
51

Dynamic Load Balancing for hybrid applications
Marta Garcia Gasulla, Julita Corbalan and Jesus Labarta

Barcelona Supercomputing Center and Universitat Politecnica de Catalunya
marta.garcia@bsc.es, julita.corbalan@bsc.es, jesus.labarta@bsc.es Abstract-The DLB (Dynamic Load Balancing) library and LeWI (LEnd When Idle) algorithm provide a runt

DLB relies on the usage of hybrid programming models andexploits the malleability of the second level of parallelism toredistribute computation power across processes.
I. INTRODUCTION

In parallel computing, the loss of efficiency is an issue that
concerns both system administrators and parallel
programmers. The growth in number of computing units that
clusters experienced the last years has helped speeding up
applications but has worsened some problems that affect the
efficient use of the computational power.

One of the problems that has deteriorated with this growth is
load balance. Although it is a concern that has been targeted
since the beginning of parallel programming, there is not a
universal solution.

In this paper we will talk about the Load Balancing Library,
DLB, and a balancing algorithm, LeWI, that can improve the
performance of hybrid applications. DLB can load balance an
application at runtime without modifying nor analyzing the
application.

In a previous work [1] we showed the potential of DLB and
LeWI when executed with MPI+OpenMP applications.

In this paper we are showing the results of porting DLB to
OmpSs. And how integrating some features of DLB in the
runtime the performance can be improved.

II. DYNAMIC LOAD BALANCING LIBRARY (DLB)
The Library
The Dynamic Load Balancing (DLB) is a shared library that

helps load balance applications with two levels of parallelism.
The current version provides support for: MPI+OpenMP MPI+OmpSs

The aim of DLB is to balance the MPI level using the
malleability of the inner parallel level. One of its main
properties is that the load balancing will be done at runtime
without analyzing nor modifying the application previously.
The algorithm that has showed better performance results is
LeWI (Lend When Idle) [1]. And this is the algorithm that we
are going to explain in the following section and use for the
performance evaluation.

LeWI Algorithm

The philosophy of LeWI is based on the fact that when an MPI
process is waiting in an MPI blocking call none of its threads
is doing useful work. Therefore, we have one or several CPUs
that are not being used. LeWI aims to use these CPUs to
speedup other MPI processes running in the same node. The
usual behavior of an MPI application is that if a process is
blocked in an MPI call it is waiting for one or several other
processes to finish. Speeding up processes that are more
loaded helps to load balance the application and speedup the
whole application.

Fig. 1. LeWI Algorithm behavior: Original Application vs. Application load
balanced with LeWI.

In Fig. 1 we can see the behavior of the LeWI algorithm
when balancing an unbalanced application. On the left shows
an unbalanced hybrid application with 2 MPI processes and 2
threads per process. In this example MPI process 2 is more
loaded than MPI process 1 and this makes that MPI process 1
must wait in an MPI communication for some time.

At the right we can see the behavior of the same application
when executed with the LeWI algorithm. When an MPI
process reaches a blocking MPI call it will lend its CPUs to
the other MPI processes running in the same node. With the
lent CPUs the more loaded MPI processes will be able to
finish its computation faster and the MPI process 1 will be less
time waiting in the MPI call. The use of the computational
resources will be better and the application
will perform better.

App 1

MPI 1 MPI 2
cpu1cpu2 cpu3cpu4

Shared Mem

Synchronization

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/46607406?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

52

The first version of LeWI did not use mapping of threads to
cpus, it adjusted the total number of running threads. But with
the porting of DLB to OmpSs this offers us the posibility of
mapping each thread to a cpu and lending a specific cpu,
avoiding a temporal oversuscription.

III. PERFORMANCE EVALUATION
The experiments have been executed on Marenostrum3.

Marenostrum3 is based on Intel SandyBridge processors. Its
compute nodes are IBM iDataPlex dx360 M4 X servers with
two 8-core Intel Xeon processors (E5-2670) per node and 32
GB of shared memory. They also include a hard drive of
500Gb and an MPI network card Mellanox ConnectX-3 Dual
Port QDR/FDR10 Mezz Card. For management and GPFS
they have two Gigabit Ethernet network cards.

We have executed the BT-MZ a benchmark from the NAS-
Multizone benchmark suite. BT-MZ has been executed in one
node of Marenostrum (16 cpus) with different configurations
of MPI processes and threads.

And Lulesh a mini-app representative of simplified 3D
Lagrangian hydrodynamics on an unstructured mesh. Lulesh
has a parameter that can be changed to increase or decrease
the amoount of imbalance present in the execution. A low
value means a good load balance and a high value means more
imbalance. Lulesh has been executed in 4 nodes of
Marenostrum (64 cpus).

For each execution we can see four different series: Binding: the original execution of the application
without load balancing executed with mapping of
threads to cpus. No Binding: the original execution of the application
without binding of threads to cpus. No Binding + LeWI: Execution with LeWI and
without binding of threads. Binding + Mask: Execution with LeWI and with
mapping of threads to cpus.

Fig. 2. Speed up obtained by BT-MZ with and without LeWI
In Fig. 2 we can see the speed up obtained by the different
executions, when using the load balancing algorithm LeWI we

can improve the speed up of the application. But the gain can
be higher using a mapping of threads to cpus.

Fig.3. Speed up obtained by Lulesh with and without LeWI

Fig. 3 shows the speed up of Lulesh with a different amount
of load imbalance. We can see how the speed up of Lulesh
decreases as the amount of load imbalance increases, but when
using LeWI the performance is better and maintained
independently of the amount of imbalance.

We can se also that the performance when using a mapping
of threads to cpus is better when using dynamic load balancing
than when not mapping threads to cpus.

IV. CONCLUSIONS
In this paper we have presented a load balancing algorithm,

LeWI, that has been implemented within a dynamic library,
Dynamic Load Balancing (DLB).

The DLB library allows us to balance applications with two
levels of parallelism without modifying the application or
studying the imbalance it presents. The current version of the
library can balance hybrid MPI+OpenMP and MPI+OmpSs
applications.

We have shown the relevance of binding of threads to cpus.
And how the support from the runtime can help load balance
applications.

REFERENCES
[1]M. Garcia, J.Corbalan, J.Labarta, “LeWI: A Runtime Balancing Algorithm for Nested Parallelism” International Conference on Parallel Processing, ICPP 2009. [2]I. Karlin, J. Keasler, R. Neely. LULESH 2.0 Updates and Changes. August 2013, pages 1-9

