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We study the potential of highly-doped finite carbon nanotubes to serve as plasmonic elements that
mediate the interaction between quantum emitters. Similar to graphene, nanotubes support intense
plasmons that can be modulated by varying their level of electrical doping. These excitations exhibit
large interaction with light and electron beams, as revealed upon examination of the corresponding
light extinction cross-section and electron energy-loss spectra. We show that quantum emitters
experience record-high Purcell factors, while they undergo strong mutual interaction mediated by
their coupling to the tube plasmons. Our results show the potential of doped finite nanotubes as
tunable plasmonic materials for quantum optics applications.

PACS numbers: 73.20.Mf, 78.67.Ch, 78.67.Wj, 42.25.Bs

I. INTRODUCTION

Plasmons, the collective oscillations of electrons in con-
ducting media, have generated great expectations due to
their ability to manipulate optical fields on deep subwave-
length scales, thus enabling exciting possibilities for fu-
ture nanophotonic devices. Traditionally, plasmons have
been studied in noble metal nanostructures, where their
resonance frequencies and optical coupling strengths are
determined by the material intrinsic properties, the mor-
phology of the structure, and the dielectric environment
[1–3]. Graphene, the atomically thin carbon layer, has
emerged as a promising alternative to noble metals for
nanoplasmonic applications due to its ability to sup-
port electrically tunable plasmon resonances that inter-
act strongly with light [4–7]. The appealing properties of
graphene plasmons are now inspiring research on other
two-dimensional van der Waals materials [8, 9], as well as
on carbon-based molecules [10, 11]. Currently explored
applications of plasmons, including sensing [12–15], pho-
todetection [16–19], wave guiding [20, 21], photovoltaics
[22], and medicine [23], could benefit from the identifica-
tion of new types of actively tunable plasmonic materials
with lower inelastic losses.

In a related context, significant advances in quan-
tum information have been gained through the study
of coupling between quantum emitters (QEs) and sur-
face plasmons (SPs) supported by noble metals [24–27]
or graphitic nanostructures [28, 29]. In particular, car-
bon nanotubes (CNTs), which are 1D carbon structures
formed upon cylindrical wrapping of a graphene sheet,
could serve as conduits in plasmonic circuits [30], while
their plasmons have been predicted to undergo ultra-
e�cient coupling with QEs [31–35]. Although numer-

⇤
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ous studies on the appealing structural, electrical, and
optical properties of CNTs indicate their suitability as
components in nanophotonic devices [30, 34, 36, 37], the
tunable, low-energy plasmons supported by these struc-
tures when they are doped are only now beginning to be
explored [7, 37, 38].
In this paper, we investigate the optical response as-

sociated with the plasmons of highly-doped finite CNTs,
described either by classical electrodynamic or quantum-
mechanical (QM) simulations, and discuss their poten-
tial ability to mediate quantum optical interactions on
the nanoscale. While plasmons in large-scale graphene
nanostructures are currently limited to mid-infrared and
lower frequencies, a reduction in their size to the limit
represented by polycyclic aromatic hydrocarbons (PAH)
can blue-shift resonances toward the visible regime [10,
11]. We envision finite CNTs as an intermediate situ-
ation between large-scale graphitic structures and PAH
molecules, and therefore as good candidates to extend
the robustness and tunability of graphene plasmons to-
ward the visible and near-infrared parts of the spectrum.
We also demonstrate that plasmons in finite CNTs can
interact strongly with a neighboring QE, while interac-
tions between emitters can be enhanced when they are
mediated by 1D plasmons.

