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Abstract—The random walk model is studied with the objective
to obtain a physical explanation for the texture of polarimetric
synthetic aperture radar (SAR) data. A simulator is designed to
imitate the scattering process under different circumstances, tak-
ing into account different distributions for the scatterer number
and the scatterer response, as well as mixtures of scatterers. Sta-
tistical analysis of the simulated data shows that the distribution
of the scatterer response has an effect only when the number of
scatterers in a resolution cell is very small, which appears in very
high resolution data. Moreover, it is found that both the fluctuation
of the scatterer number and the mixture of different targets can
give non-Gaussian-distributed data. The mixture of point targets
and distributed targets will lead to an extremely heterogeneous
appearance, which may be a clue to analyze the urban areas in
polarimetric SAR data.

Index Terms—Polarimetric synthetic aperture radar (PolSAR),
random walk model, simulation, statistical model, texture analysis.

I. INTRODUCTION

NOWLEDGE of the exact statistical properties of the

signal plays an important role in the applications of
polarimetric synthetic aperture radar (PoISAR) data. Under the
assumption of Born approximation [1], the data received from a
resolution cell can be regarded as a sum of a number of complex
phasors, each resulting from an individual scatterer or a sepa-
rate subregion of a continuous scattering surface. The addition
of the independent and randomly located complex contributions
gives rise to speckle. The classical model for homogeneous data
assumes that the scatterer number in each resolution cell is big
enough to give Gaussian-distributed speckle [2]. However, the
K-distribution obtained by letting the scatterer number follow a
negative binomial distribution is proved to be a more accurate
representation for the speckle in areas such as sea surface and
forest [3]-[5].
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The K-distribution can be formulated into a product of two
independent random variables: one is gamma distributed with a
long spatial correlation length, and the other follows a Gaussian
distribution with a much shorter spatial correlation length [6].
The former is referred to as a texture parameter, and the latter
is referred to as a speckle [7], [8]. Based on this product
scheme, a number of models have been proposed by altering
the distribution of the texture parameter. For instance, the
GY-distribution, suggested to model urban areas, is obtained
by introducing an inverse gamma-distributed texture parameter
[9]. The Kummer-/ distribution has been recently proposed,
which models the texture component with a Fisher distribution
[10], [11], providing a wide variety of textures. Other statistical
models include the generalized K-distribution [12], the gener-
alized Gaussian distribution [13], the W-distribution, and the
M-distribution [14].

Furthermore, assuming that the electromagnetic wave sees
different geometrical or dielectric properties of the target ac-
cording to the wave polarization, several models known as
multitexture models allow different texture parameters for po-
larimetric channels. For example, Lombardo et al. assume that
the texture parameters follow a partially correlated gamma
distribution [15], [16], Khan er al. suppose that the co-pol
and cross-pol channels have independent textures that follow
generalized inverse Gaussian distributions [17], and in the work
of Eltoft and Doulgeris [18]-[20], the texture parameters of
co-pol and cross-pol channels can be either independent or
identical.

However, unlike the Gaussian distribution and the
KC-distribution, most of the aforementioned models lack a phys-
ical explanation of the underlying scattering problem. They
give no clues about why the data following a specific distribu-
tion are obtained. In this paper, a simulator based on the random
walk model [2], [3] is developed. With it, we can simulate data
under certain scattering scenarios by controlling the factors
that may appear in the PoOISAR data formation process. Then,
a suitable texture model, K-distribution or G°-distribution for
example, can be found for the simulated data via statistical
analysis. Thus, the scattering process and the statistical data
models are bridged, and possible physical explanations can be
given to some models.

The remainder of this paper is organized as follows.
Section II presents a brief review of the statistical models in
PolSAR data, along with the tools employed to analyze those
distributions. Section III details the simulator. Algorithms on
how to simulate different scatterer types and scatterer numbers
are given. Experimental results are shown in Sections IV and V,
and the conclusion is in Section VL.

0196-2892 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

use of this material is permitted. Permission  from IEEE must be obtained

uses, in any current or future media, including reprinting/republishing this
advertising or promotional purposes,creating new collective works, for fesale or
to servers or lists, or reuse of any copyrighted component of this work in other


mailto: xinping.deng@upc.edu
mailto: carlos.lopez@tsc.upc.edu
mailto: carlos.lopez@tsc.upc.edu
mailto: eduard.makhoul@isardsat.cat
mailto: eduard.makhoul@isardsat.cat
ruben pocull
Texto escrito a máquina
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1109/TGRS.2015.2510399

ruben pocull
Texto escrito a máquina

ruben pocull
Texto escrito a máquina


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

TABLE 1
COMPARISON OF POLSAR DATA MODELS
Models Texture Parameter | Texture Distribution p(7) Sample Covariance Matrix Distribution p(Crp)
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Note: K, is the modified Bessel function of the second kind of order v, U is the hyper-geometric function of the second kind, W is the Whittaker
W function, and M is the hypergeometric function of the first kind (Kummer M function).

II. POLARIMETRIC SAR DATA MODELS
A. Product Model

The observed data of a PoISAR system can be formulated as
scattering vectors, which can be written as follows under the
assumption of the product model [6]:

k =+/rz.

Here, 7 is the texture parameter, a positive random variable with
a mean value equal to 1, and z is the speckle vector, following
a multivariate complex Gaussian distribution with covariance
matrix given by 3 = F{zz'}, where E{-} is the expectation
operator and (-) is the transpose conjugate operation. The
matrix 3 contains the polarimetric information.

