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 Abstract- Domain decomposition methods (DDM) are often chosen to precondition sparse linear systems of equations, as they are famous to well-improve the convergence of iterative solvers. But at the same time, they are difficult to implement and can be computationally expensive. In this work a new mesh numbering to adapt preconditioning techniques to the physics of different problems is proposed as an alternative to DDM preoconditioning. 

 
INTRODUCTION 

 
        Complex physical problems for both, applied fields 

and basic research, such as fluid dynamics, heat transfer 
problems, solid dynamics or general transport equations, are 
often represented by partial differential equations which 
have to be dicretized and solved numerically. This takes the 
continuum formulations of physics to systems of algebraic 
equations, and in order to obtain good approximations to the 
real life solutions of such problems it is necessary to solve 
systems with a great number of unknowns. The resulting 
matrices obtained from this discretizations are often very 
sparse, that is, only a few entries of the matrix differ from 
zero. Sparse linear systems of equations (SLSE) are usually 
solved with iterative solvers, as they are cheaper in terms of 
computer storage and CPU-time, but at the same time they 
are less robust than direct methods and often converge 
slowly to the desired solution. To cope with this problem, 
equivalent preconditioned systems can be solved instead of 
the original one, this means multiplying the system by a 
matrix called preconditioner, which has part of the 
information contained in the original matrix.  

     Finding a good preconditioner for solving SLSE is not 
an easy task and several aspects have to be taken into 
account, on of them is the physics of the problem, as the 
coefficients of the matrix highly depend on this. 

  In the present contribution the construction, 
implementation and results of a closely-related-to-the-
physics preconditioners for convection dominated problems 
is studied. In this case, the information propagates mainly in 
the direction of advection. Then, independently of the 
discretization scheme considered (Finite Element, Finite 
vVolume, Finite Difference, etc,) the main contribution in 
every row of a certain node of the resultant matrix, apart 
from the diagonal term, comes from the closest neighboring 
in the opposite direction direction of the advection field. 
Thereby, a mesh node numbering along the flow direction 
(streamwise direction) is proposed in such a way that the 
main coefficient of each row will is, apart from the diagonal 
term, the first left off-diagonal term. Knowing this, several 
numerical examples in two and three dimensions have been  

 
 
tested using both Gauss-Seidel and Bidiagonal 
preconditioning together with Krylov subspace methods, 
inparticular the GMRES and BiCGSTAB solvers are used. 
The examples have been executed in sequential and in 
parallel and compared between them.  

Figure 1.  Node ordering by its velocity module. 
 

METHODOLOGY 
 

The numbering algorithm is based on two main ideas. 
First, the nodes are ordered by its velocity module in an 
increasing way, starting with the ‘imposed’ inflow nodes 
and ending with the nodes of the outflow. This is clearly 
shown in Figure 1. 

 
After the nodes are put into different groups following 

what we call the ‘minimum angle criterium’ achieving like 
this the final ordering. This is done as it follows: 

 
 1. Starting with an inflow node, the forming vector 

between this node an each of its neighbors is computed. 
 
2. Then different the cosines of the angle that these 

vectors form with the velocity vector that the inflow node 
has are computed and compared. 

 
                                     a⋅b 
                   cosθ  =  ————-                                   
                                    ∥a∥∥b∥ 
 
3. Discarding the nodes which have a negative or zero 

cosine, the next node in the group will be the one that forms 
the smallest angle with the velocity vector (maximum 
cosine), or what is the same, the chosen node will be the one 
which  is closest to the direction of the advection velocity. 

 
4. This procedure will be repeated recursively until no 

positive values of the cosine are found.  
 
5. When this happens another node of the inflow will be 

taken and the above process will be repeated until all the 
nodes in the mesh are numbered. 
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In the parallel case this procedure will be done in each 

subdomain except for the interface nodes as the interfaces  
cut the advection lines, in this case a Jacobi preconditioner 
will be used instead. 

 
RESULTS 

 
 To prove the algorithm several cases have been tested in 

sequential and in parallel. In this work it is shown an e 
example of each, solved in both cases with GMRES and 
BiCGSTAB solvers and preconditioned in each case with a 
Gauss-Seidel, Bidiagonal and Jacobi preconditioners. 

 
A. In Sequential 
 Figure 3 shows the results for the example in sequential, 

this corresponds 2D heat convection with the following 
rotating advection field centered in (0.5, 0.5), so that v = (-y 
+ 0.5, x-0.5). This has been solved on a 200 element mesh. 
In this case a mesh of 40430 elements has been used. 
 

 
 
 
 
 
 
 
 
Figure2. Rotating advection in a heat convection problem. 

 
 

Figure 3.Heat convection problem solved in sequential 
         

B. In Parallel 
  Figure 4 shows the problem tested in parallel. This is a 

2D that simulates the plastic barrier designed for the ocean 
clean-up problem using Navier-Stokes equations and with 
an inflow velocity of 50m/s. 

 
 
 
 
 
 
 
 
 

 

Figure 4. Navier Stokes equations solved in parallel. 
 

 
CONCLUSIONS AND FUTURE WORK 

 
  A new node numbering for convection dominated 

problems has been developed and tested in different 
problems with the Gauss-Seidel and Bidiagonal 
preconditioners. Either in sequential and in parallel it is 
shown that the convergence of the GMRES and BiCGSTAB 
solvers is improved if compared with the Jacobi 
preconditioner. Although in the parallel case it still has to be 
checked the comparison between Bidiagonal and Gauss-
Seidel preconditioning if a BiCGSTAB solver is used. Also 
in parallel it is expected that the efficiency of the strategy 
will decrease with the number of subdomains, as the 
streamlines are cut on subdomain interfaces. 

 
    Future work will include checking scalabilities and 

CPU times of the preconditioners proposed in real cases and  
a compare them them with some of the existent DDM that 
are also used as preconditioners. 
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