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Abstract1

SMOS brightness temperature images and calibrated visibilities are related by the so-called G-matrix. Due to2

the incomplete sampling at some spatial frequencies, sharp transitions in the brightness temperature scenes generate3

a Gibbs-like contamination ringing and spread sidelobes. In the current SMOS image reconstruction strategy, a4

Blackman window is applied to the Fourier components of the brightness temperatures to diminish the amplitude of5

artifacts such as ripples, and other Gibbs-like effects. In this work, a novel image reconstruction algorithm focused6

on the reduction of Gibbs-like contamination in brightness temperature images is proposed. It is based on sampling7

the brightness temperature images at the nodal points, that is, at those points at which the oscillating interference8

causes the minimum distortion to the geophysical signal. Results show a significant reduction of ripples and sidelobes9

in strongly RFI-contaminated images. This technique has been throughly validated using snapshots over the ocean,10

by comparing brightness temperatures reconstructed in the standard way or using the nodal sampling with modeled11

brightness temperatures. Tests have revealed that the standard deviation of the difference between the measurement12

and the model is reduced around 1 K over clean and stable zones when using nodal sampling technique with respect13

to the SMOS image reconstruction baseline. The reduction is approximately 0.7 K when considering the global ocean.14

This represents a crucial improvement in brightness temperature quality, which will translate in an enhancement of15

the retrieved geophysical parameters, especially the sea surface salinity.16

Index Terms17

SMOS, interferometric radiometer, image reconstruction, nodal sampling, nodal points, sidelobes, Radio Frequency18

Interferences19

I. INTRODUCTION20

The European Space Agency Soil Moisture and Ocean Salinity (SMOS) is the first satellite mission devoted to21

the remote observation of soil moisture over land and of surface salinity over the oceans [1]–[3]. SMOS single22

payload is the Microwave Imaging Radiometer by Aperture Synthesis (MIRAS), being the first L-band 2D synthetic23
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aperture radiometer in orbit. MIRAS consists of 69 antennas disposed on a Y-shaped configuration with multiangular24

observation and full polarimetric capabilities [4], [5].25

Its principle of operation is based on measuring the complex cross-correlation of the signals collected by each26

pair of receiving elements, providing the samples of the so-called visibility function [6]. Visibility samples are27

corrected from instrumental errors and denormalized by means of the calibration procedures (throughly detailed28

in [7]), before applying an image reconstruction algorithm to obtain brightness temperatures [8]. Visibilities are29

measured at selected points of the spatial frequency domain, which for the specific Y-shape geometry of MIRAS30

correspond to a star-shaped subarray (Fig. 1, red part) of a hexagonal grid. The G-matrix transforms the time31

domain brightness temperatures into visibility samples defined in the spatial frequency domain [9]. To retrieve the32

brightness temperatures univocally from the visibility samples, these must be defined on the full hexagon (Fig.33

1, envelope of blue part). Hence, the application of the G-matrix requires to introduce zero coefficients at high34

spatial frequencies (blue triangles in Fig. 1). These missing Fourier coefficients generate Gibbs-like contamination35

and spread sidelobes from sharp transitions in the brightness temperature scenes. This is the case of images with36

presence of Radio-Frequency Interference (RFI) sources, affected by Sun contamination, or even images presenting37

land/sea/ice transitions.38

SMOS operates at L-band, a protected frequency band for radio-astronomy and passive microwave remote sensing39

according to international regulations. However, RFI has been detected since the first measurements in-orbit during40

the SMOS Commissioning Phase, particularly over Europe, Middle East, and Southern and Eastern Asia [10]. These41

RFI sources degrade the accuracy of the retrieval of soil moisture in the areas where they are located, and also42

hamper the salinity retrievals in zones such as the Mediterranean Sea, China Sea and North Atlantic Ocean. Owing43

to intense efforts by ESA many RFI sources have been switched off, but there are still many others which make the44

retrieval of ocean salinity in some coastal areas impossible, and also strongly affect soil moisture retrievals. The45