For speckle reduction, the scattering vectors are frequently
multilook processed and represented by sample covariance ma-
trices. Assume that the texture has a higher spatial correlation
than the speckle [21], which means that the texture parameter is
constant over the multilook processing window, and the sample
covariance matrix can be expressed as

1 L i T L f
= Z;kzkz = Z;Zizi

where L is the number of looks. It is known that the conditional
distribution of Cy, given on 7 is a Wishart distribution [21]. Let
d denote the number of dimensions and | - | denote the matrix

ey

©))

determinant; then, the marginal probability density function
(pdf) is obtained by averaging all possible 7

o0
LLd|CL|L d
;LX)
P(CrsiL, /I(L d)rLds|L
0

X exp (—é Tr (E_lCL)> p(T)dr  (3)

where Tr(-) denotes the matrix trace operation and I (L, d) is a
normalization factor given by

d
I(L,d) ==~ 7" [[T(L-i+1)

i=1

“)

with I representing the gamma function.

A number of models have been proposed in the literature
by assuming different distributions for the texture parameter 7,
among which the Wishart distribution [22], the /C-distribution
[5], [21], [23], the GO-distribution [9], [24], and the Kummer-I/
distribution [10], [25] are extensively studied. The distributions
of the corresponding texture parameter and the sample covari-
ance matrix are shown in Table I.

B. Log-Cumulants

To test if a model is suitable for the data, a measurable statis-
tic or possible method for parameter estimation is required. It
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Kummer-i/

Fig. 1. Complete coverage of log-cumulant ko — k3 space where different
distributions are placed in different regions.

is demonstrated that Mellin kind statistics are of great value for
the analysis of the sample covariance matrix and that they can
be employed to derive estimators for the distribution parameters
with low bias and variance compared with classical algorithms
[26], [27].

Define the Mellin kind matrix-variate characteristic function
as the Mellin transform of the pdf

o(s) = [ 1Z]°""p(Z)dZ )
/

then, the vth-order log-cumulant or Mellin kind cumulant is
given by

dv
Ry = @ In ¢(5) (6)

s=d

Meanwhile, the sample log-cumulants can be estimated from
the data by

v—1
. v—1\. .
Ry = flo — Z <Z B 1)mum )

where /i, is the estimated log-moments

M

1 ;
fiw =57 (n|Ci)) ®)

i=1

with M denoting the number of samples and C; denoting the
ith sample covariance matrix.

To see if a signal model is applicable, we can compare the
log-cumulants calculated from the pdf (k. ) and those estimated
from the sample data (%,). In [26], a diagram is proposed
to visualize the comparison by plotting the second-order log-
cumulants o against third-order log-cumulants 3 in a plane,
where different distributions are placed in different regions.
Fig. 1 shows the distributions making up a complete coverage
of the diagram [14].

III. POLARIMETRIC SAR DATA SIMULATOR
A. Random Walk Model

Based on the Born approximation or simple scattering ap-
proximation [1], if there are N individual scatterers randomly
distributed inside a resolution cell, the received polarimetric
data can be written as the sum of their responses

|
k:—g i
\/Nils ©)

where s; denotes the response from a single scatterer. The
normalizing factor 1/v/N is used to assure that the average
intensity of the speckle is independent of N. In this model,
the correlation between resolution cells is not considered;
therefore, N is a positive integer. Equation (9) provides a
physical insight into the scattering problem. The dimension of
k is taken to be 4, corresponding to the polarimetric channels
Shhs Shvs Svh, and Sy, respectively, where h denotes the
horizontal polarization state and v denotes the vertical one. For
the backscattering from a reciprocal medium, the cross polar-
ization channels are equal (S}, = S,;,), and then, the dimen-
sion is reduced to 3, which is the case mainly discussed here,
without loss of generality. The covariance matrix is given by

C = F{kk'} = E{ss'}. (10)

There are several factors affecting the distribution of the
vector k. The first one is the scatterer type that characterizes
the response of each scatterer [28]. Let a denote the amplitude
and ¢ denote the phase, and a scatterer can be represented by

7. (11)

For each polarimetric channel, the amplitudes and the phases
are statistically independent. Moreover, the phases are assumed
to be uniformly distributed over [0, 27). This assumption arises
from the fact that the path differences in one resolution cell
are much greater than the wavelength so that any value of the
phase is equally probable [7]. Different scatterer types can be
distinguished by the distributions of their amplitudes.

The second factor is the scatterer number /N. On one hand,
a lot of research has shown that the fluctuation of scatterer
numbers will give rise to the texture [3], [5], which conveys
information that may enable a user to identify different cover
types. On the other hand, for the high-resolution data, where
the scatterer number is finite and small, it is known that the
classical models such as Gaussian distribution usually fail to
give an accurate representation [29].

At last, the heterogeneity that appeared in PolSAR data can
result from the mixture of different targets. For instance, from
an urban area which usually consists of discrete objects, like
houses, trees, and roads, the backscattering is a combination of
different scattering mechanisms. To represent this kind of data,
a simple model would be inappropriate [30]. Mixture models,
instead, could achieve a reasonable level of accuracy [30]-[32].

Taking into account all of the aforementioned factors, a
simulator that helps us to study the statistics of PoOISAR data
is designed. The details of the implementation are given in the
following sections, provided that the algorithms that are used

s = [ahhej¢h,h, , ahvejtbhu ’ avvej(bw
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1: procedure POINTSCATTERER(s')

2: ¢~ U(0,2m) > U, uniform distribution
3 s+ s - el?
4: return s

5: end procedure

Fig. 2. Algorithm to simulate a point scatterer.

to sample the univariate uniform, Gaussian, gamma, and beta
distributions exist.

