

109

Using Graph Partitioning to Accelerate Task-Based Parallel
Applications

Isaac Sánchez Barrera, Marc Casas, Miquel Moretó
 Eduard Ayguadé, Jesús Labarta, Mateo Valero

Barcelona Supercomputing Center – Centro Nacional de Supercomputación (BSC-CNS), Barcelona, ES
{isaac.sanchez, marc.casas, miquel.moreto, eduard.ayguade, jesus.labarta, mateo.valero}@bsc.es

 Abstract-Current high performance computing architectures are composed of large shared memory NUMA nodes, among other components. Such nodes are becoming increasingly complex as they have several NUMA domains with different access latencies depending on the core where the access is issued. In this work, we propose techniques based on graph partitioning to efficiently mitigate the negative impact of NUMA effects on parallel applications performance, which are able to improve the execution time of OpenMP parallel codes 2.02× times on average when run on architectures with strong NUMA effects.

I. INTRODUCTION

Since the end of Dennard scaling and the

subsequent stagnation of the CPU clock frequency,
computing infrastructures can only increase their
peak performance via augmenting their number of
computing units. In the High Performance
Computing (HPC) context, this trend has brought
an increase in the hardware components count as
well as in the heterogeneity among them. As such,
shared memory nodes, which are fundamental
building blocks of HPC infrastructures, are
experimenting an increase in the number of sockets
they integrate. Besides the benefits in terms of a
unified flat memory address space and large core
counts, integrating many sockets into the same
node exacerbates its Non-Uniform Memory Access
(NUMA) effects, which can become a serious
performance bottleneck if they are not properly
handled.

To mitigate NUMA effects, techniques
consisting in migrating threads, memory pages or
both already exist [1]–[3]. These techniques aim to
move either computation or data to reduce memory
access time. Although these techniques are
effective, they do not exploit any kind of
application-specific information to predict accesses
to remotely allocated data before a particular
software component starts displaying this behavior.
Oppositely, other approaches transfer the NUMA
management responsibility to the programmer
exploiting information at the application source
code level to carry out NUMA-aware scheduling
decisions [4], [5]. However, these approaches

require significant code refactoring and
programmer effort to be effective.

In this work, we show a novel approach to
overcome the limitations of already existing
methods for task-based programming models. Our
techniques automatically mitigate NUMA effects
on multiple NUMA-domain nodes without any
kind of specific programmer intervention or
application source code change. Our approach
leverages runtime system metadata to exploit
control and data dependences between the serial
parts of parallel workloads and optimally schedule
them in the context of a multi-socket NUMA node.

II.PARTITIONING THE TASK

DEPENDENCY GRAPH (TDG) TO MITIGATE
NUMA EFFECTS

A. Dependence Easy Placement (DEP)
Under the Dependence Easy Placement (DEP)

policy, tasks are scheduled to the socket where
most of their data dependences are allocated. To
figure out which specific socket contains a
particular block of data, the runtime system keeps a
table to map blocks to sockets. The first address of
a block is used as its identifier. Tasks that have no
inputs, i.e., initialization tasks, are assigned to
sockets via a round-robin fashion if most of its
output is not allocated yet. In our approach there is
a parameter to set the stride of the round-robin
approach. When the task to be scheduled is not an
initialization task and there is a tie between two or
more sockets in terms of the tasks’ dependences
they contain, the socket is randomly chosen.

B. Runtime Informed Partitioning (RIP)
Under the Runtime Informed Partitioning (RIP)

policy, task scheduling decisions are based on
graph partitioning techniques. The TDG is built at
runtime by leveraging information in terms of task
dependences. The graph is updated every time new
tasks are instantiated and partitioned once the
execution goes through a barrier point or a limit in
terms of the total number of tasks contained in the
graph is reached, which we call the window size
limit. The graph partitioning algorithm uses the
TDG as input, weights its edges depending on the
amount of bytes they represent and assigns tasks to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/46607494?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

BSC 3rd International Doctoral Symposium 2016

Poster

Fig. 1. Speedup results in an SGI Altix UV100 using 2 sockets. For Jacobi using SA, DEP, RIP-DEP and RIP-SP the values are 3.3; for NStream using SA, DEP
and RIP-DEP the values are 4.1.

a particular socket taking into account the machine
NUMA distances contained in the firmware. Once
they are assigned to a socket, they are moved to the
corresponding queue. For those tasks that are
assigned to a given socket before they are ready to
run, they are pushed to the correct queue once their
dependences are met, without getting to the
temporary queue at all. Once the initial subgraph
has been partitioned, we consider three possible
options to proceed:

1)RIP with Dependence Easy Placement (RIP-
DEP): The RIP-DEP technique consists in
propagating the partition obtained from the initial
subgraph by taking into account where the tasks’
input data resides. As such, if most of the input
data of a given task resides in a particular socket,
this task is assigned to be run on that socket. This
technique is close to the DEP approach, but while
DEP applies simple round-robin mechanisms, RIP-
DEP partitions the graph.