SMOS community is making important efforts to improve RFI detection and geolocation algorithms and to develop46

methods for their mitigation [11]–[15]. Besides, direct Sun contamination entering as an alias in the extended alias-47

free field of view also causes strong tails and ripples [16]. This is specially dramatic in the case of the ocean, as48

the sensitivity of L-band brightness temperatures to ocean salinity is quite low, so any perturbation of a few Kelvin49

causes large deviations on the retrieved salinities [17]. Much work has been directed to both mitigation and flagging50

of RFI [18] and Sun influence [19] on ocean scenes.51

In this context, a novel brightness temperature reconstruction algorithm, focused on the improvement of Gibbs-like52

contamination, is presented in this study.53

II. CLASSICAL IMAGE RECONSTRUCTION SCHEME54

In an ideal case, i.e. if all the antenna patterns were equal and the decorrelation effects were considered55

negligible, brightness temperatures could be directly retrieved from the calibrated visibilities by applying an inverse56

Fourier Transform [20]. In the SMOS case, antenna patterns present non-negligible differences. To correct for these57

differences, a more general linear transformation, called G-matrix, is required to retrieve brightness temperatures [9].58
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A column of the G-matrix can be seen as the instrument impulse response to a point source located at a particular59

direction. Efficient inversion methods require the use of a hexagonal reciprocal grid for the spatial frequency60

coverage [20].61

The current reconstruction scheme is based on zero-padding the missing spatial frequencies in the fundamental62

hexagon, as shown in Fig. 1 and then applying the inverse of the G-matrix. This is equivalent to assume that the63

visibilities at the zero-padded frequencies are negligible. If the image is smooth except at a few given places where64

it experiences a moderate jump in value (mathematically this is finite-variation signal), the amplitude of Fourier65

coefficients must decay at least as fast as the inverse of the wavenumber [21]. Henceforth, Fourier coefficients of a66

finite-variation signal become very small for large wavenumbers, and hence it is safe to neglect the visibilities at67

higher spatial frequencies if the spatial resolution is large enough (i.e., the largest wavenumbers attain high values).68

However, MIRAS images have not very fine resolution, and at some instances there are too many high-amplitude69

jumps (e.g., RFI sources). For that reason, the incomplete sampling of visibilities at higher frequencies causes some70

ripples that are quite evident in SMOS brightness temperature snapshots.71

This problem has been circumvented in the SMOS operational processor by the application of a Blackman window72

on the Fourier components of the brightness temperatures. This windowing quite effectively reduces the amplitude73

of such ripples and improve sensitivity, with a small loss in effective spatial resolution [22], [23]. However, even74

after applying a Blackman window, the tails originated by large, rather punctual sources are still very evident. This75

effect can be clearly appreciated in the brightness temperature (TB) image of Fig. 2, corresponding to a TB image76

over the Pacific Ocean strongly contaminated by Sun aliases and their tails. Current SMOS image reconstruction77

approach (G-matrix + Blackman window) is referred in this study as the nominal reconstruction.78

III. CHANGING THE RECONSTRUCTION PARADIGM: SPATIAL OVERSAMPLING AND NODAL POINTS79

Any sharp transition in the brightness temperature (such as RFI sources, the Sun contamination or even land/sea/ice80

transitions) produces a Gibbs-like effect (ringing). Therefore, in the most general case, the signal to be retrieved is81

a mixture of the geophysical signal (continuous signal) and the perturbation induced by some sources, as shown in82

the 1D representation (Fig. 3).83

A new reconstruction approach is proposed based on sampling the signal at those points where eventual punctual-84

source perturbations, as seen by the imperfect instrument, cancel without strongly altering the value at those locations85

where the signal is not perturbed. By increasing the spatial sampling of the signal, the oscillating structures become86

clearer and those points where contamination vanishes can be estimated. The points at which the perturbations87

cancel are called nodal points (marked as black squares in Fig. 3). For a given signal, a subsampling of the88

oversampled image (with the same dimensions as in the nominal image) will be defined which verifies that the89

impact by distorsions (tails, ripples) is minimal. This selection of points of the oversampled image is called Nodal90

