

89

Block-Based Execution on an Integrated Vector-Scalar In-Order Core

Milan Stanic1, Oscar Palomar2
1Barcelona Supercomputing Center, 2 University of Manchester

milan.stanic@bcs.es, oscar.palomar@manchester.ac.uk

Abstract-In the low-end processor mobile market, power,
energy and area budgets are significantly lower than in the
server/desktop/lap-top/high-end mobile markets. It has been
shown that vector processors are a highly energy-efficient
way to increase performance but adding support for them
incurs area and power overheads that could not be
acceptable for low-end mobile processors. In this work, we
propose an integrated vector-scalar design that mostly reuses
scalar hardware to support the execution of vector
instructions. The key element of the design is our proposed
block-based model of execution that groups vector
instructions to execute them in a coordinated manner.

I. INTRODUCTION

In the last 15 years, energy consumption and power
dissipation have become crucial design concerns for almost
all computer systems due to several reasons: for example,
technology feature size scaling leads to higher power density
and therefore to costly cooling. While power dissipation is
critical for high-performance systems such as data centers
due to large power usage, battery life is a primary concern for
mobile systems.

Driven with this goal, researchers have focused on
improving performance in an energy-efficient way. Vector
processors [1] are energy efficient architectures that yield
high performance whenever there is enough data-level
parallelism (DLP) [2]. Besides the long and successful
history of vector processors in supercomputers, vector units
have been adopted in designs of microprocessors [3, 4, 5].
Also, SIMD multimedia extensions [6, 7] are often included
in modern microprocessors. Recent research on vector
processors shows that they can be a good match even for
applications from domains such as column-store databases
[8]. The Xeon Phi is a recent massively parallel x86
microprocessor designed by Intel and is based on the
Larrabee [9] GPU, that contains a 512-bit SIMD vector
processing unit in each core.

This paper contributes a method to increase the
performance of the low-power, low-end embedded systems
in an energy-efficient way. The energy efficiency is
accomplished by modifying a scalar core to execute vector
instructions on the existing scalar infrastructure. In particular,
we propose an integrated vector-scalar design that combines
scalar and vector processing mostly using existing resources
of an energy-efficient processor (in our evaluation
environment, it is based on the ARM Cortex A7). In addition
to a design that uses a conventional vector execution model,
we also contribute a novel block-based model of execution
for vector computational instructions.

II. INTEGRATED DESIGN

As a baseline, we use a scalar core based on the highly

energy-efficient ARM Cortex-A7. It is an in-order, dual-issue
processor that implements the ARM v7 architecture with an
8-stage pipeline (gray blocks in Figure 1).

In our proposed integrated vector-scalar design, we attempt
to maximize the reuse of resources already present in the
baseline scalar core (white blocks in Figure 1) while adding
support for vector instructions. While the front-end of
pipeline is the same (fetch and decode stages), in the back-
end we added two structures to support the execution of
vector instructions on the scalar core: a vector register file,
and a vector memory unit (blue blocks in Fig. 1). There is
also additional logic that controls the execution of vector
instructions: vector execution control logic (VECL), aliasing
control logic (ACL) and chaining control logic (CCL). VECL
is added in the issue stage to support the execution of
computational vector instructions. ACL exchanges
information between the vector memory and the data cache
unit and forces scalar and vector memory instructions to be
executed in-order. CCL is responsible for the execution of
chained dependent computational instructions.

Fig. 1. Block diagram of the integrated design.

