

Improving Scalability of Task-Based Programs
Iulian Brumar, Marc Casas, Miquel Moretó

Barcelona Supercomputing Center
ibrumar@bsc.es, marc.casas@bsc.es, miquel.moreto@bsc.es

 Abstract- In a multi-core era, parallel programming allows further performance improvements, but with an important programmability cost. We envision that the best approach to parallel programming that can exceed the programability, parallelism, power, memory and reliability walls in Computer Architecture is a run-time approach. Many traditional computer architecture concepts can be revisited and applied at the runtime layer [4][5] in a completely transparent way to the programmer. The goal of this work is taking the computer architecture value prediction and data-prefetching concepts inside a runtime environment like OmpSs.

I.INTRODUCTION

The main objective of this work is researching if

Value Locality exists in state of the art OmpSs
programs and if we can use it in order to obtain
better execution times.

 Value locality is the property of a static
instruction to produce the same output given the
same input. If, let us say, a hardware sum
instruction it is executed twice in a loop, and both
times it gets exactly the same inputs, for its second
execution we already know that it will generate the
same output. However in hardware load
instructions, if the input is the same -the address-
we are not sure if it will produce the same result. In
this case we can only speculate, but even so it has
been shown that in many cases, static loads with
same input produce the same output [1].

 By using this knowledge, we can build a
predictor that will skip those instructions that can
be well predicted and feed the depending
instructions earlier with the predicted output.

 In this work we take this concept to a new
level for OmpSs tasks and we can distinguish two
sub-objectives:

 1) Analyze OmpSs benchmarks predictability.
We cannot prove that value locality will lead to
performance improvement for all possible
programs, but we can at least focus on state of the
art applications that have been ported to the OmpSs
programming model and see how can the value
locality concept be extended to our context.

 2) Find the ideal speedup using a value
locality predictor. This second objective it is a
consequence of the previous one. In the cases
where value locality exists, what performance

improvement can be achieved? We will answer this
question using simulation tools.

Notice that this is a best case approach in order

to discover the limits of the predictability we can
have. Also we have to mention that this work was
performed with fine grained tasks.

II.RELATED WORK

Since the first moments of computer architecture,

it has been seen that the dependencies between
instructions were a big wall against Instruction
Level Parallelism (ILP). A good example of
instruction level parallelism is the pipelined
processor, which is made of several hardware slots,
each one with a specific function. If there are two
slots in our processor, namely A and B, an
instruction must fulfill both stages in order to
complete its execution. We call this an instance of
ILP because the processor can have two
instructions running at the same time. If we hadn't
pipelined the processor every instruction would
have executed in time time(A) + time(B) but this
technique allows us to execute a instruction in time
max(time(A), time(B)).

 The problem is that the instruction in the first
stage (A) might need the result produced by the
oldest instruction in (B). In this case the newest
instruction will spend one more cycle in stage A
and this is a conflict caused by a Read After Write
RAW dependency. Even so, back to the 90's, the
architects came with a solution [1]. The idea was to
continue the execution of the instructions affected
by the conflict speculatively. In our example it
means that the instruction in stage A can complete
the process in this stage speculating the result of
the instruction in stage B, and check if the
supposition was correct in the next stage.

 Now a very good question would be: How can
processors predict well the results of hardware
instructions? That issue has been explored in the
papers of Lipasti [2] and Sazeides [1] which form
the motivational base of this work. In the first one
the predictor is implemented in two different
processor architectures (the out of order PowerPC
and the in order Alpha), while the second article
gives a more theoretical approach to the issue
explaining computational predictors (explained in
more detail in [3]) and context based predictors.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/46607495?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

III.SOME RESULTS
Figure 1 shows the performance improvement

for the Jacobi, Blackscholes and CheckSparseLU
benchmarks.

Fig. 1. Performance improvement of Jacobi, Blackscholes
and CheckSparseLU.

As we were mentioning in the introduction, those
results are obtained using very small task
granularities. Additionally, in those three
benchmarks, for the same input, the same output is
guaranteed to be produced (unlike some programs
that don’t specify all the data used in their
dependencies). For more details on the executions
see Table 1. Those speedups are obtained via
simulation with TaskSim.

TABLE I
BENCHMARKS CHARACTERISTICS

 Jacobi Blackscholes CheckSparseLU
Num. Tasks 64 1024 5000
Bytes/Task ~512 ~256 ~256
Predicted
Tasks

38 899 4800

IV.CONCLUSIONS AND FUTURE WORK

Although huge performance improvements can

be achieved using value prediction, we have
managed to get these results only at very fine
grained levels of parallelism. As part of the same
project we have developed a value predictor
integrated in the OmpSs runtime together with
recovery schemes and data prefetching techniques
in case of missprediction.

ACKNOWLEDGMENT

This work has been partially supported by the

Spanish Ministry of Science and Innovation under
grant TIN2015-65316-P, the HiPEAC Network of
Excellence, and by the European Research Council
under the European Union's 7th FP, RoMoL ERC
Advanaced Grant Agreement number 321253. M.
Moreto has been partially supported by the
Ministry of Economy and Competitiveness under
Juan de la Cierva postdoctoral fellowship number
JCI-2012-15047. M. Casas is supported by the
Secretary for Universities and Research of the
Ministry of Economy and Knowledge of the
Government of Catalonia and the Cofund
programme of the Marie Curie Actions of the 7th
R&D Framework Programme of the European
Union (Contract 2013 BP_B 00243).

REFERENCES

[1] SAZEIDES, Yiannakis; SMITH, James E. “The predictability of data values”. En Microarchitecture, 1997. Proceedings., Thirtieth Annual IEEE/ACM International Symposium on. IEEE, 1997. p. 248-258. [2] LIPASTI, Mikko H.; WILKERSON, Christopher B.; SHEN, John Paul. “Value locality and load value prediction”. ACM SIGOPS Operating Systems Review, 1996, vol. 30, no 5, p. 138-147. [3] LIPASTI, Mikko H.; SHEN, John Paul. Exceeding the dataflow limit via value prediction. En Proceedings of the 29th annual ACM/IEEE international symposium on Microarchitecture. IEEE Computer Society, 1996. p. 226-237. [4] Marc Casas, Miquel Moreto, Lluc Alvarez, Emilio Castillo, Dimitrios Chasapis, Timothy Hayes, Luc Jaulmes, Oscar Palomar, Osman Unsal, Adrian Cristal, Eduard Ayguade, Jesus Labarta, and Mateo Valero. Runtime-aware architectures. In Euro-Par, pages 16–27. 2015. [5] Mateo Valero, Miquel Moreto, Marc Casas, Eduard Ayguade, and Jesus Labarta. “Runtime-aware architectures: A first approach.” International Journal on Supercomputing Frontiers and Innovations, 1(1):29–44, June 2014.

