

Task Dependences Management Hardware Acceleration for
Task-based Dataflow Programming models

Xubin Tan, Carlos Álvarez-Martínez, Daniel Jiménez-González, Eduard Ayguadé, Mateo Valero

Universitat Politècnica de Catalunya, Barcelona Supercomputing Center, Barcelona, Spain
{xubin.tan, eduard, maeto.valero}@bsc.es, {djimenez, calvarez}@ac.upc.edu

 Abstract- Task-based programming models have gained a lot of attention for being able to explore high parallelism over multicore and manycore, while hiding the difficulties of parallel programming. For applications with moderate size tasks, performance gains are assured by using these programming models. While for more parallelism by using smaller and more tasks, the performance degrades as a result of runtime overheads. To speed up the runtime, we present a hardware accelerator, Picos Hardware to accelerate task dependence management and scheduling. In this work, we show the performance of the first Picos Hardware prototype realized in a Zynq 7000 All-Programmable SoC by using real benchmarks. Results show that our hardware support greatly outperforms the software-only implementation currentlyavailable in the runtime system for fine-grained tasks.

I. INTRODUCTION

Parallel computing offers the possibility to scale
up the performance over the number of processors.
At the same time, it exposes significant challenges
for programmers to adapt themselves from
sequential to parallel programming. Task-based
programming models are quickly developed to
target these challenges. For example, Google's
MapReduce, Intel's TBB, Open MP 4.0, StarSs and
OmpSs programming model [1]. In OmpSs,
programmers can gain performance by simply
annotating tasks in the source code with directives
(input, output, inout) to hint their data
dependences. And the remaining actions as task
creation, dependence management/dependence
graph management and task scheduling are
managed by the Nanos++ Runtime system (RTS).

OmpSs is able to expose high parallelism from
applications of varied domains with a number of
moderate tasks, with both regular and irregular
dependence patterns and is fairly easy to use.
However, for fine-grained tasks, the runtime
overheads (especially dependence management and
task scheduling) are too high to scale.

To speedup the runtime and extend the usage of
OmpSs to fine-grained tasks, we present a
hardware accelerator, Picos Hardware. It accepts
general information from master threads as task

identification, number of dependences, memory
addresses and directions of dependences, and
schedules ready tasks to worker threads. In this
work, we show a brief description of Picos and its
hardware costs, and discuss some challenges during
the development, and finally results of the first
Picos prototype [2] realized in a Zynq 7000 All-
Programmable SoC [3] by using real benchmarks.

II. METHODOLOGY AND CHALLENGES

A. Experimental Setup

 First, OmpSs applications are executed in

sequential and parallel up to 24 threads in a shared
memory machine. It has 2 sockets, each socket is a
Xeon E5-2630L with 6 cores with dynamic
frequency up to 2.0GHz.

 Second, execution time of the same
applications of Picos full system are obtained in
Zedboard (Zynq 7000 SoC) by using traces. The
traces are obtained through instrumenting the
sequential execution of OmpSs applications. It
includes two main parts: the first part includes task
creation/execution time in cycles required to
simulate the task creation and task execution
processes in ARM processor; the second part
includes task and dependence information
necessary for dependence management and task
scheduling.

 Finally, the speedups of OmpSs applications
shown in this work are obtained against the
sequential execution time.

B. Picos Full System

Fig. 1. shows the organization of the current

embedded system integrated with the first Picos
prototype. The Programmable Logic part uses a
80MHZ global clock, and a 64bits AXI Timer
synchronized with the same clock as the global
timer. The ARM processor runs a bare-metal
Operating System, and the workers inside are
simulating threads.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/46607507?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1. The Picos Full System employs a close-loop process.
Each task is created and sent to Picos for dependence analysis
(1, 2). Each ready task is retrieved from Picos to the ARM core
for execution in the workers (3, 4). Finally each finished task is
sent back to notify Picos (5) to carry on the process until the last
task.

 Each message between Picos and ARM core
carries one task at once and the communication
latency for sending or retrieving each task via
DMA takes around 200 to 300 cycles for each
message.

C. Picos Prototype
Picos prototype has five functional units:

Gateway (GW), Task Reserve Station (TRS),
Dependence Chain Tracker (DCT), Task
Scheduling (TS) and Arbiter (ARB).

GW reads new/finish task information from
workers to Picos prototype.

TRS is the major task management unit. It stores
in-flight tasks, tracks the readiness of new tasks
and manages the deletion of finished tasks.