2)RIP with Socket Propagation (RIP-SP): RIP-
SP propagates the partition obtained from the initial
subgraph by considering the placement of the
predecessors of a particular task and weighting
them according to the total amount of data they
transfer to the targeted task. As such, the socket
where most of the predecessors were executed
tends to be chosen by the RIP-SP policy.

3)RIP with Moving Window (RIP-MW): In this
case, the graph partitioner is run many times
throughout the execution of the program. Once the
subgraph contains a particular amount of tasks, the
window size, or a barrier point is reached, the
partitioning algorithm is run. Once the partitioner
finishes its job, the oldest tasks are flushed from
the graph and a new subgraph starts getting built,
with an intersection between consecutive windows.
This intersection is considered to allow the graph
partitioner to exploit the already made partitions to
generate the new ones, which is an optimization
that aims at reducing the overhead.

I. EVALUATION

We evaluate the performance of the proposed
mechanisms considering 8 different applications
against two schedulers from the Nanos++ runtime:

First-In First-Out (FIFO) task scheduler that is
unaware of data location. This is the baseline.

Socket Aware (SA) scheduler, which is driven by
annotations at the source code level.

The results for an SGI Altix UV100 machine,
with Intel Westmere-EX processors, are shown in
Fig. 1. On average, DEP achieves speedups of
1.98× over the FIFO approach, while RIP-DEP,
RIP-SP and RIP-MW achieve improvements of
2.02×, 1.28× and 1.09× respectively.

The strong NUMA effects of the Altix system
allow the RIP-DEP technique to clearly beat the
DEP approach due to the excellent speedups it
achieves when dealing with the Gauss-Seidel and
the Red-Black applications. The DEP technique is
not able to emulate the optimal partition. In
contrast, the partition obtained by RIP-DEP is close
to the best possible one, which allows the RIP-DEP
technique to achieve speedups of 2.01× in Gauss-
Seidel and 2.08× in Red-Black, very close to the
ones achieved by SA, which is 2.05× faster than
FIFO in both cases.

ACKNOWLEDGMENT

This work has been supported by the RoMoL

ERC Advanced Grant (GA 321253), by the
European HiPEAC Network of Excellence and by
the Spanish Ministry of Economy and
Competitiveness under contract Computación de
Altas Prestaciones VII (TIN2015-65316-P). M.
Casas has been partially supported by the Secretary
for Universities and Research of the Ministry of
Economy and Knowledge of the Government of
Catalonia and the Co-fund programme of the Marie
Curie Actions of the European Union’s 7th FP
(contract 2013 BP B 00243). M. Moretó has been
partially supported by the Ministry of Economy
and Competitiveness under Juan de la Cierva
postdoctoral fellowship number JCI-2012-15047.

BSC 3rd International Doctoral Symposium 2016

Poster

REFERENCES

[1] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize, B. Lepers, V. Quema, and M. Roth, “Traffic Management: A Holistic Approach to Memory Placement on NUMA Systems,” in Proceedings of the Eighteenth International Conference on Architectural Support for Programming Languages and Operating Systems, 2013, pp. 381–394. doi:10.1145/2451116.2451157 [2] M. Diener, E. H. M. Cruz, P. O. A. Navaux, A. Busse, and H.-U. Heiß, “kMAF: Automatic Kernel-level Management of Thread and Data Affinity,” in Proceedings of the 23rd International Conference on Parallel Architectures and Compilation, 2014, pp. 277–288. doi:10.1145/2628071.2628085 [3] M. M. Tikir and J. K. Hollingsworth, “Hardware monitors for dynamic page migration,” J. Parallel Distrib. Comput.,

vol. 68, no. 9, pp. 1186–1200, 2008. doi:10.1016/j.jpdc.2008.05.006 [4] R. Al-Omairy, G. Miranda, H. Ltaief, R. M. Badia, X. Martorell, J. Labarta, and D. Keyes, “Dense Matrix Computations on NUMA Architectures with Distance-Aware Work Stealing,” Supercomput. Front. Innov., vol. 2, no. 1, pp. 49–72, Jan. 2015. doi:10.14529/jsfi150103 [5] R. Vidal, M. Casas, M. Moretó, D. Chasapis, R. Ferrer, X. Martorell, E. Ayguadé, J. Labarta, and M. Valero, “Evaluating the impact of OpenMP 4.0 extensions on relevant parallel workloads,” in OpenMP: Heterogenous Execution and Data Movements: 11th International Workshop on OpenMP, IWOMP 2015, Aachen, Germany, October 1-2, 2015, Proceedings, vol. 9342, C. Terboven, B. R. de Supinski, P. Reble, B. M. Chapman, and M. S. Müller, Eds. Cham: Springer International Publishing, 2015, pp. 60–72. doi:10.1007/978-3-319-24595-9_5

