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 Abstract-Current high performance computing architectures are composed of large shared memory NUMA nodes, among other components. Such nodes are becoming increasingly complex as they have several NUMA domains with different access latencies depending on the core where the access is issued. In this work, we propose techniques based on graph partitioning to efficiently mitigate the negative impact of NUMA effects on parallel applications performance, which are able to improve the execution time of OpenMP parallel codes 2.02× times on average when run on architectures with strong NUMA effects. 
 

I. INTRODUCTION 
 
Since the end of Dennard scaling and the 

subsequent stagnation of the CPU clock frequency, 
computing infrastructures can only increase their 
peak performance via augmenting their number of 
computing units. In the High Performance 
Computing (HPC) context, this trend has brought 
an increase in the hardware components count as 
well as in the heterogeneity among them. As such, 
shared memory nodes, which are fundamental 
building blocks of HPC infrastructures, are 
experimenting an increase in the number of sockets 
they integrate. Besides the benefits in terms of a 
unified flat memory address space and large core 
counts, integrating many sockets into the same 
node exacerbates its Non-Uniform Memory Access 
(NUMA) effects, which can become a serious 
performance bottleneck if they are not properly 
handled.  

To mitigate NUMA effects, techniques 
consisting in migrating threads, memory pages or 
both already exist [1]–[3]. These techniques aim to 
move either computation or data to reduce memory 
access time. Although these techniques are 
effective, they do not exploit any kind of 
application-specific information to predict accesses 
to remotely allocated data before a particular 
software component starts displaying this behavior. 
Oppositely, other approaches transfer the NUMA 
management responsibility to the programmer 
exploiting information at the application source 
code level to carry out NUMA-aware scheduling 
decisions [4], [5]. However, these approaches 

require significant code refactoring and 
programmer effort to be effective. 

In this work, we show a novel approach to 
overcome the limitations of already existing 
methods for task-based programming models. Our 
techniques automatically mitigate NUMA effects 
on multiple NUMA-domain nodes without any 
kind of specific programmer intervention or 
application source code change. Our approach 
leverages runtime system metadata to exploit 
control and data dependences between the serial 
parts of parallel workloads and optimally schedule 
them in the context of a multi-socket NUMA node. 

 
II.PARTITIONING THE TASK 

DEPENDENCY GRAPH (TDG) TO MITIGATE 
NUMA EFFECTS 

 
A. Dependence Easy Placement (DEP) 
Under the Dependence Easy Placement (DEP) 

policy, tasks are scheduled to the socket where 
most of their data dependences are allocated. To 
figure out which specific socket contains a 
particular block of data, the runtime system keeps a 
table to map blocks to sockets. The first address of 
a block is used as its identifier. Tasks that have no 
inputs, i.e., initialization tasks, are assigned to 
sockets via a round-robin fashion if most of its 
output is not allocated yet. In our approach there is 
a parameter to set the stride of the round-robin 
approach. When the task to be scheduled is not an 
initialization task and there is a tie between two or 
more sockets in terms of the tasks’ dependences 
they contain, the socket is randomly chosen.  

 
B. Runtime Informed Partitioning (RIP) 
Under the Runtime Informed Partitioning (RIP) 

policy, task scheduling decisions are based on 
graph partitioning techniques. The TDG is built at 
runtime by leveraging information in terms of task 
dependences. The graph is updated every time new 
tasks are instantiated and partitioned once the 
execution goes through a barrier point or a limit in 
terms of the total number of tasks contained in the 
graph is reached, which we call the window size 
limit. The graph partitioning algorithm uses the 
TDG as input, weights its edges depending on the 
amount of bytes they represent and assigns tasks to 
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Fig. 1.  Speedup results in an SGI Altix UV100 using 2 sockets. For Jacobi using SA, DEP, RIP-DEP and RIP-SP the values are 3.3; for NStream using SA, DEP 
and RIP-DEP the values are 4.1. 

a particular socket taking into account the machine 
NUMA distances contained in the firmware. Once 
they are assigned to a socket, they are moved to the 
corresponding queue. For those tasks that are 
assigned to a given socket before they are ready to 
run, they are pushed to the correct queue once their 
dependences are met, without getting to the 
temporary queue at all. Once the initial subgraph 
has been partitioned, we consider three possible 
options to proceed: 

1)RIP with Dependence Easy Placement (RIP-
DEP): The RIP-DEP technique consists in 
propagating the partition obtained from the initial 
subgraph by taking into account where the tasks’ 
input data resides. As such, if most of the input 
data of a given task resides in a particular socket, 
this task is assigned to be run on that socket. This 
technique is close to the DEP approach, but while 
DEP applies simple round-robin mechanisms, RIP-
DEP partitions the graph. 

2)RIP with Socket Propagation (RIP-SP): RIP-
SP propagates the partition obtained from the initial 
subgraph by considering the placement of the 
predecessors of a particular task and weighting 
them according to the total amount of data they 
transfer to the targeted task. As such, the socket 
where most of the predecessors were executed 
tends to be chosen by the RIP-SP policy. 

3)RIP with Moving Window (RIP-MW): In this 
case, the graph partitioner is run many times 
throughout the execution of the program. Once the 
subgraph contains a particular amount of tasks, the 
window size, or a barrier point is reached, the 
partitioning algorithm is run. Once the partitioner 
finishes its job, the oldest tasks are flushed from 
the graph and a new subgraph starts getting built, 
with an intersection between consecutive windows. 
This intersection is considered to allow the graph 
partitioner to exploit the already made partitions to 
generate the new ones, which is an optimization 
that aims at reducing the overhead. 

 
I. EVALUATION 

 

We evaluate the performance of the proposed 
mechanisms considering 8 different applications 
against two schedulers from the Nanos++ runtime: 

First-In First-Out (FIFO) task scheduler that is 
unaware of data location. This is the baseline. 

Socket Aware (SA) scheduler, which is driven by 
annotations at the source code level.  

The results for an SGI Altix UV100 machine, 
with Intel Westmere-EX processors, are shown in 
Fig. 1. On average, DEP achieves speedups of 
1.98× over the FIFO approach, while RIP-DEP, 
RIP-SP and RIP-MW achieve improvements of 
2.02×, 1.28× and 1.09× respectively. 

The strong NUMA effects of the Altix system 
allow the RIP-DEP technique to clearly beat the 
DEP approach due to the excellent speedups it 
achieves when dealing with the Gauss-Seidel and 
the Red-Black applications. The DEP technique is 
not able to emulate the optimal partition. In 
contrast, the partition obtained by RIP-DEP is close 
to the best possible one, which allows the RIP-DEP 
technique to achieve speedups of 2.01× in Gauss-
Seidel and 2.08× in Red-Black, very close to the 
ones achieved by SA, which is 2.05× faster than 
FIFO in both cases. 
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