , cn+2) = ¬c1 ∧ · · · ∧ ¬ci−1 ∧ ci ∧ ¬ci+1 ∧ · · · ∧ ¬cn+2, 1 ≤ i ≤ n+ 2

exone(c1, . . . , cn+2) = c1 ∨ · · · ∨ cn+2

moreone(c1, . . . , cn+2) = ∨1≤i<j≤n+2(ci ∧ cj)

Then CΓ can be expressed as a disjonctions of the three cases. When ¬exone(c) or moreone(c) holds the
result is 0, otherwise the value is computed by a disjonction of terms onlyj(c) ∧ Cj(a). Therefore CΓ is
expressed as

∨n+2
j=1onlyj(c) ∧ Cj(a).

It is straightforward to show that a description of the previous circuit can be computed in polynomial time.
Thus using Lemma 3, we have that the Iso problem for formula games in general form is equivalent to the
FormulaIso problem. 2

C. Technical results of Section 4

Claim 8. Let ψ : Γ1 → Γ2 be a strong isomorphism between binay games such that ψ = (π, ϕ1, . . . , ϕn).
The mapping ψ′ : CheckW(Γ1) → CheckW(Γ2) defined as ψ′ = (p, f1, . . . , fn+1) where, for 1 ≤ i ≤ n,
p(i) = π(i), fi = ϕi and for n + 1, p(n + 1) = n + 1, fn+1 is a strong isomorphism between CheckW(Γ1)
and CheckW(Γ2).

Proof. Let a′ = (a1, . . . , an, an+1) be a strategy profile in CheckW(Γ1) we write a′ = (a, an+1) with a =
(a1, . . . , an). By the definition of ψ′ it hods ψ′(a′) = (ψ(a), an+1) because fn+1(an+1) = an+1. Let us prove
that ψ′ is strong isomorphism. Note that for 1 ≤ i ≤ n, as ψ is a strong isomorphism, uπ(i)(ψ(a)) = ui(a)
and therefore

u′p(i)(ψ
′(a′)) =

(

uπ(i)(ψ(a)) = (a′n+1 mod 2)
)

=
(

ui(a) = (a′n+1 mod 2)
)

= u′i(a
′)

It remains the case n+ 1. As p(n+ 1) = n+ 1 and fn+1 is the identity u′n+1(ψ
′(a)) = a′n+1 = un+1(a). 2

Claim 9. Let ψ′ = (p, f1, . . . , fn+1) be a weak isomorphism ψ′ : CheckW(Γ1) → CheckW(Γ2), it holds
fn+1 = Id.

Proof. As in the proof of Lemma 5 let ψ be ψ′ restricted to players 1,. . . , n, that is ψ = (π, ϕ1, . . . , ϕn),
then π(i) = p(i) and ϕi = fi for 1 ≤ i ≤ n and ψ′(a′) =

(

ψ(a), fn+1(a
′
n+1)

)

. In CheckW(Γ1) player n+ 1
has the following chain of strict preferences

(a, 0) ≺n+1 (a, 1) ≺n+1 (a, 2) ≺n+1 (a, 3)

As ψ′ is a weak morphism, preferences of player n+ 1 in CheckW(Γ2) verify
(

ψ(a), fn+1(0)
)

≺n+1

(

ψ(a), fn+1(1)
)

≺n+1

(

ψ(a), fn+1(2)
)

≺n+1

(

ψ(a), fn+1(3)
)

28

This forces u′n+1(fn+1(0)) < u′n+1(fn+1(1)) < u′n+1(fn+1(2)) < u′n+1(fn+1(3)) and therefore

u′n+1(fn+1(0)) = 0, u′n+1(fn+1(1)) = 1, u′n+1(fn+1(2)) = 2, u′n+1(fn+1(3)) = 3

The only possibility to fulfill the preceding equalities is to take fn+1(a
′
n+1) = a′n+1 for a′n+1 ∈ {0, 1, 2, 3}. 2

Assume that ψ′ = (p, f1, . . . , fk) is a weak isomorphism between the two games BinaryActW(Γ1) and
BinaryActW(Γ2). As we prove in the following lemma all the fα are identitites and p induces a permutation
into the blocks, therefore ψ′ induces a permutation π on {1, . . . , n}. For a player α in position j inside block
Bi, let ϕ(j) be the position of player p(β) in block π(i).

