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  Abstract-Particles transport in a fluid simulations have plenty of applications in the medicine or different fields of the engineering; from drug delivery simulation in the respiratory system to the friction of a car’s break with its wheels or the icing of water droplets on a wing. But its implementation has also very different possible approaches: depending on the fluid, the size of the particle and the number of particles, literature proposes different solutions. In this paper, we want to show a generalized solution and compare it with proposed algorithms in the literature. 
 

I. INTRODUCTION 
Particles in a fluid are transported because of the action of 

different forces. Depending on the case, gravity, buoyancy, 
Coriolis, Brownian motion or other forces may become 
necessary. Although involved forces may vary in every 
problem, drag force [1] and lift force [2] become essential 
when transported by a fluid.  

Let Fp, ap and mp be the force, acceleration and mass of 
particle p. Applying the Newton's second law, the total 
acceleration applied on each particle is given by the 
summatory of all the forces involved 

 
ΣFp = mpap    (1) 
The calculation of ap every step from initial time ti to final 

time tf requires an integration scheme. The time interval Δt 
of every step will be   

Δt = tf - ti. 
 

II. INTEGRATION SCHEME 
The proposed integration scheme is a semi-implicit 

Newmark-β[3]. In this scheme, the actualization of the 
velocity un+1 and position xn+1 of the next time step is given 
by two equations: 

 
un+1 =  un + 

[(1-
γ)an + 

γan+1]Δt                (2)   
xn+1 = xn + unΔt + [(1-2β)an + 2βan+1]Δt2/2 (3)  
Where β and γ are constants. If β=1/4 and γ=1/2 the 

method is implicit unconditionally stable and acceleration  
 
 
 
 

 
within the time interval Δt is presumed to be constant. If, 
otherwise, a linear variation of the acceleration during the 
time time interval is assumed, then the values will be β=1/6  
and γ=1/2. As far as these values are the most commonly 
used in our simulations, becoming in both cases in an  
implicit method, a Newton-Raphson is needed in order to 
solve the dependence on un+1.  Let un+1 be the function whose root is desired. The 
Newton-Raphson is described in this case by: 

 
un+1 =  un - w(un)   (4)  
Where, 
 
w(un) = f (un)/f’(un)   (5) 
 
And 
 
f (un) =  un+1 + [(1-γ)an + γan+1]Δt - un (6) 
 
f’(un) = -1 + Δtγ da/du|n+1  (7) 
 
To ensure the convergence  
 
||w(un)|| / ||un|| < εc    (8) 
 
is imposed. εc means the desired precision in the 

convergence. 
The Newton-Raphson will be compared to an explicit 

Runge-Kutta 4, which is one of the most widely integration 
schemes used when particles transport, e.g. [4],[5] or [6]. 
The behavior of both cases will be discussed in terms of 
mathematics and High Performance Computing (HPC). 

 
III. ADAPTIVE TIME STEP 

 
When particles transport is solved, firstly, the fluid is 

solved in the chosen interval Δtfluid. The particles must be 
solved during the same time interval, but using adaptive 
time step, smaller independent intervals Δtp for each particle 
p can be computed as shown in figure 1. A constant 
variation of the velocity of the fluid is supposed during Δtp. 

Figure 1:  Scheme of adaptive time step. Particles can adopt a 
smaller time step than the fluid. 

 
The time step may vary because of three reasons: 
 

A. One element per time step 
Particles cannot cross more than one element from one 

time step to another. Otherwise, time step is automatically 
decreased. This is why, if particles change subdomain, only 
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the first neighborhoods list is looped. These elements are 
called halo elements. In  figure 2 an example is shown. 

 
 
 
 
 

 
 
 
Figure 2: Blue subdomain is bordering red, green and yellow 

subdomains. In the case, a particle in blue subdomain changes 
subdomain, time step will be decreased if necessary, until it 
belongs to a a halo element. 

 
B. Reaching convergence of the integration scheme 

Time step is decreased when convergence in Newmark-β 
is not reached. The convergence factor can be controlled by 
the user before the simulation starts, choosing the value εc defined by (8). 

 
C. Control the error due to discretization of the time 

As in the point B, before the simulation starts, the user 
must define the maximum acceptable error of the 
discretization εerr. This error is normalized using a 
characteristic length L.  

Some of the proposed characteristic lengths are the 
diameter of the particle, the length of the element or the 
instant velocity of the particle multiplied by a characteristic 
time τ. The discussion about which is the right characteristic 
length is not always straightforward and may  vary 
depending on the properties of the problem. 

In oder to estimate the new Δterr, let xexan+1 be the exact 
solution  applying Taylor series. 

 
xexan+1 = xn + unΔt + 1/2anΔt2 + 1/6(dan/dt)Δt3(9) 
 
It is necessary to subtract the equation (9) and (3), 

obtaining as result 

 
xexan+1 - xn+1 = β(an+1 - an)Δt2 - 1/6(dan/dt)Δt3(10) 
 
Now, applying the approximation 
 
dan/dt = (an+1 - an)/Δt   (11) 
 
Dividing by characteristic length L, and finally isolating 

Δt, it is obtained 
 
Δterr = {εerrL/[(β-1/6)(an+1 - an)]}1/2 (12) 
 
Let define εtrn as the truncation error. According to 

equation (3), we also require the second order term 
(dependent on the velocity un) to be εtrn times smaller than 
the first order term (dependent on the accelerations an , an+1). This means: 

 
[(1-2β)an + 2βan+1]Δt2/2 = εtrn unΔt (13) 
 
Therefore, the truncation time step Δttrn which satisfies 

this criteria is 
 
Δttrn = 2 εtrn | un/[(1-2β)an + 2βan+1] | (14)  
Both time steps will be used to estimate a new time step. 

To obtain that, we the define the accuracy α as 
 
α = min(Δttrn , Δterr )/Δt   (15) 
 
The new time interval is only accepted if α > 0.9. 

Otherwise, the process is repeated using Δtnew = Δt. 
 
When showing results we will compare the error accuracy 

with the adaptive time step and without. Inasmuch as its 
impact on the performance of the code. 
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