Sampling (NS).91

The underlying hypothesis of the NS is that the geophysical signal of interest, at the scale of the spatial resolution92

of the instrument, varies relatively slowly except at the edges of the different regions forming the image. Therefore,93
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it is not expected to have large gradients all over the image. This is very convenient to remove tails and ripples94

originated by RFI sources and Sun, but also by coastlines. At those points where there is no perturbation, the95

subsampled signal will take a value which is the result of the interpolation among the points nearby, which introduces96

some error. However, if the signal changes slowly this error will be rather small. This approximation is very pertinent97

specially in the case of the sea, as ocean structures have typical scales of tens to hundreds of kilometers.98

A. Spatial oversampling99

The spatial oversampling of the brigthness temperature image is performed by embedding the Fourier coefficients100

of the fundamental hexagon in a larger hexagon, with the new spatial frequencies zero-padded. This process grants101

that the original information is completely preserved during the oversampling process, as the original Fourier102

coefficients are kept.103

All the Fourier Transforms in this study have been performed using the change of coordinates defined in [20]104

in order to apply the standard rectangular FFT routines to hexagonally sampled signals, so all the domains are105

squared. The original domain is of side l = 64, hence containing 64× 64 = 4096 Fourier coefficients. The matrix106

of Fourier coefficients is embedded in a larger square domain of side L, with an integer relation β between l and107

L: L = βl (for computational reasons it is very convenient to take β an odd number). All new Fourier coefficients108

are set to zero, while the other are multiplied by β2 to ensure proper normalization. An inverse Fourier Transform109

is applied to the larger Fourier domain in order to obtain an oversampled brightness temperature image, denoted110

by T , which has the same spatial coverage as the original image t, but is β2 times denser.111

By construction, oversampled images depend continuously on the parameter β (what in turn means that any112

image can be extrapolated in a consistent way to any desired resolution), as we prove in the following. Let113

{t(xm, yn)}m,n=0,...,N−1 be a uniformly sampled signal with NxN samples, with sampling points defined by the114

coordinates xm = x0 +mδx, yn = y0 + nδy. To simplify notation, from now on t(xm, yn) ≡ t(m,n). Its Fourier115

transform is hence116

t̂(k, l) =

N−1∑
l=0

N−1∑
k=0

t(m,n)e−2πi(
km+ln
N ) (1)

where t̂(m,n) stands for the Fourier coefficient of the brightness temperature image at the original resolution grid117

with normalized coordinates (m,n) in Fourier space.118

According to our construction, the Fourier coefficients of the oversampled image T̂ (δ, γ) are given by the following119

expression:120
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T̂ (δ, γ) =



β2 t̂(δ, γ) 0 ≤ δ < N/2 ; 0 ≤ γ < N/2

β2 t̂(δ −NL +N, γ) NL −N/2 ≤ δ ≤ NL − 1 ; 0 ≤ γ < N/2

β2 t̂(δ, γ −NL +N) 0 ≤ δ < N/2 ; NL −N/2 ≤ γ ≤ NL − 1

β2 t̂(δ −NL +N, γ −NL +N) NL −N/2 ≤ δ ≤ NL − 1 ; NL −N/2 ≤ γ ≤ NL − 1

0 otherwise
(2)

where NL = βN . Notice that we have multiplied the Fourier coefficients of the original image by β2 to ensure121

proper normalization, that is, that the amplitude of the oversampled signal in direct space is the same as the122

amplitude of the original signal. The oversampled image, denoted by T (Xµ, Yν) or shortly by T (µ, ν) to simplify123