Claim 10. Given a weak isomorphism ψ′ = (p, f1, . . . , fk) between BinaryActW(Γ1) and BinaryActW(Γ2),
the mapping (π, ϕ1, . . . , ϕn) is a weak isomorphism between Γ1 and Γ2.

Proof. If ψ′ = (p, f1, . . . , fk) is a weak isomorphism between the games Γ′
1 = BinaryActW(Γ1) and

Γ′
2 = BinaryActW(Γ2). We state the proof as a series of claims.

Given players α ∈ Bi and α′ ∈ Bj with i 6= j it holds X0(α) 6= X0(α
′). When ki 6= kj the proof is direct

because X0(α) has a cardinality 2k−ki(2ki − ki) which is different from the cardinality of X0(α
′). Consider

the case ki = kj . Assume that block i precedes block j and consider a profile schematized as follows

a = (b1, . . . bi−1, bad i, bi+1, . . . , bj−1, god j , bj+1, . . . , bn)

where bad i is a bad profile in Ai and good j is a good profile in Aj . It holds a ∈ X0(α) but a 6∈ X0(α
′).

Given the permutation p map and a player α, sets X0(α) and X0(p(α)) are both non empty. Player α
occupies forcely a position into a block; suppose that Bi is such a block. As good(Ai) has ki ≥ 1 elements
the set Ai \ good(Ai) contains 2ki − ki > 0 elements. By the same reason X0(p(α)) is not empty.
It holds ψ′(X0(α)) = X0(p(α)) for any player α. First note that ψ′(X0(α)) ⊆ X0(p(α)). Ohterwise there
is a′ ∈ ψ′(X0(α)) \ X0(p(α)) and a′′ ∈ X0(p(α)) (because X0(p(α)) is not empty) such that a′′ ≺p(α) a

′.
Then ψ′−1(a′′) ≺α ψ′−1(a′) but this is impossible because ψ′−1(a′) ∈ X0(α) and therefore, ψ′−1(a′) is a a
less prefereed element. Suppose that ψ′(X0(α)) 6= X0(p(α)). Let a′ ∈ X0(p(α)) \ ψ

′(X0(α)) and consider
ψ′−1(a′). If ψ′−1(a′) belongs to X0(α) we get a contradiction. If we assume ψ′−1(a′) 6∈ X0(α), exists
b ∈ X0(α) such that b ≺α ψ

′−1(a′). Then ψ(b) ≺p(α) a
′, but this is impossible because a′ is a less preferred

element.
It holds p(Bblock(α)) = Bblock(p(α)) for all α. Let α and α be players in block Bi, that is block(α) =

block(α′) = i. As X0(α) = X0(α
′) it holds ψ(X0(α)) = X0(p(α)) = X0(p(α

′)). Both X0(p(α)) = X0(p(α
′))

iff block(p(α)) = block(p(α′)).
Thus, ψ′ induces a permutation π on {1, . . . , n} such that π(Bi) = Bπ(i) moreover π(block(α)) =

block(p(α)). For a player α in position j inside block Bi, let ϕ(j) be the position of player p(α) in block
π(i). Therefore we define a mapping ψ = (π, ϕ1, . . . , ϕn).

It holds ψ′(X1(α)) = X1(p(α)) for any player α. There are two cases depending on the values of
the ki corresponding to the block containing α. Consider first the case ki = 1, in this case Bi = {0, 1}
and Xi(α) = ∅. We have p(Bi) = Bπ(i) = {0, 1} and X1(p(α)) = ∅. Consider the case ki > 1. As
ψ′ is a bijection between strategy profiles and there is a bijection between X0(α) and X0(p(α)) we have
ψ(X1(α)) ⊆ X1(p(α)) ∪X2(p(α)) ∪X3(p(α)). If exists a′ ∈ X1(α) such that ψ′(a′) ∈ X2(p(α)) ∪X3(p(α)),
exists b ∈ X1(p(α)) such that b ≺p(α) ψ

′(a′). Therefore ψ′−1(b) ≺α a
′, but this is impossible because ψ′−1(b)

cannot be an element of X0(α). Therefore ψ(X1(α)) ⊆ X1(p(α)). As ψ(X1(α)) and X1(p(α)) have the same
number of elements we conclude ψ(X1(α)) = X1(p(α)).

