

106

How Can We improve Energy Efficiency through User-directed
Vectorization and Task-based Parallelization?

Helena Caminal, Diego Caballero, Juan M. Cebrián, Roger Ferrer, Marc Casas, Miquel Moretó,
 Xavier Martorell and Mateo Valero

Barcelona Supercomputing Center

Abstract- Heterogeneity, parallelization and vectorization
are key techniques to improve the performance and energy
efficiency of modern computing systems. However,
programming and maintaining code for these architectures
poses a huge challenge due to the ever-increasing
architecture complexity. Task-based environments hide most
of this complexity, improving scalability and usage of the
available resources. In these environments, while there has
been a lot of effort to ease parallelization and improve the
usage of heterogeneous resources, vectorization has been
considered a secondary objective. Furthermore, there has
been a swift and unstoppable burst of vector architectures at
all market segments, from embedded to HPC. Vectorization
can no longer be ignored, but manual vectorization is
tedious, error-prone, and not practical for the average
programmer. This work evaluates the feasibility of user-
directed vectorization in task-based applications. Our
evaluation is based on the OmpSs programming model,
extended to support user-directed vectorization for different
SIMD architectures (i.e. SSE, AVX2, AVX512, etc). Results
show that user-directed codes achieve manually-optimized
code performance and energy efficiency with minimal code
modifications, favoring portability across different SIMD
architectures.

Keywords SIMD, OmpSs, Performance, Vectorization,
Energy Efficiency

I. INTRODUCTION

While transistor shrinking allows to include additional
features on the die, the increasing power density prevents the
simultaneous usage of all available resources. Instruction
level parallelism (ILP) importance subsides, while data level
parallelism (DLP) becomes a critical factor to improve the
energy efficiency of microprocessors. Among other features,
SIMD instructions have been gradually included in
microprocessors for various market segments, from mobile to

high performance computing (HPC). Each new generation
includes more sophisticated, powerful and flexible
instructions. The higher investment in SIMD resources per
core makes extracting the full computational power of these
vector units more important than ever.
From the programmers’ point of view, SIMD units can be
exploited in several ways, including: a) compiler auto-
vectorization, b) low-level intrinsics or assembly code and c)
programming models/languages with explicit SIMD support.
Auto-vectorization in compilers has strong limitations in the
analysis and code transformations phases that prevent an
efficient extraction of SIMD parallelism in real applications.
Low-level hardware-specific intrinsics enable developers to
fine tune their applications by providing direct access to all of
the SIMD features of the hardware. However, the use of
intrinsics is time-consuming, tedious and error-prone even for
advanced programmers. To facilitate the use of SIMD
features, some programming models and languages have
been extended with a new set of directives that allow
programmers to guide the compiler in the vectorization
process (e.g., OpenMP 4.0). This approach is high-level,
orthogonal to the actual code and portable across different
SIMD architectures.
In this abstract, we evaluate the efficiency of an
implementation of a user-directed vectorization proposal
using a task-based programming model. Our main
contributions include:
• Development of a task-based version of a subset of
benchmarks from the ParVec benchmark suite [2]. Due to
space limitations we only show one of the six benchmarks we
have ported.
• We present the code modifications necessary to
generate a user-directed code version that achieves similar
performance and energy results to those obtained with
manual vectorization.
• We discuss our findings and propose improvements
for both the manually vectorized versions and the user-
directed vectorization module

II. METHODOLOGY

In this document we evaluate three versions of the codes,
including: a) two manually-vectorized implementations, one
based on pthreads and one based on the OmpSs programming
model [4] (labelled pthreads and OmpSs, respectively), and
b) a user-directed vectorization (labelled U.D.). Both user-
directed and OmpSs versions were developed for this
document. The user-directed code is compiled using the
Mercurium source-to-source infrastructure. Mercurium’s

vectorizer recognizes user annotations on the code to produce
a SIMD version of the scalar code [1].
The evaluation platform is a dual-socket E5-2603v3
processor running at 1.60GHz, with a total of 12 cores,
30MB of L3 cache and 64GB of DDR3. We use PAPI to
measure energy, L1D cache miss-rate and total instruction
count. The reported energy numbers account for both
sockets. The system runs CentOS 6.5 with Nanox 0.7.12a as
runtime for the OmpSs codes.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/46607493?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

107

Fig. 1. Blackscholes runtime (Y axis) and speed-up
(2nd Y axis

Fig. 2. Blackscholes energy consumption (Y axis)
and power (2nd Y axis)

III. EVALUATION

This section shows performance and energy results
for only one of the ParVec benchmarks [2] due to
of space limitations. Execution times are shown in
absolute numbers in order to compare performance
between versions. In addition, speed-up is
referenced to the scalar sequential
combination of each version to show scalability
when varying thread count and vector length.

The blackscholes benchmark shows almost linear
scalability with both thread count and vector length
(Figure 1). This is mainly because of the high
arithmetic intensity of the benchmark

(computations per loaded data) and the low L1D
cache miss-rate. Instruction count is also reduced
linearly with vector length, meaning that we are
vectorizing most of the application code.
Pthreads and OmpSs versions have the
BlkSchlsEqEuroNoDiv and CNDF functions
vectorized manually. In addition, some of the data
structures have been aligned. Furthermore, the
user-directed version only requires a single
directive per function and loop to vectorize all 50
lines of code.
As shown in Fig. 2, power dissipation remains
approximately constant in all SIMD versions.
Intel platforms share both floating point registers
and arithmetic units for scalar and SIMD
instructions. While bit-toggling increases power

108

dissipation due to the extra vector length, the
processor spends more time idle, waiting for data
dependencies and memory operations, and thus
dissipating similar average power independently of
running scalar or SIMD code. Finally, it is worth
mentioning that Nanos++ has an additional energy
overhead when using one and two sockets. As
threads spin while searching for work. In the
Pthreads version, threads use blocking in the
synchronization mechanisms.

IV. CONCLUSIONS

In this abstract, we present an evaluation in terms
of performance and energy efficiency of user-
directed SIMD implementations using a task-based
programming model.
The application shows good performance
scalability with vector length. The main reason for
that is the reduction of executed instructions and
memory accesses with respect to the scalar
versions. Power dissipation remains constant when
varying vector length. The blackscholes
benchmark running with 12 threads can achieve
energy improvements up to 35x. User-directed

codes achieve similar performance and energy
savings to those obtained with hand-vectorized
code, while making the code portable between
architectures and saving many lines of intrinsics
code. As a result, we can confirm that vectorization
together with parallelization are key techniques to
improve energy efficiency.

REFERENCES

[1] D. L. Caballero de Gea, “PhD Thesis: SIMD@OpenMP: a

programming model approach to leverage SIMD features.”
[Online].Available:
http://www.tdx.cat/handle/10803/334171

[2] J. M. Cebrian, M. Jahre, and L. Natvig, “ParVec:
Vectorizing the PARSEC Benchmark Suite,” Computing,
pp. 1077–1100, 2015.

[3] Programming Models, BSC, “The Mercurium C/C++
Source-to-source Compiler Website.” [Online]. Available:
http://pm.bsc.es/projects/mcxx

[4] A. Duran et al., “OmpSs: A Proposal for Programming
Heterogeneous Multi-core Architetcures,” Parallel
Processing Letters, vol. 21, pp.173–193, Mar. 2011.