II. PLASMONS IN DOPED CARBON
NANOTUBES

We first adopt a classical electromagnetic description
of doped CNTs by treating them as rolled-up sheets of
thickness t and diameter D, taking their surface conduc-
tivity as that of extended graphene. We describe the
level of doping through the change in Fermi energy E

F

relative to the neutrality point. Then, as shown in the
Supplementary Information (SI) [39], by studying the
linear optical response while moving toward the t ! 0
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FIG. 1: Plasmon dispersion relation. (a) Comparison of the plasmon dispersion relation for finite and infinite single-wall
CNTs. We describe the tubes classically by assuming that the wall responds with the same local 2D surface conductivity � as
graphene. Two di↵erent models for � are considered (Drude and local-RPA, see labels). The (10,10) CNTs under consideration
have a small diameter ⇠ 1.35 nm that only allows the e�cient excitation of axially symmetric modes. The plasmon dispersion
for infinite tubes is obtained from Eq. (1) (curves). We consider capped and uncapped finite tubes of length L, which display
modes of di↵erent order n dominated by a wave vector n⇡/L (symbols). (b) Extinction cross-section for capped (solid curves)
and uncapped (dashes curves) CNTs described with the local-RPA conductivity. (c) Overview of the extinction spectrum for
the L = 10nm CNT, along with near-field plots for the di↵erent plasmon modes. The Fermi energy is 1 eV and the damping
is 10meV in all cases.

limit, we observe converged resonances for t ⇠ 0.3 nm,
which is similar to the interlayer separation of graphite
[see Fig. S1 in the SI [39]]. For finite CNTs of length L

larger than the Fermi wavelength �

F

= 2⇡~v
F

/E

F

(e.g.,
�

F

⇠ 4 nm for E

F

= 1 eV), the conductivity can be ap-
proximated in the local limit. In particular, starting from
the random-phase approximation (RPA) [40], we reach
the so-called local-RPA surface conductivity, which re-
duces to the Drude model �(!) = ie2E

F

/⇡~2(! + i⌧�1)
for photon energies smaller than 2E

F

(i.e., below the
threshold for interband transitions).

For simplicity, we concentrate on (10,10) armchair nan-
otubes (diameter D = 1.35 nm) and limit our study to
the axially symmetric modes (azimuthal number m = 0),
as higher-order plasmons are too tightly confined, and
therefore, we expect them to have a weak interaction
with incident light and QEs. As a reference, we first
simulate CNTs of infinite length, whose plasmon bands
are determined by the poles of their reflection coe�cient
toward cylindrical waves [35], which yield the dispersion
relation

!

�(!)
= �4⇡ik2kaI0(kka)K0

(kka). (1)

Here a = D/2 is the tube radius and I

0

(K
0

) is the
modified Bessel function of the first (second) kind. We
plot in Fig. 1(a) the resulting m = 0 band, assuming
either the Drude model or the local-RPA conductivity.
The latter is observed to be redshifted relative to the
former, presumably as a result of attractive polarization
associated with virtual interband transitions.

In finite CNTs, the plasmon modes can be understood
as Fabry-Perot (FP) resonances involving successive re-
flections at the tube edges. We investigate finite tubes by

taking the incident electric field along the symmetry axis
and simulating their classical electromagnetic response
using the boundary-element method [41]. The resulting
extinction spectra are shown in Fig. 1(b), as obtained
by using the local-RPA conductivity as obtained by us-
ing the local-RPA for either capped (solid curves) or un-
capped (broken curves) CNTs of di↵erent lengths. As ex-
pected from the FP character of the plasmon resonances,
the mode frequencies are observed to decrease with in-
creasing length. Additionally, the spectral widths are
inherited from the phenomenological lifetime ⌧ ⇡ 66 fs
(i.e., ~⌧�1 = 10meV) that we incorporate in the conduc-
tivity, as radiative losses are negligibly small because L