It holds ψ′(X2(α)) = X2(p(α)) for any player α. We have ψ′(X2(α)) ⊆ X2(p(α)) ∪ X2(p(α)) and by
similar arguments we conclude the equality.

It holds ψ′(X3(α)) = X3(p(α)) for any player α. As ψ′ is a bijection and ψ′(X2(α)) ⊆ X2(p(α)), this
forces equality.

We have that fα is the identity, for any player α. Note that α belongs to a block of players Bi,
i = block(α) having Ai as the corresponding alphabet. We consider two cases depending on the size of Ai.
First, we consider the case such that Ai has just one element. In this case good(Ai) = {1}. As ψ(good(Ai)) =

29

good(Aπ(i)) = {1} this forces to fα to be the identity. Consider the case where Ai contains most than one
element. Suppose that α occupies the position j in Bi and consider the profile a′ = (b−i, 0

j−110ki−j)
belonging to X2(α) as ψ(a

′) belongs to X2(p(α)) we need a factorization ψ(a′) = (ψ(b−i), 0
ϕi(j)−110ki−ϕi(j))

and this forces to fα to be the identity.
Given a strategy profile a in Γ1 it holds ψ′(binify(a)) = binify(ψ(a)). Note that Ai = {1, . . . , ki} and for

j ∈ Ai we have binify(j) = 0j−110ki−j ∈ Ai. As p(Bi) = Bπ(i), we have ψ(binify(j)) = 0ϕi(j)−110ki−ϕj(j) ∈

Aπ(i) and we conclude the result.
Given two profiles a, a′ and a player i in Γ1 and a player α in Γ′

1 such that block(α) = i it holds that
a ≺i a

′ iff binary(a) ≺α binary(a′). This happens because we have equalities like uα(binary(a)) = ui(a) + 3.
The same property holds for Γ2 and Γ′

2.
The mapping ψ = (π, ϕ1, . . . , ϕn) is a weak morphism between Γ1 and Γ2. Suppose that in Γ1 we have

a ≺i a
′, let in Γ′

1 a player α such that block(α) = i, then it holds binify(a) ≺α binify(a′). As ψ′ is a weak
morphism ψ′(binify(a)) ≺p(α) ψ

′(binify(a′)) and therefore, changing ψ′ into ψ, binify(ψ(a)) ≺p(α) binify(ψ(a
′)).

Then it holds ψ(a) ≺block(π(α)) ψ(a
′), as block(π(α)) = π(block(α)) = π(i) we finally obtain ψ(a) ≺π(i) ψ(a

′).
2

Claim 11. Let ψ = (π, ϕ1, . . . , ϕn) be a mapping between binay action games Γ1 and Γ2. Let ψ′ =
(π, f1, . . . , fn) be a mapping between FlipW(Γ1) and FlipW(Γ2) such that, for 1 ≤ i ≤ n, fi(aibi) =
ϕi(ai)bi. Taking the mapping µ = (π, id1, . . . , idn), for any a′ = a ↑ b it holds ψ′(a′) = ψ(a) ↑ µ(b).
Moreover flip(ψ′(a′)) = ψ(flip(a′)).

Proof. Given a′ = (a1b1, . . . , anbn) = a ↑ b with a = (a1, . . . , an) and b = (b1, . . . , bn). In all the mappings
ψ, µ and ψ′ the bijection function π maps player i into player π(i). We have ψ(a) = (â1, . . . , ân) with

âπ(i) = ϕ(ai) for all i. We have µ(b) = (b̂1, . . . , b̂n) with b̂π(i) = bi for all i. Moreover ψ′(a′) = (â1b̂1, . . . , ânb̂n)

with âib̂i = ϕi(ai)bi for all i. Therefore ψ
′(a′) = (â1, . . . , b̂n) ↑ (b̂1, . . . , b̂n) = ψ(a) ↑ µ(b).