B. Scatterer Type

When the radar transmits a perfectly monochromatic wave
and this wave reaches a fixed or stationary target, it results into
a perfectly polarized scattered wave. The scattering process can
be completely represented by the scattering vector. This type of
targets is referred to as point scatterers or coherent scatterers.
However, most of the targets under observation are situated in a
dynamically changing environment and are subjected to spatial
and temporal variations. Despite the radar system transmitting
a perfectly polarized wave, the wave scattered by the scatterer
is partially polarized. Such scatterers are called distributed
targets, and they are described by the polarimetric covariance or
coherency matrices [33]. The Gaussian scatterer, K -scatterer,
constant scatterer, and beta scatterer shown as follows belong
to distributed targets.

1) Point Scatterer: Man-made targets can be treated as
point-like scatterers. It is important to simulate this kind of
targets when modeling urban areas. The response from a point
scatterer to the incident wave should be deterministic. Consider
several point scatterers of the same kind; however, the scattered
waves are random due to their different positions. Let ¢ denote
the phase difference due to the position and s’ denote the
scattering vector regardless of the position, and the simulation
of a point scatterer can be described as Fig. 2. The phase
difference is uniformly distributed over [0, 27) by assuming
that the scatterers are randomly located.

2) Gaussian Scatterer: A Gaussian scatterer can be repre-
sented by a vector that follows a multivariate complex Gaussian
distribution with zero mean:

p(s) = % exp(—s'C™1s). (12)
For each polarimetric channel, the amplitude is Rayleigh dis-
tributed. Gaussian distributions are widely used to analyze
random variables whose distributions are not known. More-
over, many complex problems can be derived analytically in
explicit form when the relevant variables are assumed to follow
Gaussian distributions due to their mathematical tractability.
Therefore, it is interesting to test Gaussian distributions as
the distributions of scatterers. The procedure of simulating a
Gaussian scatterer is shown in Fig. 3.

3) K-Scatterer: A K-scatterer is defined by the multivariate
KC-distribution given as follows:

20 sfC1s
3T ()| C| a

x Kq_3/2(2VasC~1s) (13)

2a—3

p(s;a) =
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1: procedure GAUSSIANSCATTERER(C)

2 L < Cholesky decomposition on C

3: Run, Inn s R]”,-, ]}m, Rm,, Ly ~ N(O. 1/2)
Normal distribution

4 u < [Rpn + jInn, R + 5Inw, Row + 5100] T

5 s < Lu

6: return s

7. end procedure

> N,

Fig. 3. Algorithm to simulate a Gaussian scatterer.

procedure KSCATTERER(C, «)

1:

2 z < GAUSSIANSCATTERER(C)

3 7 ~T(a,1/a) > I', Gamma distribution
4: S« T2

5 return s

6: end procedure

Fig. 4. Algorithm to simulate a K -scatterer.

where « is the shape parameter and K, is the modified
Bessel function of the second kind of order v. The multivariate
K-distribution has a wide range of shapes, which makes it
well suited to describe scenes where there are scatterers with
a variety of geometries and orientations [23]. The KC-distributed
random variable can be viewed as the product of two random
variables: one follows a Gaussian distribution and the other fol-
lows a gamma distribution. Therefore, to simulate a K -scatterer
(Fig. 4), we can first simulate a Gaussian scatterer and then
multiply it by a gamma-distributed random variable 7

(ar)”

7T'(a)

4) Constant Scatterer: For each polarimetric channel, the
response of a constant scatterer to the incident wave has a
nonrandom amplitude [28]. In reality, it is difficult to find any
constant scatterers, but as a contrast to the variable amplitudes,
the study of constant ones is instructive. The constant scatterer
is equivalent to the equal length component in the random
walk model [34]. Consider the simplest case first, where the
amplitudes of all polarimetric channels are equal to 1

p(1) = (14)

exp(—ar).

u= [ejtbhh , eI Pho ’ ej%vT. (15)
The covariance matrix is given by R = E{uu'}, which is also
the correlation matrix. If all diagonal elements of the covariance
matrix are equal to 1, like the R here, the corresponding scat-
terer is referred to as a normalized scatterer. To the best of our
knowledge, there is neither closed-form expression for the pdf
nor well-known simulation algorithm of the random vector u
for a given covariance matrix. A simulation procedure based on
a numerical analysis is designed in this paper.

Given a set of normalized Gaussian scatterers with covari-
ance matrix R, if we let all of the amplitudes be 1, they
are transformed into a set of normalized constant scatterers
with a different covariance matrix R. From tests with different
correlations [see Fig. 6(a)], it is found that, for the matrix
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1: procedure CONSTANTSCATTERER(C)
2 R « Calculate (17)

3 R, «+ Calculate (16)

4 z < GAUSSIANSCATTERER(R,)
5 u < Set amplitudes of z to 1

6 s « (diag(C))~"/?u

7: return s

8: end procedure

Fig. 5. Algorithm to simulate a constant scatterer.

entries, Ry (i, k) = pgei®s and R(i, k) = pe’?, the relation-
ship is given approximately by

pg = 0.3701p° — 1.1215p* + 0.9406°
—0.5643p2 + 1.3875p — 0.0078

¢g:¢~

This means that a normalized constant scatterer can be obtained
by setting the amplitudes of a normalized Gaussian scatterer
to 1, and the covariance matrix used to simulate the latter is
calculated according to (16).

To simulate a scatterer for any covariance matrix C, we first
simulate a normalized constant scatterer u with the covariance
matrix given by

(16)

C(i, k)

RN = et ®

A7)

where ¢ and k are the row number and column number of the
matrix entries. Then, multiply a factor for each polarimetric
channel s = (diag(C))~'/2u with diag(C), denoting the ma-
trix of the diagonal elements of C. The total simulation process
is described in Fig. 5.

