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Higher Order Statistics for Texture Analysis and
Physical Interpretation of Polarimetric SAR Data
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Abstract—The logarithmic cumulants (log-cumulants for short)
of the second and third order are widely used in the statistical
analysis of PolSAR data. However, both the product model and
the finite mixture model may produce the same values of these
statistics, which means the use of these log-cumulants is not
enough to determine the statistical model of the data. In this
paper, it is demonstrated that the log-cumulants of higher orders
can help to distinguish the concept of texture from that of
mixture, providing a physical insight into the data statistics.
A tool called log-cumulant cube, that helps to visualize this
difference, is proposed by considering texture distributions from
the Pearson’s family. Results on both simulated and real SAR
data show that the use of higher order statistics is useful when
it comes to texture analysis of PolSAR data.

Index Terms—Polarimetric SAR, Texture Analysis, Log Cu-
mulant, Higher Order Statistics.

I. INTRODUCTION

Knowledge of the exact statistical properties of the signal
plays an important role in characterizing polarimetric synthetic
aperture radar (PolSAR) data. Gaussian statistics for the radar
return signals have been frequently assumed. However, the
analysis of real PolSAR images reveals that non-Gaussian
models give a better representation. In the last two decades, a
considerable research effort has been dedicated to find accurate
and efficient non-Gaussian models for PolSAR data, in the
framework of the product model which assumes that the radar
return is a product of two independent components, the texture
and the speckle [1]–[5]. The product model is also referred to
as scale mixture of Gaussian distributions [6]. Theoretically,
the texture could be described by any distribution, but here we
confine ourselves to the Pearson ones, since they are the most
common and widely studied distributions to model texture,
which could give explicit expressions for the distributions of
the product model [5], [7]–[9].

Additionally, the heterogeneity that appears in PolSAR
data may result from the mixture of different targets. For
instance, from an urban area which usually consists of different
objects like houses, trees and roads, the backscattering is a
combination of different scattering mechanisms. The forest
areas sometimes can be treated as a mixture of bright clutters
and dark ones, corresponding to the strong returns from the
crowns of trees and the shadows behind them. To represent this
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type of data, a simple product model would be inappropriate.
Finite mixture models, instead, could achieve reasonable level
of accuracy [10]–[13].

The product model and the finite mixture model describe
two quite different scattering scenarios, the former models a
single type of target with textures, whereas the latter represents
combinations of various targets. In a previous study [14],
however, it is shown that the same log-cumulants of the second
order and the third order [8], [9] may result from both of
them. There is an ambiguity between the texture and mixture
according to those statistics. As they have different physical
meanings, it is necessary to discriminate the concept of texture
from that of mixture. In this paper, we demonstrate that higher
order statistics, and the fourth order log-cumulant in particular,
are useful to accomplish this task. In this work, only texture
distributions from the Pearson’s family are considered.

II. POLSAR DATA MODELS

A. Product Model
Under the assumption of the product model [1], the scatter-

ing vector obtained by a system can be written as

k =
√
τz. (1)

Here τ is the texture parameter, a positive random variable
with unity mean value, and z is the speckle vector, following a
multivariate circular Gaussian distribution with zero mean and
covariance matrix Σ = E{zz†}, where E{·} is the expectation
operator and (·)† is the transpose conjugate operation.

The scattering vectors are frequently multilook processed
and represented by the sample covariance matrices

CL =
1

L

L∑
i=1

kik
†
i =

τ

L

L∑
i=1

ziz
†
i (2)

where L is the number of looks. Here it is assumed that
the texture variable is constant within the multilook cell [2].
Let d denote the number of dimensions and | · | the matrix
determinant, then the probability density function (PDF) is
obtained by averaging all possible τ

p(CL;L,Σ) =

∫ ∞
0

LLd|CL|L−d

Γd(L)τLd|Σ|L

× exp

(
−L
τ

Tr(Σ−1CL)

)
p(τ)dτ

(3)

where Tr(·) is the matrix trace operation and Γd(L) is the
generalized gamma function given by

Γd(L) = πd(d−1)/2
d∏

i=1

Γ(L− i+ 1) (4)
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with Γ(·) representing the gamma function.
A number of models have been proposed in the literature

by assuming different distributions for the texture parameter τ ,
including the Wishart distribution, the K-distribution [2], the
G0-distribution [3], the Kummer-U distribution [4], and theW
and M distribution [5], see Table I. The texture distributions
of all these models are from the Pearson’s family, and they
can give closed form expressions for the PDFs of the sample
covariance matrix, as well as the main testing statistic, log-
cumulants.