is much smaller than the light wavelength. As the exter-
nal field is polarized along the tube axes, only odd-order
modes are excited. This is clearly illustrated in Fig. 1(c),
which shows an overview of the extinction spectrum of
the L = 10nm tube for a wide frequency range, where
multiple resonances are observed, labeled by the num-
ber of nodes in their near-electric-field intensity distribu-
tions, n = 1, 3, . . . [see insets to Fig. 1(c)]. The reduc-
tion in the maximum cross-section associated with each
of the resonances for increasing n is understood from the
sign cancellations occurring in their respective induced
charges. Noticing that the mode intensity appears to
have a maximum at the tube edges, we can approximate
the reflection of an m = 0 plasmon propagating along the
tube as 1 (i.e., neglecting losses and assuming zero phase
change). Then, the plasmon parallel wave-vector kk must
satisfy the condition kk = n⇡/L in the FP model. The re-
sulting combinations of mode energy and kk observed for
di↵erent n’s with various tube lengths are represented in
Fig. 1(a), in good agreement with the plasmon dispersion
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relation of the infinite tube, thus corroborating the va-
lidity of the FP model to qualitatively understand these
plasmons.

We now compare these results with those obtained
from a QM simulation of the CNTs. Specifically, we use
linear response theory within the RPA using electronic
states described by a nearest-neighbors tight-binding
model with the same parameters as in previous studies
of graphene [42–44] (i.e., a single p orbital per carbon
site with a hopping energy of 2.8 eV). As shown in Fig.
1(a), the obtained results are similar to those of the clas-
sical description, including the frequency increase associ-
ated with larger wave vectors (i.e., smaller L), as well as
the blue shift in the plasmons of capped tubes compared
with uncapped tubes. However, the QM model predicts
slightly higher-energy plasmons, presumably as a result
of quantum confinement, in agreement with previous re-
sults for graphene nanodisks [44].

We quantify the strength of the modes by the area of
the plasmon features in the extinction spectrum through
the f -sum rule,

R1
0

d! �

ext(!) = 2⇡2

e

2

Ne/(m⇤
ec) [45].

Typically, in either classical or QM simulations, we ob-
serve that the first mode carries most of the spectral
weight (over 80%), except for the smallest CNT consid-
ered (length L = 5nm), in which the first mode takes
⇠ 65% of the total area (see Figs. S1 and S3 in the SI
[39]).

As we work in the nonretarded regime, we construct
the optical response for CNTs from the electrostatic po-
tential. This allows us to perform an expansion in the
eigen-modes of the electric field [7], from which we find
a scaling law for the polarizability by designating the di-
ameter D as the characteristic size of a CNT:

↵(!) = D

3

X

j

Aj
1

⌘ � 1

⌘j

. (2)

In the above expression, ⌘ = i�(!)/!D, while Aj and
⌘j are size- and material-independent fitting parame-
ters which follow the sum rules

P
j Aj = A/D

2 and

�
P

j ⌘jAj = ↵

0

/D

3, where A = LD is the cross-
sectional area of the tube and ↵

0

is the polarizability
of a perfect-conductor cylinder with the same shape as
the CNT (i.e., length L and diameter D). Through the
optical theorem �

ext(!) = 4⇡(!/c)Im{↵(!)}, we find an
expression to fit the resonances shown in Fig. 1(b), from
which we obtain values for Aj and ⌘j (see Fig. S2 in the
SI [39]) as a function of both thickness and length.

III. INTERACTION WITH FOCUSED
ELECTRON BEAMS

We now shift our attention to the interaction of CNT
plasmons with energetic electrons as a means to in-
vestigate their spatial and spectral characteristics. In-
deed, many of the properties of plasmons have been re-
vealed by electron-microscope spectroscopies [46], which

are better suited than optics-based methods to probe
these deep-subwavelength excitations. In particular, elec-
tron energy-loss spectroscopy (EELS) appears to be an
ideal technique to study the strongly confined plasmons
of CNTs. We thus present in Fig. 2 results for 10 keV
electrons passing near a CNT along the two trajecto-
ries shown in the insets. We find that di↵erent plasmon
modes are excited with di↵erent strength, also depending
on the orientation of the trajectory. For example, high-
order modes (i.e., above the energy range shown in Fig. 2)
are more easily excited in the trajectory that runs paral-
lel to the tube, while the perpendicular trajectory is more
e�cient at exciting the lowest-order ⇠ 0.65 eV mode. In
particular, the dipolar plasmon has its field concentrated
near the tube ends, thus favoring the interaction with the
perpendicular trajectory under consideration.
Our choice of a 1 nm beam-CNT separation is not crit-