5) Beta Scatterer: The amplitudes of the responses from the
beta scatterers are assumed to follow a beta distribution. A
useful property of the beta distribution is that it has nonzero
value over only a finite interval, and therefore, it does not allow
amplitudes larger than a certain maximum [28]. For0 < a <1
and shape parameters «, 8 > 0, the pdf of the beta distribution
is given by

_La+h) a1pq e
= Tarp® YO

It has been shown that the statistic of the speckle will follow a
beta distribution if introducing a constraint to the total wave
intensity received by the sensor [35], which is also known
as the saturation effect. However, here the introduction of the
beta scatterer is mainly because it allows exploration of the
effects of various shapes of possible distributions, rather than
a particular scattering problem. A multivariate generalization
of beta distribution, known as the Dirichlet distribution, has a
limited dependence structure, where the correlation coefficients
are negative [36]. It is not suitable to model the amplitudes
of different polarimetric channels. In order to model a more
general correlation, the numerical method based on copulas
theorem is employed, where correlated beta random vari-
ables are produced by transforming correlated normal random
variables [37].

pla; o, B) (18)

1 [CIFitted

%

000050y 11, N

Lo,

Y
(/

5

S
o 8y 9 Yy Yy Y
e q':,:o':::

+  Samples
Fitted

0 02 04 06 08 1
p

(a) (b)

Fig. 6. Fitting Monte Carlo simulations with constant scatterer and beta
scatterer. (a) Constant scatterer. (b) Beta scatterer.

1: procedure BETASCATTERER(C, «, f3)
2: R « Calculate (17)

3 ¢4 < Calculate (19)

4 Ry(i k) « 1 x el%

5 z < GAUSSIANSCATTERER(R,)
6 pp < Calculate (19)

7 a~ B(a, 3, pp)

8 u < Set amplitudes of z as a

9

> B, Beta distribution

: s « (diag(C))~"/?u
10: Return s
11: end procedure

Fig. 7. Algorithm to simulate a beta scatterer.

Similar as the constant scatterers, beta scatterers are ob-
tained by replacing the amplitudes of Gaussian scatterers with
correlated beta random variables. Through the Monte Carlo
simulations, it is found that the interchannel correlation of the
normalized beta scatterer (pe’?) is a function of that of the nor-
malized Gaussian scatterer (p,e/®s) and the correlation of beta-
distributed amplitudes (p,) [see Fig. 6(b)]. The relationship is
approximated by

p = 0.6721p; + 0.0050p, — 0.2884p3
+0.145pppg + 0.3563p3 + 0.0756p7 py
¢ = ¢g.
By letting p, be 1, the phases of the beta scatterers are obtained

from Gaussian scatterers and amplitudes from correlated beta
distributions. The simulation procedure is described as Fig. 7.

19)

C. Scatterer Number

As the PolSAR sensor moves along the azimuth direction,
the scatterers going in and out of the resolution cells can be
modeled by a stochastic process. The number of scatterers, as a
result, varies from a resolution cell to another. The fluctuation
of the scatterer number plays an important role in the distribu-
tion of the scattering vector. In our simulator, only integers for
scatterer number are considered, including the following cases.

1) Constant: For middle- or low-resolution data, it is rea-
sonable to assume that there are a large number of scatterers
inside each resolution cell, and in different resolution cells,
the number is kept the same. At this point, the central limit
theorem can be brought to bear. No matter what distribution
the scatterers follow, the resulting scattering vector will be
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TABLE 11
COMPOUNDING DISTRIBUTIONS

Distribution PDF

Gamma Fa,B) = rrzm A~ exp(—2/B)
Fa,B) = g A Lexp(=B/N)

T _ _
Fa,B) = gk Ac 11— )P~ A€ [0,1]

Inverse Gamma

Beta

Beta Prime

fxa,B) = %)\&*1(1 L a)ep

1: procedure COMPOUNDNUM(x)

2: Get a sample A from f(\; )

3 Get a sample from Poisson distribution, N ~ Po(\)
4. end procedure

Fig. 8. Simulation of compound scatterer number.

asymptotically Gaussian distributed [2]. In contrast, the area
covered by a resolution cell becomes smaller in the high-
resolution data, and the central limit theorem does not hold
any more. The distribution of the received data will be affected
by the scatterer type [28]. To meet all of these situations, any
positive integer is allowed as the scatterer number.

2) Negative Binomial: In many cases of practical interest,
the number of scatterers /N is a random variable [3]. Then, the
distribution of the resulting field is non-Gaussian. For example,
if N follows a negative binomial distribution:

p(N; o, p) = (N +]$ - 1)p°‘(1 -p)V

(20)
and the mean value n = (1 — p)/p s large, then the scattering
vector will follow a multivariate KC-distribution [5]. The scat-
terer numbers and scatterers are supposed to fluctuate at dif-
ferent scales, and the frequency of randomness of the scatterer
numbers is lower than that of the scatterers.

3) Compound Distribution: In [38], the number of scatterers
is modeled by a Poisson distribution with the mean value A
also randomly distributed according to some other distribution
f(\; ). Integrating the intermediate parameter A out, the dis-
tribution of the scatterer number is then given by

o0
ANe=A

p(N;a) = i

0

SO @)dA @1

with parameters . There are several distributions from the
Pearson system suggested for f, including gamma distribution,
inverse gamma distribution, beta distribution, and beta prime
distribution [38] (see Table II). They provide a wide variety
of the scatterer number fluctuations. In particular, when A is
gamma distributed, the resulting distribution is equivalent to
negative binomial distribution. Fig. 8 shows the simulation of
a scatterer number that follows compound distributions.

Notice that, if Y =1/X, where X is gamma distributed,
then Y follows an inverse gamma distribution. Moreover, Y
follows a beta prime distribution if Y = X/(1 — X ) and X is
beta distributed. In addition, a beta distribution can be obtained

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

by a Mellin product of a gamma distribution and an inverse
gamma distribution. Therefore, it is possible to draw samples
from inverse gamma distributions and beta prime distributions
by transforming samples from gamma distributions or beta
distributions.

