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      Abstract- Protein-protein interactions (PPIs) play an essential role in many biological processes, including disease conditions. Strategies to modulate PPIs with small molecules have therefore attracted increasing interest over the last few years, where successful PPI inhibitors have been reported into transient cavities from previously flat PPIfs.    Recent studies emphasize on hot-spots (those residues contribute for most of the energy of binding) as promising targets for the modulation of PPI. PyDock is the only computational method that uses docking to predict PPIfs and hot-spots (HS) residues. Using Normalized Interface Propensity (NIP) values derived from rigid-body protein docking simulation, we are able to predict the PPIfs and HS residues without any prior structural knowledge of the complex.     We benchmarked the protocol in a small set of protein-protein complexes for which both structural data and PPI inhibitors are known. We present an approach aimed at identifying HS and transient pockets from predicted PPIfs in order to find potential small molecules capable of modulating PPIs. The method uses pyDock to identify PPIfs and HS and molecular dynamics (MD) techniques to describe the possible fluctuations of the interacting proteins in order to suggest transient pockets. 

Afterwards, we evaluated the validity of predicted HS and pockets for in silico drug design by using ligand docking.     We present a strategy based on MD and NIP which allows to identify cavities as potentially good targets to bind inhibitors when there is no information at all about the protein-protein complex structure.          
I. INTRODUCTION 

 
Protein-protein interactions (PPI) play an 

essential role in regulating biological processes, 
such as signaling pathways in cells, and are 
involved in the majority of diseases, highlighting 
the interest in protein-protein interfaces (PPIfs) as 
an attractive target for therapeutic intervention. A 
detailed structural knowledge of PPIs is needed to 
understand disease at molecular level, to identify 
new targets for therapeutic intervention and also to 
find small molecules capable of inhibiting PPIs [1].                              
   It has been reported that only a few amino acids 
(so-called “hot-spot” residues) usually contribute to 
the majority of the free energy of binding. 
Experimental approaches typically define hot-spots 
(HS) as those residues that decrease binding energy 

in more than 1 or 2 kcal/mol upon mutation to 
alanine [2]. These HS residues are important in the 
context of drug discovery targeting PPIs because 
blocking them seems the only way for a small-
molecule to compete with a protein-protein 
interaction. The reason is that PPIfs are usually 
large and involve higher number of atomic 
interactions, and hence have higher affinity as 
compared to protein-ligand interfaces. Other 
difficulties are that PPIfs do not have clear binding 
pockets for drug binding, and that very often, both 
the location of the interface and the binding mode 
of the PPI are not known. Successful PPI inhibitors 
have been reported into transient cavities from 
previously flat PPIfs [3].                                    
  Computational approaches such as protein-protein 
docking and molecular dynamics (MD) are 
becoming increasingly important tools in drug 
discovery in order to help solving the difficulties 
mentioned above. PyDock algorithm (a tool 
developed in our lab to perform protein-protein 
docking) is the only computational method that 
uses docking to predict PPIfs and HS residues 
when there is no structural information available of 
the protein-protein complex [4,5,6,7]. The method 
applies the fast Fourier transform algorithm to the 
unbound proteins of the complexes, followed by 
the energy-based scoring from pyDock to calculate 
the Normalized Interface Propensity (NIP). Using 
pyDock and MD techniques to suggest putative 
transient cavities, we present an approach 
addressed to targeting PPIs and to find potential 
small molecules capable of modulating PPIs [8]. 

 
II. MATERIALS AND METHODS 

 
   A.     Generation of small benchmark. 
     From the 2P2I database, we benchmarked the 

protocol in a small set of protein-protein complexes 
for which both structural data and PPI inhibitors 
are known. 

   B.     Hot-spot prediction from protein-protein 
docking.      We used ZDOCK 2.1 [9] to generate 2000 rigid-
body docking poses. We used the top 100 lowest-
energy solutions proposed by pyDock algorithm to 
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calculate the Average Buried Surface (ABS) and 
Normalized Interface Propensity (NIP) [7]. We 
applied a cutoff of NIP > 0.2 to predict HS 
residues.                                    
  C.     Molecular dynamics and transient cavities 
detection. 