B. Finite Mixture Model

Assume that the region under analysis can be modeled by
a mixture of K components, then the overall PDF of the data
can be written as a weighted sum of the probabilities of each
component [10], [13]

p(CL;θ) =

K∑
i=1

wipi(CL;θi) (5)

where θ is a vector collecting all the parameters of the
distribution and the mixing proportions obey

K∑
i=1

wi = 1, wi ≥ 0. (6)

It has been shown that for complicated regions with more
irregular histograms (multimodal, spiky), the finite mixture
model is more accurate than a single distribution [10]–[12].
There are many options for the distributions of the mixing
components, but here we mainly focus on the mixture of
Wishart distributed components.

C. Log-Cumulants

To test if a model is suitable for the data, a measurable
statistic is required. It is demonstrated that Mellin kind statis-
tics are of great value for the analysis of the sample covariance
matrix, and that they can be employed to determine the model
fit [8], [9]. Define the Mellin kind matrix-variate characteristic
function as the Mellin transform of the PDF [9]

φ(s) =

∫
Ω+

|CL|s−dp(CL)dCL (7)

then, the vth order log-moment and log-cumulant are given by

µv =
dv

dsv
φ(s)

∣∣∣∣
s=d

, κv =
dv

dsv
lnφ(s)

∣∣∣∣
s=d

. (8)

They are related by the combinatorial version of Faà di Bruno’s
formula

κv = gv(µ1, · · · , µv)

= µv −
v−1∑
i=1

(
v − 1

i− 1

)
κiµv−i.

(9)

The sample log-cumulants can be estimated using κ̂v =
gv(µ̂1, · · · , µ̂v) where µ̂v is the estimated log-moments

µ̂v =
1

N

N∑
i=1

(ln |Ci|)v (10)

with N denoting the number of samples and Ci the ith sample
covariance matrix. As shown in [15], the variance of κ̂v is
given by

V ar{κ̂v} =
1

N
∇gTv M∇gv (11)

where

∇gv =

[
∂gv(µ1, · · · , µv)

∂µ1
, · · · , ∂gv(µ1, · · · , µv)

∂µv

]T
(12)

and M is the covariance matrix of log-moments with entries
Mij = µi+j − µiµj .

To see if a model is applicable, we can compare the log-
cumulants calculated from the PDF (κv) and those estimated
from the sample data (κ̂v). In [9], a diagram is proposed
to visualize the comparison by plotting the second order
log-cumulant κ2 against the third order log-cumulants κ3 in
a plane, where different product models place in different
regions. The distributions shown in Table I cover the whole
log-cumulant diagram space [5].

D. Log-Cumulants of the Finite Mixture Model

Assume that the mixing components follow complex
Wishart distributions such that the matrix-variate Mellin trans-
form [9] of the finite mixture model in (5) can be written as

φ(s) =

(
K∑
i=1

wi|Σi|s−d
)

Γd(L+ s− d)

Γd(L)
(13)

where Σi is the covariance matrix of the ith component, and
Γd(L) is the normalization factor given by (4). Let |Σ|min

denote the minimum determinant, |Σ|min = min({|Σi|, i =
1, · · · ,K}), and ρi = |Σi|/|Σ|min ≥ 1, then the Mellin
transform can be reformulated as

φ(s) =

(
K∑
i=1

wiρ
s−d
i

)
|Σ|s−dminΓd(L+ s− d)

Γd(L)
. (14)

According to (8), the log-cumulants can be calculated as

κ1 = ψ
(0)
d (L) + β1 + ln |Σ|min (15)

κv>1 = ψ
(v−1)
d (L) + βv (16)

where ψ
(v−1)
d (L) is the multivariate extension of the

polygamma function due to the multilook, and βv is the result
from the mixture which can be solved recursively by

βv = rv −
v−1∑
k=1

(
v − 1

k − 1

)
βkrv−k (17)

with rv =
∑K

i=1 wi(ln ρi)
v .