D. Mixture of Scatterers

Normally, the scatterers in (9) are assumed to belong to
the same category, one of the Gaussian scatterer, K -scatterer,
constant scatterer, or beta scatterer. However, there are many
cases where more than one scatterer type appears in the same
resolution cell. In addition, a region under analysis can be
divided into several subregions on many occasions, each with
a different scatterer type. These will be regarded as mixtures of
scatterers at the pixel level (in the same resolution cell) or at the
spatial level (in different resolution cells).

1) Pixel Level: The mixture at pixel level assumes that each
resolution cell contains scatterers from more than one type.
Taking the urban areas for example, the backscattering can be
viewed as the combination of echoes from distributed targets
(trees and grass) and point targets (buildings). Furthermore, the
scatterers inside a resolution cell can be classified into volume
scattering, double-bounce scattering, surface scattering, and so
on according to scattering mechanisms. In this case, the random
walk model can be written as

1 (@), AL
ke ) MO S T )
Vi (D e )

where N = N; + Ny + - - - is the total number of scatterers.

2) Spatial Level: In PolSAR data, the bright clutters and
dark ones usually appear alternatively in the forest areas, cor-
responding to strong returns from the crowns of trees with
shadows behind them. A similar phenomenon also appears
in the sea surface when there exist wave crests and troughs.
The received data can be treated as the mixture of two types
of scatterers located alternatively. Assume that the region of
interest (ROI) can be modeled by a mixture of K components,
and then, the overall pdf of the scattering vector can be written
as [30]

K
pk; 0) = " wip;(k; 0;) (23)
=1

where Efil w; = 1 is the mixing proportions and @ is a
vector collecting all of the parameters of the distribution. It has
been shown that, for complicated regions with more irregular
histograms (multimodal and spiky), the mixture model is more
accurate than a single distribution [30], [32].

IV. SIMULATED SAR DATA
A. High-Resolution Data

In high-resolution data, where the resolution cell is only
a few wavelength wide, the usual hypothesis underlying the
speckle phenomena, i.e., a large number of scatterers per reso-
lution cell, may not be verified [28]. The distribution of the data
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Fig. 9. Pauli decomposition and pdf of simulated high-resolution data by changing the scatterer number N. The first column (a) and (d) shows the Pauli
decomposition and pdf when N = 1. The second column (b) and (e) shows the results when N = 2, and the last column (c) and (f) is when N = 10.

may depend on both the number of scatterers within a resolution
cell and the distribution characterizing the individual scatterers.
To validate this hypothesis, simulations with different scatterer
numbers and scatterer types are implemented.

In each simulation, all of the resolution cells have the same
number of scatterers. Integer values from 1 to 10 are tested as
the scatterer number, and Gaussian scatterer (GS), K -scatterer
(KS), constant scatterer (CS), and beta scatterer (BS) are tested
as the scatterer type. All scatterers share the same covariance
matrix

3V3 ,—j% W2 5%
1 10¢°° g ©°
Ci= | 2Beis 3 VBei% (24)
W2 -5 V6, ,—iZ
0¢°° 5 € "1 2

which is chosen for academic study only, and different values
for the intensities of polarimetric channels as well as correlation
coefficients between them are considered. For the K -scatterer,
two values are chosen to test different variances: o = 3 (KS1)
with a large variance and a = 6 (KS2) with a relatively small
variance, where the former represents a rougher surface than the
latter. For the beta scatterers, different parameters are chosen to
test different skewness values: o = 2, § = 2 (BS1) with skew-
ness equal to zero and o = 2, 8 = 5 (BS2) with a positive skew-
ness. The skewness indicates the relation between the number
of strong scatterers and that of weak scatterers. In the first case,
the number of strong scatterers and the number of weak scat-
terers are comparable, whereas there are more weak scatterers

in the second case. For each testing case, a 300 x 300 pixel
single-look complex image is generated.

The first row of Fig. 9 shows the Pauli decomposition of
the simulated data, where the scatterer numbers within each
resolution cell are 1, 2, and 10, respectively. All simulated
images are homogeneous, but there are rather different colors in
the Pauli decompositions, especially for the constant scatterers.
The empirical pdfs of the amplitudes are compared with the
Rayleigh distributions. The results show that not all homoge-
neous data have Gaussian statistics. The statistic information
plays an important role in defining the homogeneous data
besides the covariance matrix.

To quantitatively evaluate the fit of the Rayleigh distribution
to the simulated data, the Kolmogorov—Smirnov distance (1)
and the correlation coefficient (p) are employed [10], [30], as
shown in Table III. The Kolmogorov—Smirnov distance quanti-
fies a distance between the empirical distribution function of the
samples and the cumulative distribution function of the refer-
ence distribution. The correlation coefficient provides a simple
quantitative measure of similarity between two distributions.