 In the correct predictions of HS in PPIfs, we 
used AMBER10 to detect transient pockets on the 
unbound proteins, which were selected based on 
the predicted HS. For each case, using Fpocket 
[10], we analyzed 1000 out of 10000 snapshots 
resulting from 10ns of simulation.  

  D.     Ligand docking. 
   In those selected snapshots with a putative 

transient cavity, we used MAESTRO to prepare the 
structures for docking, as well as the inhibitors. We 
generated 1000 docking poses from RDOCK 
(flexible ligand docking). 

Results 
 Assuming the knowledge of the PPI, 6 out of 10 

cases are successful. We have focused on these 
cases to continue the analysis to identify transient 
cavities. HS and PPIfs predictions are shown in 
Table I (Figure 1).    

 
 a Number of predicted hot-spots (NIP> 0.2). b Number of predicted 

hot-spots that are located at the PPIfs. c Number of predicted hot-spots 
that are located at the protein-inhibitor interface (PII).  

* Correct predictions (these were selected for a more thorough 
analysis).                                                                                                                                                                                                              

.                                                       TABLE I 
Complex HSpred a HSpred at 

PPIfs b 
HSpred at 

PII c 
Bcl-XL/BAK 9 2 2 
Xiap_BIR3/Caspase 12 0 2 
HPV_E2/E1 21 12 7 
IL2/IL2R 4 4 4 
Nos/iNos 0 0 0 
Integrase/LEDGF 16 0 1 
MDM2/p53 7 4 4 
Xiap_BIR3/Smac 19 6 7 
TNFR1A/TNFB 14 1 0 
ZipA/FtsZ 0 0 0 
 
 
 
 
 
 

 
 
 

We proposed two strategies to analyze the pockets 
and  identify the putative transient cavity from MD. 
One is using the top ranked pockets predicted by 
Fpocket and the second  is using the pockets that 
have at least 2 most frequent residues from all 
those pockets located at a concrete place (defined 
using HS) during the simulation (Figure 2.). 

  In order to evaluate the weight of HS in the role 
of selection of possible candidates with an 
interesting transient cavity, we also evaluated both 
strategies without HS. We compared both strategies 
with unbound cases. From all strategies, we 
selected the snapshots with a putative transient 
cavity in different ways: the top scored by fpocket, 
the top druggable defined by fpocket and the top 
druggable from the top 100 scored by fpocket 
(topD(P100)). We propose the top 5 candidates 
(from topD(P100)) for further analysis using ligand 
docking. If we compare unbound structures with 
respect to the selected cases, we obtain better 
results in these selections (Figure 3).   

                                      
Fig. 3. At left, different strategies of selection of candidates with the 

best transient cavity. In unbound structures selected according to the 
results obtained from PPIfs selection, we analyzed the pocket and the 
transient pockets resulting from the simulation. P0 means the top ranked 
pockets strategy and P2 means the strategy applying most frequent 
residues. Transient pockets were analyzed: Using HS (at least 3HS) and 
without HS. Correct predictions were considered with a 
PPV&COV>40%. At right, results of ligand docking in MDM2 applying 
P0 with at least 3HS strategy (a) and directly with the unbound structure 
(b) of selection. 

 
 
 
 
 
 



                                                                                                                                  

 

 

III. CONCLUSIONS 
 

   The characterization of druggable cavities in 
PPIfs is still unknown where predicting PPIfs from 
a three dimensional structure is a key task for the 
modulation of PPIs. The use of the NIP-based HS 
prediction method improves the identification of 
transient cavities from MD simulation when 
compared to known binding cavities. We propose a 
new tool to predict and characterize PPIs, PPIfs and 
HS residues. We present a strategy based on MD 

and NIP which allows to identify cavities as 
potentially good targets to bind inhibitors. This 
approach can be extremely useful in a realistic 
scenario of drug discovery targeting PPIfs, when 
there is no information at all about the protein-
protein complex structure.           
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