DCT is the major dependence management unit.
It performs address matching of new dependence
against the addresses of those arrived earlier, to
track data dependences, and also save and control
all its live versions.

TS schedules ready tasks notified by TRS to idle
workers.

ARB manages communications between TRS
and DCT.

The first prototype uses about 5.8% Look-Up
Tables, 1.2% Flip-Flops and 17% BRAMs in
XC7Z020 [3].

D. Challenges
We encounter several big challenges during the

development of the first Picos prototype. Firstly,
the balance between speed and hardware cost of
TRS and DCT. Since each task can have multiple
dependences, this stresses the dependence
management unit multiple times more than the task
dependence unit. Secondly, the system stalls if new
dependences cannot be processed due to the
memory capacity and entry conflicts. Thirdly, the
communication latency between Picos prototype
and the ARM processor.

III. RESULT EVALUATION

We show the speedup (y-axis) of Cholesky,
SparseLu (four different block sizes) [4] obtained
by Picos Full-system, Perfect Simulator and
Nanos++ RTS, with up to 24 threads in Fig. 2..
Results of Perfect Simulator shows the critical-path
roofline speedup.

Fig. 2. Speedup of OmpSs applications with 2 to 24 threads
As can be seen, firstly, for each benchmark with

a fixed block size, Nanos++ RTS scales up to 12
workers maximum while the Picos prototype
continues to scale to 24 workers. For example, for
SparseLu and Cholesky in with block size 64, the
Picos prototype achieves over 20x with 24 workers
while Nanos++ RTS achieves 13x and 7x
respectively.

Secondly, for both benchmarks, Nanos++ RTS
starts to degrade rapidly after some point s while
the Picos prototype keeps on advancing or remains
stable as the block size decreases. For Cholesky,
although the performance of both Picos prototype
and Nanos++ RTS degrade for block size 32, the
latter one has a much worse degradation. The
reason for the Picos prototype degradation here is
that it only uses one TRS and DCT, which is
unable to unfold such a high parallelism from
Cholesky with block size 32. However, with more
module instances Picos Hardware should be able to
obtain higher speedup and fill this gap [5].

IV. CONCLUSIONS

In this paper we show a brief description of

Picos, as a RTS hardware support to speedup the
task and dependence management for task-based
dataflow programming models like Open MP 4.0
and OmpSs. The presented implementation has
been in a Zynq 7000 All-programmable SoC

Platform. Results of real benchmarks show that the
prototype greatly outperforms the existing OmpSs
software-only implementation (Nanos++) and as
the task granularity decreases, the prototype
continues to scale after Nanos++ RTS starts to
degrade. More importantly, with a larger design
with multiple task and dependence management
units upcoming, Picos Hardware could be able to
exploit a larger magnitude of parallelism in the
applications with very fine granularity, that
software alternatives cannot achieve.

ACKNOWLEDGMENT

This work is supported by the Programa Severo

Ochoa (SEV-2015-0493) through the TIN2015-
65316-P project, the contracts 2014-SGR-1051 and
2014-SGR-1272, and the European Research
Council RoMoL Grant Agreement number 321253.
We also thank the Xilinx University Program. This
work has one accepted paper [2].

REFERENCES

[1] A. Duran, E. Ayguade, R. M. Badia, J. Labarta, L.

Martinell, X. Mar-torell, and J. Planas, “Ompss: A
proposal for programming heteroge- neous multi-core
architectures,” Parallel Processing Letters, 2011.

[2] X. Tan, J. Bosch, D. Jiminez-Gonzalez , C. Alvarez-
Martinez, E. Ayguade and M. Valero. ”Performance
Analysis of a Hardware Accelerator of Dependence
Management for Task-based Dataflow Programming
models”. Accepted to the 2016 IEEE International
Symposium on Performance Analysis of Systems and
Software (ISPASS).

[3] XILINX, “Zynq-7000, etc..” [online], 2015.
http://www.xilinx.com/support/documentation/user
guides/ug585-Zynq-7000-TRM.pdf.

[4] B. S. Center, “Bsc application repository(bar).” [online],
2014. https//pm.bsc.es/projects/bar/wiki/Applications.

[5] F. Yazdanpanah, C. Alvarez, D. Jimenez-Gonzalez, R. M.
Badia, M. Valero, “Picos: A hardware runtime
architecture support for ompss,” Future Generation
Computer Systems(FGCS), 2015.