As it can be seen, the statistical distribution of the sum of
N Gaussian scatterers is independent of the value of N. This
is because the addition of Gaussian scatterers on an amplitude
basis does not change the statistics. The results calculated from
Gaussian scatterers provide a reference for the comparison.
The value of N from where the Rayleigh distribution can be
concerned depends on the scatterer type. For KS1, KS2, CS,
and BS1, when the scatterer number is equal or larger than 50,
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TABLE III
CORRELATION COEFFICIENTS AND KOLMOGOROV—SMIRNOV DISTANCES
Scatterer Number GS KS1 KS2 CS BS1 BS2
l P l P l p l p l p l P
1 0.0019 | 99.96% | 0.0713 | 97.56% | 0.0376 | 99.29% | 0.6088 16.65% | 0.0651 | 96.79% | 0.0348 | 99.21%
2 0.0034 | 99.95% | 0.0364 | 99.31% | 0.0179 | 99.82% | 0.1352 | 61.81% | 0.0264 | 99.58% | 0.0095 | 99.92%
3 0.0025 | 99.96% | 0.0262 | 99.65% | 0.0122 | 99.90% | 0.0580 | 93.52% | 0.0158 | 99.83% | 0.0046 | 99.96%
4 0.0022 | 99.96% | 0.0199 | 99.78% | 0.0114 | 99.91% | 0.0438 | 98.44% | 0.0129 | 99.87% | 0.0053 | 99.95%
5 0.0029 | 99.96% | 0.0164 | 99.85% | 0.0077 | 99.94% | 0.0250 | 99.57% | 0.0097 | 99.93% | 0.0037 | 99.96%
6 0.0031 | 99.96% | 0.0138 | 99.88% | 0.0068 | 99.94% | 0.0190 | 99.73% | 0.0080 | 99.94% | 0.0045 | 99.95%
7 0.0023 | 99.96% | 0.0118 | 99.91% | 0.0072 | 99.95% | 0.0184 | 99.80% | 0.0076 | 99.95% | 0.0042 | 99.95%
8 0.0027 | 99.96% | 0.0100 | 99.93% | 0.0069 | 99.94% | 0.0170 | 99.82% | 0.0057 | 99.95% | 0.0032 | 99.96%
9 0.0024 | 99.97% | 0.0095 | 99.92% | 0.0054 | 99.95% | 0.0138 | 99.88% | 0.0064 | 99.94% | 0.0034 | 99.97%
10 0.0034 | 99.95% | 0.0091 | 99.94% | 0.0052 | 99.96% | 0.0132 | 99.88% | 0.0054 | 99.96% | 0.0031 | 99.96%
50 0.0020 | 99.97% | 0.0032 | 99.97% | 0.0035 | 99.97% | 0.0026 | 99.97% | 0.0032 | 99.97% | 0.0031 | 99.96%
1000 0.0020 | 99.96% | 0.0030 | 99.97% | 0.0022 | 99.97% | 0.0025 | 99.97% | 0.0021 99.96% | 0.0028 | 99.97%

the resulting distributions can be well approximated by 55 —

Rayleigh distributions. The correlation coefficients between the I

estimated and empirical distributions are higher than 99.97%,

the Kolmogorov—Smirnov distances are less than 0.035, and for o

BS2, the value is 9. It has been shown that modern spaceborne L i

SAR (e.g., Cosmo-SkyMed and TerraSAR-X) can record data ’

with an equivalent number of scatterers less than 10 based on

the classical surface model [39]. In this case, the scatterer type

should be concerned to understand the distribution of data.

Multilook PolSAR data are usually represented by sample 1

covariance matrices, to which analyzing statistics such as ma-
trix log-cumulants can be applied. When performing the mul-
tilook processing on the high-resolution data, special attention
should be paid, as this procedure is equivalent to increasing the
number of scatterers in resolution cells. In Fig. 10, we show
the log-cumulants of the sample covariance matrices which are
obtained after applying the multilook processing with 2 x 2 and
5 X 5 rectangular windows on the simulated data when N = 1.
It demonstrates that, after applying the multilooking process
with a large window size, e.g., 5 x 5, the resulting sample
covariance matrices can be approximated by a Wishart distribu-
tion even if there is only one K -scatterer or constant scatterer in
each resolution cell. The statistics of the POISAR data approach
Gaussian statistics more rapidly after the multilooking proce-
dure. Therefore, for high-resolution data, preference should be
given to the scattering vectors over the covariance matrices
when coming to statistical analysis. In addition, it is interesting
to note that the sample covariance matrices of BS1 after the
multilook processing can be modeled by a KC-distribution.

B. Scatterer Number Fluctuation

In the middle- or low-spatial-resolution data, a resolution cell
covers a large area, and the number of scatterers inside it is
considered to be large. Due to the variations of the properties
of the targets and the roughness of the observing surface, the
scatterer number will fluctuate from cell to cell. This situation
will give rise to the “texture,” bunching clutters in the data
[6]. In the following, simulations of different distributions for

3 2 10 1 2 3
K3
(b)

Fig. 10. Log-cumulants of the simulated high-resolution data after applying
multilooking with different window sizes. (a) 2 X 2. (b) 5 x 5.

the scatterer number are shown, including negative binomial
distribution and compound Poisson distributions.

Again, in each case, a 300 x 300 pixel single-look image is
produced to ensure that there are enough samples. For the neg-
ative binomial distribution, two cases are tested with parameter
« given by 5 and 6, denoted as NB1 and NB2, respectively.
Inverse gamma, beta, and beta prime distributions are exam-
ined as the compounding distribution in (21). To make results
comparable, a same shape parameter o = 5 is tested for each of
them, denoted as IG, B, and BP, respectively. In all simulations,
the average value of scatterer numbers is larger than 1000 by
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Fig. 11. Pauli decomposition and log-cumulants by changing the distribution
of the scatterer number. (a) Pauli decomposition. (b) Log-cumulants.

choosing a proper scale parameter (3. The sample covariance
matrices are obtained by applying a multilook process with a
3 x 3 window. In the simulations, the randomness of the
scatterer numbers is assured to have a lower frequency than that
of the scatterers by letting the scatterer numbers of the pixels
inside a neighboring window be the same.

Here, only the results of the Gaussian scatterers are shown
since the scatterer type has a little influence on the final result
when the scatterer number is large. From Fig. 11, it can be seen
that we obtained K, G°, and Kummer-I{-distributed data by
varying the distributions of the scatterer number. In the results
of Pauli decomposition, there is bunching of scatterers, which is
known as heterogeneity described as the “texture.” Altering the
shape parameters of the distributions for the scatterer number,
data with different texture parameters are obtained (see NB1
and NB2 for example).