In the case of two mixing components, we have rv =
w1(ln ρ1)v + w2(ln ρ2)v , and either ρ1 or ρ2 is equal to 1
according to their definition. Ignoring the subscript, rv is
reduced to w(ln ρ)v , and the log-cumulants of the first several
orders are

κ2 = ψ
(1)
d (L) + w(1− w)(ln ρ)2

κ3 = ψ
(2)
d (L) + w(1− w)(1− 2w)(ln ρ)3 (18)

κ4 = ψ
(3)
d (L) + w(1− w)(1− 6w + 6w2)(ln ρ)4.
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TABLE I
PRODUCT MODELS AND LOG-CUMULANTS

Model Texture Distribution Log-Cumulants of vth Order

Wishart p(τ) = δ(τ − 1)
κ1 = ψ

(0)
d (L) + ln |Σ| − d lnL = C

κv>1 = ψ
(v−1)
d (L)

K p(τ ;α) = 1
Γ(α)

(ατ)α

τ
exp(−ατ) κ1 = C + d

(
ψ(0)(α)− lnα

)
κv>1 = ψ

(v−1)
d (L) + dvψ(v−1)(α)

G0 p(τ ;λ) = 1
Γ(λ)

(λ−1)λ

τλ+1 exp
(
−λ−1

τ

) κ1 = C + d
(
−ψ(0)(λ) + ln(λ− 1)

)
κv>1 = ψ

(v−1)
d (L) + dv(−1)vψ(v−1)(λ)

Kummer-U p(τ ; ξ, ζ) =
Γ(ξ+ζ)

Γ(ξ)Γ(ζ)
ξ
ζ−1

(
ξ
ζ−1

τ
)ξ−1 (

ξ
ζ−1

τ + 1
)−ξ−ζ κ1 = C + d

(
ψ(0)(ξ)− ψ(0)(ζ) + ln(ζ − 1)− ln ξ

)
κv>1 = ψ

(v−1)
d (L) + dv

(
ψ(v−1)(ξ) + (−1)vψ(v−1)(ζ)

)
W p(τ ; ξ, ζ) =

Γ(ζ)
Γ(ξ)Γ(ζ−ξ)

ξ
ζ

(
ξ
ζ
τ
)ξ−1 (

1− ξ
ζ
τ
)ζ−ξ−1

κ1 = C + d
(
ψ(0)(ξ)− ψ(0)(ζ) + ln ζ − ln ξ

)
ξ < ζ, τ ∈ [0, ζ

ξ
] κv>1 = ψ

(v−1)
d (L) + dv

(
ψ(v−1)(ξ)− ψ(v−1)(ζ)

)
M p(τ ; ξ, ζ) =

Γ(ζ)
Γ(ξ)Γ(ζ−ξ)

ζ−1
ξ−1

(
ζ−1
ξ−1

τ
)−ζ (

ζ−1
ξ−1

τ − 1
)ζ−ξ−1

κ1 = C + d
(
−ψ(0)(ξ) + ψ(0)(ζ) + ln(ξ − 1)− ln(ζ − 1)

)
ξ ≤ ζ, τ ≥ ξ−1

ζ−1
κv>1 = ψ

(v−1)
d (L) + dv(−1)v

(
ψ(v−1)(ξ)− ψ(v−1)(ζ)

)
Note: ψ(v)(L) =

dv+1 ln Γ(L)

dLv+1 is the ordinary polygamma function, and ψ(v)
d (L) =

∑L−1
i=0 ψ(v)(L− i) is the multivariate extension [9].

By changing the mixing proportions through w, the log-
cumulants of the second order and the third order cover the
whole κ2-κ3 plane, which has the same effect as by changing
the texture distribution of the product model, as shown in Fig-
ure 1a. However, they represent two rather different scattering
scenarios, and there is a need to distinguish them.

Denote the log-cumulants of the product model by κv
whereas those of the finite mixture model by κ̃v to avoid
confusion. When there is an ambiguity between the product
model and the finite mixture model, that is κ̃2 = κ2 and
κ̃3 = κ3, the difference of the fourth order log-cumulant can
be calculated from (18)

f = κ̃4 − κ4 =
k2

3 − 2k3
2 − k2k4

k2
. (19)

Here kv = κv − ψ
(v−1)
d (L). For all the product models in

Table I, it can be shown numerically that f ≤ 0 holds for all
the possible values of distribution parameters. Therefore, if we
plot the log-cumulants of the three orders in a 3D space, the
result from the finite mixture models will be always below that
from the product models, as shown in Figure 1b, where the
blue surface represents the log-cumulants of the product model
and the red and green lines represent examples of mixtures of
two components. This 3D diagram is called log-cumulant cube
for simplicity.

