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 Abstract-This research considers a real life case study that determines the minimum number of sellers required to attend a set of customers located in a certain region taking into account the weekly schedule plan of the visits, as well as the optimal route. The problem is formulated as a combination of assignment, scheduling and routing problems. In the new formulation, case studies of small size subset of customers of the above type can be solved optimally. However, this subset of customers is not representative within the business plan of the company. To overcome this limitation, the problem is divided into three phases. A greedy algorithm is used in Phase I in order to identify a set of cost-effective feasible clusters of customers assigned to a seller. Phase II and III are then used to solve the problem of a weekly program for visiting the customers as well as to determine the route plan using MILP formulation. Several real life instances of different sizes have been solved demonstrating the efficiency of the proposed approach. 

 
I. INTRODUCTION 

 
Network models and integer programs are applicable to 

an enormous known variety of decision problems. In a real 
life, the cost efficient management decision is defined by a 
combination of different models. 

Consider a set of customers C={1,2,...,i,...,j,...N} dispersed 
in a given region where their locations are given by 
coordinates (gxj, gyj). It is required to design a business plan 
that includes the minimum number of sellers 
Y={1,2,...,s,...Y} to attend these customers, in days 
D={1,2,3,4,5,6} denoted by index t in the scheduling plan 
per week, providing the optimal daily routing. The decision 
should consider the demand (Dem) and the service time (Ti) 
of the customers. Also, the daily capacity (Cap) and 
available time of the sellers (Ts). Decision variables of the 
model are as follows: 

Yis Binary variable denoting whether customer i is 
assigned to seller s 

Vits Binary variable denoting whether seller s visits a 
customer i at day t 

Xij,t Binary variable denoting whether customer i is visited 
before customer j by seller s at day t 

eist Continuous variable denoting the order in which 
customer i is visited in the route plan of seller s during day t. 

 
The formulation of the matemathical model is as follows: 
 

Subject to: 
 
 

 
 
The objectivefunction (1) represents the sum of two goals, 
the minimization of the number of sellers required to service 
the customers and the minimization of the traveling distance 
to visit each customer for each routing plan. 

As for constraints, (2) ensures that a customer is attended 
by only one seller. Equation (3) guaranties that a customer 
is assigned to the seller that actually visits that customer. 
Equations (4) and (5) link the scheduling variables to the 
routing ones. Equations (6) and (7) are used for connectivity 
purposes. Next equation (8) ensures that the available time 
of the seller is not compromised during the scheduling of 
visits to the customers assigned per day. In this way, 
equation (9) establishes the number of visits to carried out 
per customer according to the given frequency. Equation 
(10) avoids consecutive visits to those customers whose 
frequency is less than 4 visits per week. Finally, equations 
(11) and (12) allow to assign the proper order of visits to 
customers during the routing plan to avoid sub-tours. 

 
II. SOLUTION METHOD 

 
The solution method for the problem is divided into three 

phases. The Phase I find a cluster of customers using the 
nearest neighbor approach. This objective is known as the 
tightest cluster of m points. This is similar to the one facility 
version of the max-cover problem [1], for planar models [2], 
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for one facility [3], and for several facilities [4], where we 
wish to find the location of several facilities which cover the 
maximum number of points within a given distance. The 
procedure is illustrated in Fig. 1. 

 
Fig. 1.  Greedy algorithm for phase I, the assignment of 

customers to sellers. 
 

 

After defining the clusters of customers, the sequence of 
visits for each seller (cluster) is determined by solving a 
scheduling problem (phase II). Finally, the routing is solved 
per day and seller in phase III. 

Caceres et al. [5] present a survey on VRPs apply to real 
life problems. A classification that applies for this case 
study is Multi-Period/Periodic VRP with Multiple 
Visits/Split deliveries. In this classification, the clients are 
visited several times as vehicles may deliver a fraction of 
the customer's demand. Moreover, optimization is made 
over a set of days, considering a different frequency of visits 
to each client. 

III. RESULTS 
To test the performance of the proposed models, several 

instances were tested. The data for each instance correspond 
to a real life case consisting of a soft-drinks manufacturer. 
The solving time is an important issue for the company due 
to the deadline to generate the business plan each week. 
Therefore, the results are given in terms of both objective 
functions as well as solving times. The greedy algorithm, 
which determines the total number of sellers needed to 
satisfy the customers demand, was implemented in C++ 
9.0.21. The scheduling and routing models were 
implemented using AMPL to call the optimizer CPLEX 
v.12.6.0. A time limit of 3600 sec is used as a stopping 
criteria when scheduling and routing are jointly solved. The 
cover area criteria for the greedy algorithm was set to 10 
km. 

The results are given in table 1. For each combination of 
territory and seller, the table provides the total number of 
customers per territory, the total number of required sellers, 
the optimal solution provided by the scheduling solution 
from the three-phase approach (OF(Scheduling)) and the 
computational times of both approaches. 

 
 

 
 

TABLE I 
RESULTS OF SOLUTION METHODS 

 
 
 

 
Territory TypeSeller #Cusm Sellers OF(Scheduling) TCPU 

(2-p/3-p) 
T1 D 15 5 1207 0.03/0.06 
T4 D 17 6 1446 0.04/0.06 
T3 AS 26 2 8472 0.19/0.4 
T2 AS 33 5 5426 0.1/0.51 
T1 B 37 1 13957 0.28/2.46 
T4 A 59 7 6467 0.11/0.22 
T3 F 112 3 28118 0.49/14.25 
T1 C 163 5 26784 0.47/11.59 
T4 F 243 6 28985 0.36/16.75 
T3 C 405 11 38512 0.57/14.5 
T2 E 1645 6 103299 4.26/611.46 
 

 
The results shows that the total number of required sellers 

is not related to the size of the instance but to a combination 
of distance and demand of the customers. On the other hand, 
the objective function of the scheduling increases with the 
customers per territory. Concerning the computational time, 
it should be noted that the three-phase approach is faster 
than the two-phase one. Moreover, the three-phase approach 
achieves the same quality of the solution or even better. The 
computational performance improves with tight time 
windows and high node geographical density. Due to the 
use of the greedy algorithm, the critical size of the cluster-
based MILP formulation significantly decreases and the 
hybrid approach becomes much more efficient. 
 

IV. CONCLUSIONS 
 

The described approach allows tackling the uncertainties 
stemming from practical problems such as different sizes of 
territory and particular features of the demand such as the 
distance and the service time. Future research lines include 
the development of a metaheuristic for further improving 
the solution provided by the three-phase approach, as well 
as the addition of stochastic data to represent a raise/fall in 
the clients demand and the appearance/loss of clients. 
Moreover, this approach is better suited for parallel 
implementation for larger problems. 
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