C. Mixture

Mixtures of ground cover types within a resolution cell or
a region are common in PolSAR images since the observing
scene usually covers a large area. To see the influence on the
statistical properties of PoISAR data, mixtures at pixel and
spatial levels with different proportions are simulated.

First, the simulation of mixing two Gaussian scatterers of
different classes is implemented: one is given by the covariance
matrix (24), and the other is given by

0.4e~77/4
0.5¢/™/6
0.5¢~9m/6 1

1 0.5ei7/3
0.5e~97/3 1
0.4¢7/4

C, = (25)

55 : : : :
sl ~ NBP + C-8 —K||

+ NB-S IG-P -—- G°
45 C-P + 1G-S —-W]|]

k3
(b)

Fig. 12. Pauli decomposition and log-cumulants by mixing targets at pixel
level (P) and spatial level (S). (a) Pauli decomposition. (b) Log-cumulants.

The covariance matrix has different elements as those of (24)
and is chosen only for academic study. For the scatterer number,
we tested the negative binomial distributed random variables
(NB), Poisson distribution compounding with inverse gamma
distribution (IG), and constant values (C). Mixtures at both
pixel level (P) and spatial level (S) are applied, with each class
taking up 50% proportion. The simulated data and the log-
cumulants calculated from them are shown in Fig. 12. It is no-
ticed that the mixture at spatial level gives heterogeneous data
that follow Kummer-I/ distributions. The mixture of distributed
scatterers at pixel level changes the covariance matrix, but the
texture of the obtained data is determined by the fluctuations of
the scatterer numbers.

Fig. 13 shows the log-cumulants by changing the mixing
proportion of the first class, given by covariance matrix (24),
from 0% to 100%. It is observed that changing the proportions
leads the log-cumulants of the simulated data to cover all
of the k2 — k3 space. This is also validated by Nicolas on
single channel data [27]. In another simulation, the covariance
matrices (24) and (25) are changed into

1.56 0 2.12-0.03]
C, — 0 0.09 0 (26)
2.1240.03j 0 2.90
(3o
C,=-0 2 0 27)
811 0o 3

where the former covariance matrix represents the X-Bragg sur-
face scattering [40] and the latter represents volume scattering
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Fig. 13. Log-cumulants of the mixture of targets C; and Cg at spatial level with different proportions. (a) Scatterer number is constant. (b) Scatterer number
follows a negative binomial distribution. (c) Scatterer number follows a compound Poisson distribution.
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Fig. 14. Log-cumulant of the mixture of targets Cs and C,, at spatial level with different proportions. (a) Scatterer number is constant. (b) Scatterer number

follows a negative binomial distribution. (c) Scatterer number follows a compound Poisson distribution.

[33]. The results are shown in Fig. 14, which is similar as those
of the previous simulation.

From Figs. 11 and 13 (or 14), we notice that changing either
the distribution of scatterer numbers or mixing proportion can
give K-, Kummer-U{-, and G°-distributed data according to the
log-cumulants. However, they have rather different polarimetry
meanings. In the first case, the data represent only one type
of scattering mechanism, while the second case represents a
complex combination of different polarimetric scattering mech-
anisms.

In urban areas, man-made targets and natural targets are
usually arranged alongside each other. The received data of
a PolSAR system will be a mixture of responses from both
distributed scatterers and point scatterers. To show the statistics
of these areas, distributed scatterers with the covariance matrix
given by (24) and point scatterers given by (28) are generated
and mixed

S, =1[5,0,0]"
S, =10,5,0]" (28)
S; = [10,0,0]".

Different percentages of point scatterers are tested (from 0.1%
to 90%). Fig. 15(a)—(c) shows the log-cumulants of the simu-
lated data where the distributed scatterers are mixed with one
point scatter S, two point scatterers S; and S, and one point
scatterer Sg, respectively. As it can be seen, adding up point
scatterers of different types increases the heterogeneity of the
simulated data. Comparing Fig. 15(a) and (c), it is shown that
increasing the amplitudes of the point scatterers results into
more heterogeneity.

V. REAL SAR DATA

Apart from the simulated data, real PoISAR images, includ-
ing the RADARSAT-2 fine quad-pol data (RST2), the ALOS-2
level 1.1 data in high-sensitive full-pol mode (ALOS2), and
the TerraSAR-X Stripmap quad-pol data (TSX), are analyzed.
The first two images were acquired over Barcelona (Spain),
and the third one was over Vancouver (Canada). Original data
are in the single-look complex format, from which the sample
covariance matrices are obtained by applying the multilook
processing with a sliding rectangular window. Table IV shows
the size of the sliding window, and as the pixels are correlated,
the equivalent number of looks (ENL) is estimated using the
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Fig. 15. Log-cumulants of the mixture of distributed targets C; and point targets. (a) Mixture with point targets S;. (b) Mixture with point targets S; and Ss.

(c) Mixture with point targets S3.

TABLE IV
REAL POLSAR DATA PARAMETERS

Resolution Incidence Multilook
1D Freq. Rg x Az Angle Processing | ENL
(m) (degs) Window
RST2 CBand | 11.1 X 7.6 28.9 3x3 5.61
ALOS2 | L Band | 3.49 x 3.84 | 339 5x5 15.15
TSX X Band | 1.18 X 6.60 | 32.6/24.6 | 5x5 7.77

log-determinant moment-based estimator [41]. Additional para-
meters such as the wave frequency, the incidence angle, and the
spatial resolution are also listed as a comparison. We selected
ROIs in the urban area, the agriculture area, the ocean, and the
forest area. To avoid the SNR problem of TerraSAR-X data
[42], two images with different incidence angles are included:
the one with a larger incidence angle covers urban, forest, and
agriculture areas, and the other is over wide-open ocean. The
Pauli decomposition and ROIs are shown in Fig. 16.