ical, as we find the EELS probability for excitation of
the dipolar plasmon to decay exponentially with a char-
acteristic distance ⇠ L/2⇡ (see Fig. S5 in the SI [39]).
This result can be understood as follows: from the above
FP model, the plasmon wave vector must be ⇠ ⇡/L

along the tube; as the plasmon evolves in the quasistatic
limit, its wave vector along the perpendicular direction
must be ⇠ i⇡/L; consequently, we find a dependence
/ exp(�2⇡x/L) of the electric-field intensity associated
with the plasmon on the distance to the tube x, which is
directly inherited by the EELS probability. In general,
plasmons of order n should decay with a characteristic
transversal distance ⇠ L/2⇡n.
Remarkably, the peak probability reaches high values,

comparable to or larger than those typically encountered
in EELS studies of larger metal nanoparticles. We find
that the number of plasmons excited per electron (i.e.,
the integrated peak area, which should be roughly in-
dependent of ⌧) can reach 0.1%, although this number
scales as ⇠ 1/v2 with electron velocity v for small objects
(cf. v/c = 0.19 for the 10 keV electrons here considered
and v/c = 0.55 for 100 keV).

IV. INTERACTION WITH QUANTUM
EMITTERS

Light can be confined to extremely small regions of
space through the excitation of localized surface plas-
mons, thus presenting an opportunity to achieve strong
coupling between a QE and optical fields. Here we assess
the strength of a QE coupling to the local electromag-
netic fields of CNT plasmons through quantitative anal-
ysis of the enhancement in its radiative decay rate. In
what follows, we represent a QE as a two-level system
characterized by its transition dipole moment d. If a sin-
gle QE is placed in close proximity to a CNT, it induces
a field Eind from the CNT that acts back on the emitter,
thereby modifying its decay rate according to [47]

�
11

(!) = �
0

(!) +
2

~ Im{d⇤ ·Eind} , (3)
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FIG. 2: Plasmon excitation with electron beams. (a)
Electron energy-loss probability for a 10 keV electron passing
near a L = 10nm capped (10,10) CNT along two di↵erent
trajectories (see inset). Classical local-RPA calculations (solid
curves) are compared with quantum RPA simulations (broken
curves). (b) Same as (a) for an uncapped tube.

where �
0

(!) = 4!3|d|2/3~c3 is the decay rate in free
space. If we now consider two such QEs that are placed
at opposite ends of the CNT (see inset to Fig. 3), we
can quantify their interaction mediated by the CNT by
studying the radiative decay rate enhancement of the first
QE (e.g., the QE at position 1) due to the induced electric
field E

12

produced on it by the second QE (e.g., the QE
at position 2) as [48]

�
12

(!) =
2

~ Im{d⇤
1

·E
12

} . (4)

We remark that under the conditions considered here our
results indicate that the natural decay rate �

0

is much
smaller than the enhanced decay rate (see below). Then,
assuming for simplicity that the QEs are identical, the
symmetry of the CNT and its plasmon modes allows us
to approximate �

11

' �
12

when the QEs are placed on
opposite ends of the carbon structure.

In Fig. 3(a) we show �ij/�0

(i, j=1,2) for two QEs,
each located at a distance of one nanometer from either
ends of a 10 nm-long (10,10) CNT (red curves correspond
to uncapped CNTs and black curves to capped CNTs).