To determine whether the product model or the finite
mixture model is better for the testing data, a simple approach
based on the estimation variance is proposed. By the central
limit theorem, the estimation κ̂4 is Gaussian distributed when
the sample size N is large, with variance [15]

σ2 =
1

N

[
κ8 + 16κ2κ6 + 48κ3κ5 + 34κ2

4

+72κ2
2κ4 + 144κ2κ

2
3 + 24κ4

2

]
.

(20)

Therefore, a test statistic to quantitatively evaluate the fit of a
product model to the data can be defined as

T = κ̂4 − κ4 (21)

(a) (b)

Fig. 1. The log-cumulant diagram and log-cumulant cube. (a) Log-cumulant
diagram. The product models shown in Table I cover the whole diagram. The
finite mixture model could also cover the whole diagram by changing the
mixing proportions. (b) Log-cumulant cube. Two mixtures (the red line and
green line) lie below the blue surface representing the product models.

where κ4 is calculated from the product model distribution, of
which the parameters are estimated using κ̂2 and κ̂3 [9]. The
absolute value |T | can be viewed as the vertical distance from a
point representing the estimated statistics to the product model
surface in the log-cumulant cube. If |T | ≤ σ, we can justify
that the product model is appropriate for the data, otherwise,
the choice of the finite mixture model is preferable.

III. EXPERIMENTS

The log-cumulants are tested on both simulated [14] and
real SAR data. In the first simulation, we mix two Wishart
distributed targets with different proportions. The covariance
matrix of the first type is given by (22), which represents
an X-Bragg scattering surface with a moderate roughness
and a moisture of 40% [16]. The other covariance matrix is
given by (23), representing simple volume scattering. For each
covariance matrix, 10000 samples are simulated.

Cxbragg =

 1.41 0 1.89− 0.05j
0 0.08 0

1.89 + 0.05j 0 2.57

 (22)
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(a) (b)

Fig. 2. The log-cumulants of the mixture of 2 components as well as mixture
of 3 components. (a) Mixture of 2 targets (Cxbragg - Cvol). The point
clouds representing different mixtures lie below the product model surface.
(b) Mixture of 3 targets (Cxbragg-Cvol-Creal). Mixture of 3 targets also
have κ4 smaller than the product models that have the same κ2 and κ3.

Cvol =
1

8

3 0 1
0 2 0
1 0 3

 (23)

Log-cumulants calculated from the simulated data using the
bootstrap method [9] are shown in Figure 2a. The result is
in agreement with the description of the log-cumulants of the
finite mixture model in the previous section, where the sample
log-cumulants assume a manifold similar to those in Figure 1b.
Mixture of targets can be easily discriminated from the product
model by the fourth order log-cumulants κ4.

Mixtures of three targets are also simulated, with an addi-
tional covariance matrix given by (24), which is estimated
from a forest area of an AirSAR data acquired over the
Netherlands

Creal = 10−3 ×

 161 −7− 4j 39− j
−7 + 4j 82 −4 + 4j
39 + j −4− 4j 100

 . (24)

Again, the proportions of the mixing components are changed
to see their effect on the log-cumulants. It demonstrates again
that the mixture of targets have κ̃4 smaller than κ4 of the
product model for the same κ2 and κ3 as shown in Figure 2b.

The κ2 and κ3 are frequently employed to determine the
texture distribution of SAR data. However, when the data
are very heterogeneous, the use of only the κ2 and κ3 is
not enough, as the data may be also a mixture of different
targets. To show this, a pure target following the Kummer-U
distribution, the mixture of two targets, and the mixture of
three targets are simulated, each containing 10000 samples.
As shown in Figure 3a, all the simulated data have similar
values of κ2 and κ3. In this case, wrong conclusions will be
drawn from the log-cumulant diagram, as the discrete mixtures
will be interpreted as Kummer-U distributed data. Using the
log-cumulant cube, the mixtures are distinguished from the
pure target by the κ4, see Figure 3b. This is also validated by
the quantitative assessment as shown in Table II, where the
mixtures have |T | larger than σ.