A. Execution of Vector Computational Instructions
We study two alternatives for executing the vector

computational instructions on the existing scalar FUs: 1) the
One-By-One model of execution (OBO), in essence the
classic vector execution model, in which every instruction is
executed to completion, i.e. for all the operations of the
vector; and 2) a novel execution model called Block-Based
Execution (BBE). In this model, for a block of consecutive
vector computational instructions, first all operations on the
first element are executed, then the operations of the second
element, and so on. Fig. 2 shows an example with a sequence

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/46607467?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

90

of vector instructions, illustrating the difference of the two
execution models. For this example, we assume that vector
instructions operate on floating-point data by using a single
floating-point unit and a single data cache port. The first
vecload instruction is executed in the same way and at the
same time on both models, since the models refer only to
computational instructions. Regarding computational vector
instructions, in OBO (Fig. 2 (a)) all operations of one vector
computational instruction (vecadd) are executed, and then we
move on to the next vector instruction (vecsub). In BBE (Fig.
2 (b)), several consecutive vector computational instructions
form a block of vector instructions, and we execute one
operation from each instruction of the block and repeat this
for each operation in the block of vector instructions. In the
example, we execute one operation from vecadd and then one
operation from vecsub. The process ends once all operations
are computed. The next subsection describes the BBE model
in more detail.

A. Block-Based Execution
To support this model of execution, we added a small

table that keeps the information of the instructions of the
block and simple control logic. In this paper, blocks of
vector computational instructions are formed dynamically
in a very simple way. Once a computational vector
instruction is ready for execution, the control logic
examines the next instructions in the issue queue and adds
them to the block if they are vector computational
instructions, until another instruction type (a scalar or
vector memory instruction) is encountered or the block is
full.

Fig. 2. An example of code with vector instructions

executed with one ALU assuming (a) the one-by-one and
(b) the block-based execution model.

The number of vector instructions that can be executed in
parallel or with chaining using the OBO model is restricted
by the number of available ALUs. BBE does not have this
limitation, allowing for execution of more vector
instructions in parallel. Inherently, more dependent
instructions can be chained (scalar bypass logic can be
reused) since one vector instruction does not occupy the
ALU for all its elements in continuous cycles, and thus it
can be interleaved with other instructions using the same
ALU. An important advantage of BBE over OBO or a
classic vector unit is the following: while a block of vector
computational instructions is under execution, BBE allows
for the execution of subsequent scalar or vector memory
instructions if they are ready for execution and there are
free functional units that can execute them. In Fig. 2 (b), the
second vecload instruction can start execution just after the
vecsub started with execution of the first operation.

III. CONCLUSION

Using a vector processor is one of the most energy

efficient ways of achieving high performance for a wide
number of applications that contain a significant degree of
DLP. Power dissipation, energy consumption and area are
critical concerns in processor design, especially for
embedded systems in the low-end market. In this paper, we
propose the integrated vector-scalar design that allows for
execution of vector computational instructions mostly
reusing resources of an in-order core. We also propose
block-based execution model to execute vector
computational instructions.

REFERENCES

[1] K. Asanovic. Vector Microprocessors. PhD thesis, University of California, Berkeley, May, 1998. [2] Y. Lee et al. Exploring the trade-offs between programmability and efficiency in data-parallel accelerators. In ISCA 38, pages 129-140, 2011. [3] C. Kozyrakis and D. Patterson. Overcoming the limitations of conventional vector processors. In Proceedings of the 30th ISCA, pages 399-409, 2003. [4] R. Espasa et al. Tarantula: a vector extension to the Alpha architecture. In ISCA 29, pages 281-292, 2002. [5] C. F. Batten. Simplified vector-thread architectures for flexible and efficient data-parallel accelerators. PhD thesis, Cambridge, MA, USA, 2010. AAI0822514. [6] S. Thakkar and T. Huff. Internet streaming SIMD extensions. Computer, 32:26-34, December 1999. [7] M. Buxton et al. Intel AVX: New frontiers in performance improvements and energy efficiency. White paper, 2008. [8] T. Hayes et al. Vector extensions for decision support dbms acceleration. In MICRO 45, pages 166-176, 2012. [9] L. Seiler et al. Larrabee: a many-core x86 architecture for visual computing. In SIGGRAPH '08, pages 18:1-18:15, 200