Remarkably, we observe an enhancement of the order of
⇠ 108, which is several orders of magnitude higher than
predicted for graphene disks [49]. This strong interaction
is a consequence of the fact that the emitter decays with
close to unity probability into the CNT plasmon (instead
of into other inelastic decay channels such as electron-
hole pairs), even when placed at such a short distance
from the tube, as previously shown for extended CNTs
[35]. Additionally, these results do not depend critically
on the exact positioning of the QEs: we expect their
interaction to roughly scale with the product of the plas-
mon field amplitudes at the position of the emitters; this
amplitude decays exponentially over a distance of several
nanometers (see the above discussion on the distance de-
pendence of the EELS probability). This intuition is cor-
roborated by Fig. S4 of the SI [39], where we present nu-
merical results for di↵erent QE-CNT distances (including
asymmetrical configurations).
Now, invoking the Jaynes-Cummings model [50], such

high Purcell factors should enable quantum entanglement
between the emitters [51, 52], as well as the implemen-
tation of logical gates [26], thus providing further moti-
vation for the application of doped CNTs in nanoscale
quantum devices.
Additionally, the real part of the interaction between

the QE and the induced field of the CNT yields the en-
ergy splitting of the QE states [Fig. 3(b)], which is quan-
tified by

Gij(!) =
1

~Re{d
⇤
i ·Eij} , (5)

where i, j=1,2 indicate the QE positions. This interac-
tion is a few times lower in magnitude than �ij , therefore
indicating that one could reach a regime in which the de-
cay rate of fast emitters (GHz) is made close to their
optical frequency (PHz), with a small fractional correc-
tion in emission frequency.
Figure 3(c) shows the dependence of the Purcell factor

on the electron mobility, which enters both the classical
and QMmodels through the phenomenological relaxation
rate ⌧ . Even for extremely low plasmon lifetimes ⌧ of
the order of ⇠ 10 fs, doped CNTs are predicted to enable
Purcell factors ⇠ 107, while we observe a linear depen-
dence of such factors on ⌧ . These results are very similar
within both classical and quantum-mechanical models,
thus corroborating once more the validity of the former
to cope with structures that contain only several thou-
sand atoms.

V. CONCLUSION

We have demonstrated that highly-doped finite CNTs
exhibit intense plasmon resonances that can mediate the
interaction between quantum emitters placed in their
proximity. In particular, CNT plasmons are found to
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produce optical extinction cross-sections exceeding the
CNT projected areas, with Purcell factors for proximal
quantum emitters reaching ⇠ 108, enabling strong in-
teraction between emitters located at opposite ends of
a CNT. These plasmons lie in the near-infrared part of
the spectrum for realistic tube dimensions, thus hold-
ing potential for their use in technological applications
within that frequency range. We introduce a classical
electromagnetic description of the CNT optical response
that predicts plasmon energies and coupling strengths in
good agreement with those obtained from an atomistic
model (tight-binding description of the electronic states
combined with RPA linear response) both in the case
of capped and uncapped CNTs. Our results indicate a

strong potential for highly-doped CNTs as robust, ac-
tively tunable plasmonic elements that are well-suited for
nanophotonic and quantum-optics applications.
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L. Mart́ın-Moreno, and F. J. Garćıa-Vidal, Phys. Rev. B
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Abajo, Nano Lett. 11, 3370 (2011).

[30] I. Soto Lamata, P. Alonso-González, R. Hillenbrand, and
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FIG. S1: Dependence of the optical extinction on carbon-wall thickness. Extinction cross-section of a CNT(10,10)

normalized to the projected area DL, as calculated within a classical model using the local RPA graphene conductivity. Results

are presented for di↵erent thicknesses and a fixed length of 10 nm. The inset shows a zoom of the dominant plasmon resonance.

Solid (broken) curves correspond to capped (uncapped) CNTs.
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FIG. S2: Scaling law parameters. (a) CNT-thickness dependence of the scaling law parameters [see Eq. (2) in the main

text]. Dark (light) colors with squares (circles) correspond to capped (uncapped) CNTs. (b) CNT-length dependence.
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FIG. S3: Optical extinction for di↵erent response models. Extinction cross-section for di↵erent CNT(10,10) lengths L
obtained from two di↵erent response models: classical description with the local RPA graphene conductivity (solid curves) and

quantum-mechanical atomistic model based on the RPA (dashed curves).
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