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Abstract-In the low-end processor mobile market, power, 
energy and area budgets are significantly lower than in the 
server/desktop/lap-top/high-end mobile markets. It has been 
shown that vector processors are a highly energy-efficient 
way to increase performance but adding support for them 
incurs area and power overheads that could not be 
acceptable for low-end mobile processors. In this work, we 
propose an integrated vector-scalar design that mostly reuses 
scalar hardware to support the execution of vector 
instructions. The key element of the design is our proposed 
block-based model of execution that groups vector 
instructions to execute them in a coordinated manner. 
 

I. INTRODUCTION 
 

In the last 15 years, energy consumption and power 
dissipation have become crucial design concerns for almost 
all computer systems due to several reasons: for example, 
technology feature size scaling leads to higher power density 
and therefore to costly cooling. While power dissipation is 
critical for high-performance systems such as data centers 
due to large power usage, battery life is a primary concern for 
mobile systems. 

Driven with this goal, researchers have focused on 
improving performance in an energy-efficient way. Vector 
processors [1] are energy efficient architectures that yield 
high performance whenever there is enough data-level 
parallelism (DLP) [2]. Besides the long and successful 
history of vector processors in supercomputers, vector units 
have been adopted in designs of microprocessors [3, 4, 5]. 
Also, SIMD multimedia extensions [6, 7] are often included 
in modern microprocessors. Recent research on vector 
processors shows that they can be a good match even for 
applications from domains such as column-store databases 
[8]. The Xeon Phi is a recent massively parallel x86 
microprocessor designed by Intel and is based on the 
Larrabee [9] GPU, that contains a 512-bit SIMD vector 
processing unit in each core. 

This paper contributes a method to increase the 
performance of the low-power, low-end embedded systems 
in an energy-efficient way. The energy efficiency is 
accomplished by modifying a scalar core to execute vector 
instructions on the existing scalar infrastructure. In particular, 
we propose an integrated vector-scalar design that combines 
scalar and vector processing mostly using existing resources 
of an energy-efficient processor (in our evaluation 
environment, it is based on the ARM Cortex A7). In addition 
to a design that uses a conventional vector execution model, 
we also contribute a novel block-based model of execution 
for vector computational instructions. 

 
 

II. INTEGRATED DESIGN 

 
As a baseline, we use a scalar core based on the highly 

energy-efficient ARM Cortex-A7. It is an in-order, dual-issue 
processor that implements the ARM v7 architecture with an 
8-stage pipeline (gray blocks in Figure 1). 

In our proposed integrated vector-scalar design, we attempt 
to maximize the reuse of resources already present in the 
baseline scalar core (white blocks in Figure 1) while adding 
support for vector instructions. While the front-end of 
pipeline is the same (fetch and decode stages), in the back-
end we added two structures to support the execution of 
vector instructions on the scalar core: a vector register file, 
and a vector memory unit (blue blocks in Fig. 1). There is 
also additional logic that controls the execution of vector 
instructions: vector execution control logic (VECL), aliasing 
control logic (ACL) and chaining control logic (CCL). VECL 
is added in the issue stage to support the execution of 
computational vector instructions. ACL exchanges 
information between the vector memory and the data cache 
unit and forces scalar and vector memory instructions to be 
executed in-order. CCL is responsible for the execution of 
chained dependent computational instructions. 

 
Fig. 1. Block diagram of the integrated design. 

 
 

A. Execution of Vector Computational Instructions 
We study two alternatives for executing the vector 

computational instructions on the existing scalar FUs: 1) the 
One-By-One model of execution (OBO), in essence the 
classic vector execution model, in which every instruction is 
executed to completion, i.e. for all the operations of the 
vector; and 2) a novel execution model called Block-Based 
Execution (BBE). In this model, for a block of consecutive 
vector computational instructions, first all operations on the 
first element are executed, then the operations of the second 
element, and so on. Fig. 2 shows an example with a sequence 
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of vector instructions, illustrating the difference of the two 
execution models. For this example, we assume that vector 
instructions operate on floating-point data by using a single 
floating-point unit and a single data cache port. The first 
vecload instruction is executed in the same way and at the 
same time on both models, since the models refer only to 
computational instructions. Regarding computational vector 
instructions, in OBO (Fig. 2 (a)) all operations of one vector 
computational instruction (vecadd) are executed, and then we 
move on to the next vector instruction (vecsub). In BBE (Fig. 
2 (b)), several consecutive vector computational instructions 
form a block of vector instructions, and we execute one 
operation from each instruction of the block and  repeat this 
for each operation in the block of vector instructions. In the 
example, we execute one operation from vecadd and then one 
operation from vecsub. The process ends once all operations 
are computed. The next subsection describes the BBE model 
in more detail. 

A. Block-Based Execution 
To support this model of execution, we added a small 

table that keeps the information of the instructions of the 
block and simple control logic. In this paper, blocks of 
vector computational instructions are formed dynamically 
in a very simple way. Once a computational vector 
instruction is ready for execution, the control logic 
examines the next instructions in the issue queue and adds 
them to the block if they are vector computational 
instructions, until another instruction type (a scalar or 
vector memory instruction) is encountered or the block is 
full. 

 
Fig. 2. An example of code with vector instructions 

executed with one ALU assuming (a) the one-by-one and 
(b) the block-based execution model. 

The number of vector instructions that can be executed in 
parallel or with chaining using the OBO model is restricted 
by the number of available ALUs. BBE does not have this 
limitation, allowing for execution of more vector 
instructions in parallel. Inherently, more dependent 
instructions can be chained (scalar bypass logic can be 
reused) since one vector instruction does not occupy the 
ALU for all its elements in continuous cycles, and thus it 
can be interleaved with other instructions using the same 
ALU. An important advantage of BBE over OBO or a 
classic vector unit is the following: while a block of vector 
computational instructions is under execution, BBE allows 
for the execution of subsequent scalar or vector memory 
instructions if they are ready for execution and there are 
free functional units that can execute them. In Fig. 2 (b), the 
second vecload instruction can start execution just after the 
vecsub started with execution of the first operation. 

 
III. CONCLUSION 

 
Using a vector processor is one of the most energy 

efficient ways of achieving high performance for a wide 
number of applications that contain a significant degree of 
DLP. Power dissipation, energy consumption and area are 
critical concerns in processor design, especially for 
embedded systems in the low-end market. In this paper, we 
propose the integrated vector-scalar design that allows for 
execution of vector computational instructions mostly 
reusing resources of an in-order core. We also propose 
block-based execution model to execute vector 
computational instructions. 
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