Let us consider the behaviour of the flips. Given a′ = a ↑ b, note that ψ(flip(a′)) = flip(ψ′(a′)) is equivalent
to ψ(flip(a ↑ b)) = flip(ψ(a) ↑ µ(b)). Component wise is equatily corresponds to ϕi(flip(aibi)) = flip(ϕi(ai)bi).
As flip, as a boolean function is flip(xy) = xy+xy, the preceding equality is ϕi(aibi+aibi) = ϕi(ai)bi+ϕi(ai)bi.
As ϕi is a permutation on {0, 1}, the only possibilities are ϕ(ai) = ai or ϕ(ai) = ai. The equation trivially
holds for identity. When ϕi is a negation it is enough to check that ¬(aibi + aibi) = aibi + aibi. 2

Claim 12. Let ψ = (π, ϕ1, . . . , ϕn) be a weak isomorphism between two binay action games Γ1 and Γ2.
The mapping ψ′ between Γ′

1 = FlipW(Γ1) and Γ′
2 = FlipW(Γ2) defined by ψ′ = (π, f1, . . . , fn) where, for

1 ≤ i ≤ n, fi(aibi) = ϕi(ai)bi is a strong isomorphism.

Proof. We have to prove u′i(a
′) = u′π(i)(ψ

′(a′)). The utility can have 6 different values. Assume that

exists a′ such that ui(a
′) = 6. Factorizing a′ = a ↑ b, this is equivalent to ui(flip(a

′)) < ui(a). It holds
uπ(i)(ψ(flip(a

′))) < uπ(i)(ψ(a)) because ψ is a weak isomorphism. From Claim 11, ψ(flip(a′)) = flip(ψ′(a′))
and ψ′(a′) = ψ(a) ↑ µ(b). Therefore, as uπ(i)(flip(ψ

′(a′))) < uπ(i)(ψ(a)), we conclude u′π(i)(ψ
′(a′)) = 6.

Other utility values are similar. 2

Claim 13. Let ψ′ = (π, f1, . . . , fn) be a strong isomorphism between FlipW(Γ1) and FlipW(Γ2). The
player’s bijections verify fi(aibi) = ϕi(ai)bi for some permutation ϕi on {0, 1}. Moreover ψ = (π, ϕ1, . . . , ϕn)
is a weak isomorphism between Γ1 and Γ2.

Proof. Consider the sets Zero(i) = {a′|a′ = (a′−i, ai0)} and One(i) = {a′|a′ = (a′−i, ai1)}. Note that
a′ ∈ Zero(i) iff u′i(a

′) ∈ {0, 1, 2} and a′ ∈ One(i) iff u′i(a
′) ∈ {3, 4, 5}, moreover the following holds

• For n > 0, every set Zero(i) and One(i) contain4 22n−1 > 0 elements each one.

• Are disjoint, Zero(i) ∩ One(i) = ∅ and Zero(i) ∪ One(i) = A′
1

• It holds ψ′(Zero(i)) = Zero(π(i)). If this is false, ψ′(Zero(i)) ∩ One(π(i)) 6= ∅ and therefore exists
a′ ∈ Zero(i) such that u′i(a

′) ∈ {0, 1, 2} but utilities u′π(i)(ψ
′(a′)) ∈ {3, 4, 5}. This cannot happen

because ψ′ is a strong isomorphism.

30

• Similarly ψ′(One(i)) = One(π(i)).

• The player’s bijections verify fi(aibi) = ϕi(ai)bi for some permutation ϕi on {0, 1}. This is just another
way to write ψ′(Zero(i)) = Zero(π(i)) and ψ′(One(i)) = One(π(i)).

Let us prove that ψ is a weak isomorphism. Assume that in Γ1 exists a and â such that ui(a) < ui(â),
we have to prove uπ(i)(ψ(a)) < uπ(i)(ψ(â)). Given the inequality ui(a) < ui(â), let b be the flipper such
that flip(a ↑ b) = â. Assume bi = 0 (case bi = 1 is similar) then in FlipW(Γ1) it holds u′i(a ↑ b) = 0.
As ψ′ is a strong isomorphism, it holds u′i(a ↑ b) = u′π(i)(ψ

′(a ↑ b)) = 0, therefore uπ(i)(flip(ψ
′(a ↑ b)) >

uπ(i)(driver(ψ
′(a ↑ b))).

As fi(aibi) = ϕi(ai)bi it holds (by Claim 11) flip(ψ′(a ↑ b)) = ψ(flip(a ↑ b)) = ψ(â). Moreover as
ψ′(a ↑ b) = ψ(a) ↑ µ(b) it holds driver(ψ′(a ↑ b)) = ψ(a). Finally we get uπ(i)(ψ(â)) > uπ(i)(π(a)). Other
cases are similar. 2

31

