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Abstract- Heterogeneity, parallelization and vectorization 
are key techniques to improve the performance and energy 
efficiency of modern computing systems.   However, 
programming and maintaining code for these architectures 
poses   a huge challenge due to the ever-increasing 
architecture complexity.  Task-based environments hide most 
of this complexity, improving scalability and usage of the 
available resources.  In these environments, while there has 
been a lot of effort to ease parallelization and improve the 
usage of heterogeneous resources, vectorization has been 
considered a secondary objective. Furthermore, there has 
been a swift and unstoppable burst of vector architectures at 
all market segments, from embedded to HPC. Vectorization 
can no longer be ignored, but manual vectorization is 
tedious, error-prone, and not practical for the average 
programmer.  This work evaluates the feasibility of user-
directed vectorization in task-based applications.  Our 
evaluation is based on the OmpSs programming model, 
extended to support user-directed vectorization for different 
SIMD architectures (i.e.  SSE, AVX2, AVX512, etc). Results 
show that user-directed codes achieve manually-optimized 
code performance and energy efficiency with minimal code 
modifications, favoring portability across different SIMD 
architectures. 
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I.  INTRODUCTION 
 
While transistor shrinking allows to include additional 
features on the die, the increasing power density prevents the 
simultaneous   usage of all available resources. Instruction 
level parallelism (ILP) importance subsides, while data level 
parallelism (DLP) becomes a critical factor to improve the 
energy efficiency of microprocessors. Among other features, 
SIMD instructions have been gradually included in 
microprocessors for various market segments, from mobile to 

high performance computing (HPC).  Each new generation 
includes more sophisticated, powerful and flexible 
instructions. The higher investment in SIMD resources per 
core makes extracting the full computational power of these 
vector units more important than ever. 
From the programmers’ point of view, SIMD units can be 
exploited in several ways, including: a) compiler auto- 
vectorization, b) low-level intrinsics or assembly code and c) 
programming models/languages with explicit SIMD support. 
Auto-vectorization in compilers has   strong limitations in the 
analysis and code transformations phases that prevent an 
efficient extraction of SIMD parallelism in real applications. 
Low-level hardware-specific intrinsics enable developers to 
fine tune their applications by providing direct access to all of 
the SIMD features of the hardware. However, the use of 
intrinsics is time-consuming, tedious and error-prone even for 
advanced programmers. To facilitate the use of SIMD 
features, some programming models and languages have 
been extended with a new set of directives that allow 
programmers to guide the compiler in the vectorization 
process (e.g., OpenMP 4.0). This approach is high-level, 
orthogonal to the actual code and portable across different 
SIMD architectures. 
In this abstract, we evaluate the efficiency of an 
implementation of a user-directed vectorization proposal 
using a task-based   programming model. Our main 
contributions include: 
•  Development of a task-based version of a subset of 
benchmarks from the ParVec benchmark suite [2]. Due to 
space limitations we only show one of the six benchmarks we 
have ported. 
•  We present the code modifications necessary to 
generate a user-directed code version that achieves similar 
performance and energy results to those obtained with 
manual vectorization. 
•  We discuss our findings and propose improvements 
for both the manually vectorized versions and the user-
directed vectorization module 

 
II.  METHODOLOGY 

 
In this document we evaluate three versions of the codes, 
including: a) two manually-vectorized implementations, one 
based on pthreads and one based on the OmpSs programming 
model [4] (labelled pthreads and OmpSs, respectively), and 
b) a user-directed   vectorization (labelled U.D.).  Both user-
directed   and OmpSs   versions were developed for this 
document.  The user-directed code is compiled using the 
Mercurium source-to-source infrastructure. Mercurium’s 

vectorizer recognizes user annotations on the code to produce 
a SIMD version of the scalar code [1]. 
The evaluation platform is a dual-socket E5-2603v3 
processor running at 1.60GHz, with a total of 12 cores, 
30MB of L3 cache and 64GB of DDR3. We use PAPI to 
measure energy, L1D cache miss-rate and total instruction 
count.  The reported energy numbers account for both 
sockets. The system runs CentOS 6.5 with Nanox 0.7.12a as 
runtime for the OmpSs codes. 
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Fig. 1. Blackscholes runtime (Y axis) and speed-up 
(2nd Y axis 

 
Fig. 2. Blackscholes energy consumption (Y axis) 
and power (2nd Y axis) 
 

III.  EVALUATION 
 
This section shows performance and energy results 
for only one of the ParVec benchmarks [2] due to 
of space limitations. Execution times are shown in 
absolute numbers in order to compare performance 
between versions. In addition, speed-up is 
referenced to the scalar sequential 
combination of each version to show scalability 
when varying thread count and vector length. 
 
The blackscholes benchmark shows almost linear 
scalability with both thread count and vector length 
(Figure 1). This is mainly because of the high 
arithmetic intensity of the benchmark  

 
 

 
 
 
(computations per loaded data) and the low L1D 
cache miss-rate.  Instruction count is also reduced 
linearly with vector length, meaning that we are 
vectorizing most of the application code. 
Pthreads   and OmpSs versions have the 
BlkSchlsEqEuroNoDiv and CNDF functions 
vectorized manually. In addition, some of the data 
structures have been aligned. Furthermore, the 
user-directed version only requires a single 
directive per function and loop to vectorize all 50 
lines of code. 
As shown in Fig.  2, power dissipation remains 
approximately constant   in all SIMD versions. 
Intel platforms share both floating point registers 
and arithmetic units for scalar and SIMD 
instructions. While bit-toggling increases power 
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dissipation due to the extra vector length, the 
processor spends more time idle, waiting for data 
dependencies and memory operations, and thus 
dissipating similar average power independently of 
running scalar or SIMD code. Finally, it is worth 
mentioning that Nanos++ has an additional energy 
overhead when using one and two sockets. As 
threads spin while searching for work. In the 
Pthreads version, threads   use blocking in the 
synchronization mechanisms. 

 
IV.  CONCLUSIONS 

 
In this abstract, we present an evaluation in terms 
of performance and energy efficiency of user-
directed SIMD implementations using a task-based 
programming model. 
The application shows good performance 
scalability with vector length. The main reason for 
that is the reduction of executed instructions and 
memory accesses with respect to the scalar 
versions. Power dissipation remains constant when 
varying vector length.  The blackscholes 
benchmark running with 12 threads can achieve 
energy improvements up to 35x. User-directed 

codes achieve similar performance and energy 
savings to those obtained with hand-vectorized 
code, while making the code portable between 
architectures and saving many lines of intrinsics 
code. As a result, we can confirm that vectorization 
together with parallelization are key techniques to 
improve energy efficiency. 
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