The method is also tested on ALOS-2 High-sensitive Full-
Pol mode data, which is acquired over Barcelona (Spain)
in March 2015. The original data are in single-look com-
plex format with processing level 1.1 and spatial resolution
3.49m × 3.84m (Range × Azimuth). Before calculating the
log-cumulants, a multilook process is applied using a 5 × 5
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Fig. 3. The use of κ4 to distinguish texture from mixture. (a) Log-cumulant
diagram. Both textured data and mixtures produce the similar κ2 and κ3. (b)
Log-cumulant cube. The textured data and mixtures have different κ4.

TABLE II
QUANTITATIVE ASSESSMENT ON SIMULATED DATA

Test κ̂4 κ4 |T | σ2 σ

Pure 0.2772 0.3910 0.1138 0.0841 0.2900
Mixture 2 -7.0766 0.3863 7.4629 0.0827 0.2876
Mixture 3 -3.7337 0.3982 4.1319 0.0861 0.2934

sliding window. The estimated equivalent number of looks is
14.46. Several regions of interest (ROI) over the urban area
and sea area are tested, each covers 20× 20 pixels.

The results are shown in Figure 4. According to the log-
cumulant diagram, the urban areas could be modeled by
different distributions, depending on the composition of the
area. For instance, the area with lots of trees (ROI 4-Red)
follows a K-distribution, the area with tall apartments (ROI
2-Cyan, 3-Black) follows a Kummer-U distribution, and area
with short houses (ROI 1-Blue) can be modeled by a G0-
distribution. The sea area is very homogeneous, which can
be modeled by the Wishart distribution. However, the log-
cumulant cube shows that the product model is not appropriate
for some urban areas. There are two ROIs (3-Black, 4-Red)
producing a κ4 smaller than 0, which is far below the surface
representing the product model. Two ROIs (1-Blue, 2-Cyan)
have part of points above the product model surface as well as
part below it, and the quantitative assessment shows that they
can be modeled by product models, see Table III. Note that the
differences between |T | and σ of the ROI 3-Black and ROI 4-
Red are not so significant as those of the mixtures in Table II,
the main reason is that the sample size here is 400, which gives
a larger estimation variance. In order to increase accuracy,
additional experiments with more pixels are necessary in the
future work.

IV. CONCLUSIONS

Higher order statistics are important to characterize PolSAR
data, but there is little knowledge about how to make use of
them. In this paper, we demonstrate that the fourth order log-
cumulant is able to discriminate between different scattering
scenarios. In particular, it can be physically interpreted to
distinguish the scattering from a single type of target from
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Fig. 4. The log-cumulants on ALOS2 data. (a) Regions of interest. (b) Log-cumulant diagram. ROIs show different statistics depending on their composition.
(c) Log-cumulant cube. It shows some ROIs can be modeled by product models, while others should be represented using finite mixture model as κ4 < 0.

TABLE III
QUANTITATIVE ASSESSMENT ON ALOS-2 DATA

ROI κ̂4 κ4 |T | σ2 σ

1-Blue 9.7922 9.4141 0.3781 116.8194 10.8083
2-Cyan 5.0368 3.1012 1.9356 27.0272 5.1988
3-Black -6.3097 15.6604 21.9701 376.4956 19.4035
4-Red -1.9748 3.4908 5.4656 22.5360 4.7472
5-Green -0.0097 0.0028 0.0125 2.3339× 10−4 0.0153

a mixture of targets. As demonstrated both theoretically and
experimentally, the mixture of two Wishart distributed com-
ponents will have a smaller fourth order log-cumulant than
the product model distributions with the same second and
third order log-cumulants. This result is also extended to
other mixtures covering more than two components. As a
consequence, it is important to use higher order statistics to
texture analysis of PolSAR data, especially when the data are
very heterogeneous, as it may result from a mixture of different
targets. A diagram combining the second, third and fourth
order log-cumulants is suggested to distinguish the product
model from finite mixture models, where texture distributions
from the Pearson’s family are considered. A future work is
to test non-Pearson distributions to model the texture, such as
the the generalized inverse Gaussian distribution.
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