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 Abstract-  In a multi-core era, parallel programming allows further performance improvements, but with an important programmability cost. We envision that the best approach to parallel programming that can exceed the programability, parallelism, power, memory and reliability walls in Computer Architecture is a run-time approach.  Many traditional computer architecture concepts can be revisited and applied at the runtime layer [4][5] in a completely transparent way to the programmer. The goal of this work is taking the computer architecture value prediction and data-prefetching concepts inside a runtime environment like OmpSs. 
 

I.INTRODUCTION 
 
The main objective of this work is researching if 

Value Locality exists in state of the art OmpSs 
programs and if we can use it in order to obtain 
better execution times. 

    Value locality is the property of a static 
instruction to produce the same output given the 
same input. If, let us say, a hardware sum 
instruction it is executed twice in a loop, and both 
times it gets exactly the same inputs, for its second 
execution we already know that it will generate the 
same output. However in hardware load 
instructions, if the input is the same -the address- 
we are not sure if it will produce the same result. In 
this case we can only speculate, but even so it has 
been shown that in many cases, static loads with 
same input produce the same output [1].  

    By using this knowledge, we can build a 
predictor that will skip those instructions that can 
be well predicted and feed the depending 
instructions earlier with the predicted output. 

    In this work we take this concept to a new 
level for OmpSs tasks and we can distinguish two 
sub-objectives: 

    1) Analyze OmpSs benchmarks predictability. 
We cannot prove that value locality will lead to 
performance improvement for all possible 
programs, but we can at least focus on state of the 
art applications that have been ported to the OmpSs 
programming model and see how can the value 
locality concept be extended to our context. 

    2) Find the ideal speedup using a value 
locality predictor. This second objective it is a 
consequence of the previous one. In the cases 
where value locality exists, what performance 

improvement can be achieved? We will answer this 
question using simulation tools.  

 
Notice that this is a best case approach in order 

to discover the limits of the predictability we can 
have. Also we have to mention that this work was 
performed with fine grained tasks. 

 
II.RELATED WORK 

 
Since the first moments of computer architecture, 

it has been seen that the dependencies between 
instructions were a big wall against Instruction 
Level Parallelism (ILP). A good example of 
instruction level parallelism is the pipelined 
processor, which is made of several hardware slots, 
each one with a specific function. If there are two 
slots in our processor, namely A and B, an 
instruction must fulfill both stages in order to 
complete its execution. We call this an instance of 
ILP because the processor can have two 
instructions running at the same time. If we hadn't 
pipelined the processor every instruction would 
have executed in time time(A) + time(B) but this 
technique allows us to execute a instruction in time 
max(time(A), time(B)). 

    The problem is that the instruction in the first 
stage (A) might need the result produced by the 
oldest instruction in (B). In this case the newest 
instruction will spend one more cycle in stage A 
and this is a conflict caused by a Read After Write 
RAW dependency. Even so, back to the 90's, the 
architects came with a solution [1]. The idea was to 
continue the execution of the instructions affected 
by the conflict speculatively. In our example it 
means that the instruction in stage A can complete 
the process in this stage speculating the result of 
the instruction in stage B, and check if the 
supposition was correct in the next stage. 

    Now a very good question would be: How can 
processors predict well the results of hardware 
instructions? That issue has been explored in the 
papers of Lipasti [2] and Sazeides [1] which form 
the motivational base of this work. In the first one 
the predictor is implemented in two different 
processor architectures (the out of order PowerPC 
and the in order Alpha), while the second article 
gives a more theoretical approach to the issue 
explaining computational predictors (explained in 
more detail in [3]) and context based predictors. 
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III.SOME RESULTS 
Figure 1 shows the performance improvement 

for the Jacobi, Blackscholes and CheckSparseLU 
benchmarks.  

Fig. 1.  Performance improvement of Jacobi, Blackscholes 
and CheckSparseLU.  

As we were mentioning in the introduction, those 
results are obtained using very small task 
granularities. Additionally, in those three 
benchmarks, for the same input, the same output is 
guaranteed to be produced (unlike some programs 
that don’t specify all the data used in their 
dependencies).  For more details on the executions 
see Table 1. Those speedups are obtained via 
simulation with TaskSim. 

TABLE I 
BENCHMARKS CHARACTERISTICS 

 Jacobi Blackscholes CheckSparseLU 
Num. Tasks 64 1024 5000 
Bytes/Task ~512 ~256 ~256 
Predicted 
Tasks 

38 899 4800 

 
IV.CONCLUSIONS AND FUTURE WORK 
 
Although huge performance improvements can 

be achieved using value prediction, we have 
managed to get these results only at very fine 
grained levels of parallelism. As part of the same 
project we have developed a value predictor 
integrated in the OmpSs runtime together with 
recovery schemes and data prefetching techniques 
in case of missprediction. 
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