The second row of Fig. 16 shows the second-order and third-
order log-cumulants of the ROIs. As we can see, the urban
areas (red and green rectangles) can be modeled by the G°
or the Kummer-U/ distributions, which have the capability to
model heterogeneous areas [9], [10]. The two ROIs in the
urban area of the RST2 data and the ALOS?2 data represent two
different urban structures: one is of tall and densely distributed
apartments, and the other is of short and sparse houses. This
may be an explanation why different statistics, the G° versus the
Kummer-U/, are obtained. In agriculture areas (cyan and yellow
rectangles), K-distribution is shown to be the most suitable
model due to the mixtures of different crop types. For a single
type, the Wishart distribution is validated (see the yellow ROI of
the TSX data). The forest area (black rectangle) shows a weak
texture in the RST2 and TSX data. However, in the ALOS2
data, there is a strong fluctuation in the backscattering due to
the radar foreshortening. To eliminate the effect of radar image
distortions, another forest region (purple rectangle) is analyzed,
which is found to follow a IC-distribution. In most cases, texture
is not observed in the sea areas, with the exception of wide-
open oceans where strong waves may exist (see the purple ROI
in the TSX data for example). We must remind that the data of

the TerraSAR-X Stripmap quad-pol mode are an experimental
product, and before applying statistical analysis to the TSX
data, a simple calibration is accomplished, where pixels with
intensities below the noise level are discarded. This may be the
reason why the results on TSX data indicate a different behavior
as those on RST2 and ALOS?2 data.

Besides the spaceborne sensors, data from a ground-based
SAR sensor, the UPC RiskSAR sensor [43], are also tested.
The area under analysis covers different regions near Barcelona
(Spain; see Fig. 17). The forest areas show a weak texture, while
the urban areas are extremely heterogeneous, where the second-
order log-cumulant can reach as large as 100.

VI. CONCLUSION

The random walk model has been studied, with the objective
to give a physical insight of statistical POISAR data texture
models. Variable aspects of this model, including scatterer
types, distributions of the scatterer number, and mixtures at
pixel and spatial levels, are considered, and corresponding sim-
ulation algorithms are provided. When simulating the scattering
process, the scalar product model has been considered by as-
suming the same texture for all of the polarimetric channels due
to the complexity to properly simulate this type of variability.
Statistical analysis is applied on the simulated data obtained
under different assumptions, as well as real SAR data acquired
with different SAR sensors, wave frequencies, and incidence
angles.

From the simulated data, it is demonstrated that, according to
the log-cumulants, i.e., the ko — 3 diagram, the same PolSAR
data distribution could come from different scattering scenarios.

In case of homogeneous data, it is demonstrated that the type
of data distribution depends on both the scatterer number and
the type of scatterer. Nevertheless, it is necessary to distinguish
between low- and high-spatial-resolution data. In the former
case, the PolSAR data distribution is essentially determined
by the distribution of the scatterer number, whereas in the
later, the data distribution is affected by the distribution of
the scatter number as well as by the type of scatterer. The
difference between these two cases is due to the number of
scatterers inside the resolution cell. When this number is large,
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Fig. 16. Pauli decomposition and log-cumulants of real SAR data. The first column (a) and (d) shows ROIs and log-cumulants on the RST2 data, the second
column (b) and (e) shows results on the ALOS2 data, and the last column (c) and (f) is on the TSX data.

Fig. 17. Pauli decomposition and log-cumulants of ground-based SAR data. (a) ROIs of two ground-based SAR images. (b) Log-cumulant of the top image.

(c) Log-cumulant of the bottom image.

larger than Ny,,x for example, the obtained data will fully
develop speckle. It has also been demonstrated that the value
of Nmax depends on the scatterer type. In addition, the effect
of the scatterer type can be easily removed by the multilook
processing. When a relatively large window is employed during

the multilook processing, the non-Gaussianity mainly comes
from the fluctuation of the scatterer numbers.

In case of heterogeneous data, the PoISAR data distribu-
tion is determined by the mixture of different scatterers. This
mixture can be considered at pixel as well as at spatial level.
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The mixture of distributed scatterers at pixel level changes
the covariance matrix, but the texture of the obtained data is
determined by the fluctuations of the scatterer numbers. In
the case of mixture at spatial level, the data distribution is
determined not only by the distribution of the scatterer number
but also by the proportion of the different scatter types in the
mixture. Finally, the mixture of different targets will lead to
extremely heterogeneous data, which provides a clue to analyze
heterogeneous areas in PoISAR data, instead of introducing
distributions with many parameters. A question that remains
open in the case of mixture of scatterer types at pixel and spatial
levels is the correct interpretation of the global polarimetric
information in terms of the covariance or coherency matrices.

The configuration of a SAR sensor, e.g., frequency, incidence
angle, and spatial resolution, could affect the distribution of
some targets, as the information obtained by a different config-
urations is not the same. Normally, with higher frequency and
higher resolution, more details could be observed, which will
give a stronger texture. A further thorough study on this topic
is required.

As it can be observed, the same PolSAR data distribution
may be obtained by different scattering scenarios. One possible
physical explanation for the different statistical PoISAR data
models is the fluctuations of the scatterer number of each
resolution cell, especially negative binomial distribution for the
KC-distribution and compound Poisson distribution for
Kummer-/ and G°-distribution. Another possible explanation
is the mixture of scatterers, where different data statistical
models represent different mixture proportions. In other words,
there is an ambiguity between the concept of texture and the
concept of mixture in terms of the ko — k3 log-cumulants.
How to distinguish these two explanations or to eliminate
this ambiguity, however, is not clear at this moment yet. The
introduction of higher order statistics or the spatial correlation
needs to be further explored.
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