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 Abstract- Task-based programming models have gained a lot    of attention for being able to explore high parallelism over multicore and manycore, while hiding the difficulties of parallel programming. For applications with moderate size tasks, performance gains are assured by using these programming models. While for more parallelism by using smaller and more tasks, the performance degrades as a result of runtime overheads. To speed up the runtime, we present a hardware accelerator, Picos Hardware to accelerate task dependence management and scheduling. In this work, we show the performance of the first Picos Hardware prototype realized in a Zynq 7000 All-Programmable SoC by using real benchmarks. Results show that our hardware support greatly outperforms the software-only implementation currentlyavailable in the runtime system for fine-grained tasks. 
 

I. INTRODUCTION 
 

Parallel computing offers the possibility to scale 
up the performance over the number of processors. 
At the same time, it exposes significant challenges 
for programmers to adapt themselves from 
sequential to parallel programming. Task-based 
programming models are quickly developed to 
target these challenges. For example, Google's 
MapReduce, Intel's TBB, Open MP 4.0, StarSs and 
OmpSs programming model [1]. In OmpSs, 
programmers can gain performance by simply 
annotating tasks in the source code with directives 
(input, output, inout) to hint their data 
dependences. And the remaining actions as task 
creation, dependence management/dependence 
graph management and task scheduling are 
managed by the Nanos++ Runtime system (RTS). 

OmpSs is able to expose high parallelism from 
applications of varied domains with a number of 
moderate tasks, with both regular and irregular 
dependence patterns and is fairly easy to use. 
However, for fine-grained tasks, the runtime 
overheads (especially dependence management and 
task scheduling) are too high to scale. 

To speedup the runtime and extend the usage of 
OmpSs to fine-grained tasks, we present a 
hardware accelerator, Picos Hardware. It accepts 
general information from master threads as task 

identification, number of dependences, memory 
addresses and directions of dependences, and 
schedules ready tasks to worker threads. In this 
work, we show a brief description of Picos and its 
hardware costs, and discuss some challenges during 
the development, and finally  results of the first 
Picos prototype [2] realized in a Zynq 7000 All-
Programmable SoC [3] by using real benchmarks. 

 
II. METHODOLOGY AND CHALLENGES 

 
A. Experimental Setup 
 
   First, OmpSs applications are executed in 

sequential and parallel up to 24 threads in a shared 
memory machine. It has 2 sockets, each socket is a 
Xeon E5-2630L with 6 cores with dynamic 
frequency up to 2.0GHz. 

   Second, execution time of the same 
applications of Picos full system are obtained in 
Zedboard (Zynq 7000 SoC) by using traces. The 
traces are obtained through instrumenting the 
sequential execution of OmpSs applications. It 
includes two main parts: the first part includes task 
creation/execution time in cycles required to 
simulate the task creation and task execution 
processes in ARM processor; the second part 
includes task and dependence information 
necessary for dependence management and task 
scheduling. 

   Finally, the speedups of OmpSs applications 
shown in this work are obtained against the 
sequential execution time. 

 
B. Picos Full System 

 
Fig. 1. shows the organization of the current 

embedded system integrated with the first Picos 
prototype. The Programmable Logic part uses a 
80MHZ global clock, and a 64bits AXI Timer 
synchronized with the same clock as the global 
timer. The ARM processor runs a bare-metal 
Operating System, and the workers inside are 
simulating threads. 
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Fig. 1.  The Picos Full System employs a close-loop process. 
Each task is created and sent to Picos for dependence analysis 
(1, 2). Each ready task is retrieved from Picos to the ARM core 
for execution in the workers (3, 4). Finally each finished task is 
sent back to notify Picos (5) to carry on the process until the last 
task. 

 Each message between Picos and ARM core 
carries one task at once and the communication 
latency for sending or retrieving each task via 
DMA takes around 200 to 300 cycles for each 
message. 

C. Picos Prototype 
Picos prototype has five functional units: 

Gateway (GW), Task Reserve Station (TRS), 
Dependence Chain Tracker (DCT), Task 
Scheduling (TS) and Arbiter (ARB). 

GW reads new/finish task information from 
workers to Picos prototype. 

TRS is the major task management unit. It stores 
in-flight tasks, tracks the readiness of new tasks 
and manages the deletion of finished tasks. 

DCT is the major dependence management unit. 
It performs address matching of new dependence 
against the addresses of those arrived earlier, to 
track data dependences, and also save and control 
all its live versions. 

TS schedules ready tasks notified by TRS to idle 
workers. 

ARB manages communications between TRS 
and DCT. 

The first prototype uses about 5.8% Look-Up 
Tables, 1.2% Flip-Flops  and 17% BRAMs in 
XC7Z020 [3]. 

D. Challenges 
We encounter several big challenges during the 

development of the first Picos prototype. Firstly, 
the balance between speed and hardware cost of 
TRS and DCT. Since each task can have multiple 
dependences, this stresses the dependence 
management unit multiple times more than the task 
dependence unit. Secondly, the system stalls if new 
dependences cannot be processed due to the 
memory capacity and entry conflicts. Thirdly, the 
communication latency between Picos prototype 
and the ARM processor. 

 
 
 

III. RESULT EVALUATION 
 

We show the speedup (y-axis) of Cholesky, 
SparseLu (four different block sizes) [4] obtained 
by Picos Full-system, Perfect Simulator and 
Nanos++ RTS, with up to 24 threads in Fig. 2.. 
Results of Perfect Simulator shows the critical-path 
roofline speedup. 

 

 
Fig. 2.  Speedup of OmpSs applications with 2 to 24 threads 
As can be seen, firstly, for each benchmark with 

a fixed block size, Nanos++ RTS scales up to 12 
workers maximum while the Picos prototype 
continues to scale to 24 workers. For example, for 
SparseLu and Cholesky in with block size 64, the 
Picos prototype achieves over 20x with 24 workers 
while Nanos++ RTS achieves 13x and 7x 
respectively. 

Secondly, for both benchmarks, Nanos++ RTS 
starts to degrade rapidly after some point s while 
the Picos prototype keeps on advancing or remains 
stable as the block size decreases. For Cholesky, 
although the performance of both Picos prototype 
and Nanos++ RTS degrade for block size 32, the 
latter one has a much worse degradation. The 
reason for the Picos prototype degradation here is 
that it only uses one TRS and DCT, which is 
unable to unfold such a high parallelism from 
Cholesky with block size 32. However, with more 
module instances Picos Hardware should be able to 
obtain higher speedup and fill this gap [5]. 

 
IV. CONCLUSIONS 

 
In this paper we show a brief description of 

Picos, as a RTS hardware support to speedup the 
task and dependence management for task-based 
dataflow programming models like Open MP 4.0 
and OmpSs. The presented implementation has 
been in a Zynq 7000 All-programmable SoC 



 

 

Platform. Results of real benchmarks show that the 
prototype greatly outperforms the existing OmpSs 
software-only implementation (Nanos++) and as 
the task granularity decreases, the prototype 
continues to scale after Nanos++ RTS starts to 
degrade. More importantly, with a larger design 
with multiple task and dependence management 
units upcoming, Picos Hardware could be able to 
exploit a larger magnitude of parallelism in the 
applications with very fine granularity, that 
software alternatives cannot achieve. 
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