notation, is given by:124

T (µ, ν) =
1

N2
L

NL−1∑
γ=0

NL−1∑
δ=0

T̂ (δ, γ)e
2πi
(
µδ+νγ
NL

)
=

=
1

N2

N/2−1∑
γ=0

N−1∑
δ=0

t̂(δ, γ)e
2πi
(
µδ+νγ
NL

)
+

1

N2

N/2−1∑
γ=0

N−1∑
δ=N/2

t̂(δ, γ)e
2πi
(
µ(δ−N)+νγ

NL

)
+

+
1

N2

N−1∑
γ=N/2

N−1∑
δ=N/2

t̂(δ, γ)e
2πi
(
µ(δ−N)+ν(γ−N)

NL

)
+

1

N2

N−1∑
γ=N/2

N/2−1∑
δ=0

t̂(δ, γ)e
2πi
(
µδ+ν(γ−N)

NL

)
(3)

The sampling points in the denser grid (Xµ,Yν) are given by Xµ = x0 + µ δxβ ,Yν = y0 + ν δyβ , where µ, ν =125

0, . . . , NL − 1. Note that in the second and third summations the dummy summation index δ has been redefined,126

changing it by δ − NL + N and in the third and fourth summations the dummy summation index γ has been127

redefined, changing it by γ −NL +N .128

Interestingly, if µ = βm and ν = βn, for integers values of m and n, we have (Xµ, Yν) = (xm, yn) and129

T (m,n) =
1

N2

N−1∑
γ=0

N−1∑
δ=0

t̂(δ, γ)e2πi(
mδ+nγ
N ) = t(m,n) (4)

so the oversampled image takes exactly the same values as the original ones in the original sampling points. Note130

also that taking ∆x = Nδx, ∆y = Nδy, defining α = µ
NL

and α′ = ν
NL

, and substituting them in eq. (3), it is131

obtained that:132

T (x0 + α∆x, y0 + α′∆y) =
1

N2

N/2−1∑
γ=0

N−1∑
δ=0

t̂(δ, γ)e2πi(αδ+α
′γ) +

1

N2

N/2−1∑
γ=0

N−1∑
δ=N/2

t̂(δ, γ)e2πi(α(δ−N)+α′γ)

+
1

N2

N−1∑
γ=N/2

N−1∑
δ=N/2

t̂(δ, γ)e2πi(α(δ−N)+α′(γ−N)) +
1

N2

N−1∑
γ=N/2

N/2−1∑
δ=0

t̂(δ, γ)e2πi(αδ+α
′(γ−N)) (5)

which is a continuous function of (α, α′) as it is a finite sum of continuous functions of (α, α′). Thus, the133

oversampled image takes the same values as the original image at those sampling points (Xµ, Yν) = (xm, yn), and134
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it depends continuously on the oversampling variables α and α′. We can now try to locate those points at which135

the oscillatory perturbations by tails or ripples cancel, so the values on those points will be exactly those of the136

geophysical signal. For a given oversampling factor β, α and α′ take discrete values α = µ
βN and α′ = ν

βN , where137

µ, ν = 0, . . . , βN − 1. Therefore, with a proper value of β it is possible to oversample the image with enough138

accuracy to approach the ideal nodal sampling.139

An example of the original (t) and the oversampled (T ) brightness temperature images is presented in Figure 4.140

An oversampling factor β = 9 has been used. As it can be seen in this figure, the tails spawning from the RFI141

source at the original image (Fig. 4a) have a clearly oscillating aspect in the oversampled image (Fig. 4b), what142

means that the perturbation must cancel in the space between a peak and a valley.143

B. Method to obtain the Nodal Sampling144

Finding the NS is not simple, as the value of the geophysical signal is not known, neither a model of the145

perturbation is available. However, nodal points can be characterized by some of their functional properties. Let146

us first pose the problem in one dimension. The points at which the perturbations cancel, the nodal points, are147

also the points at which the gradient takes a local maximum value: nodal points are inflection points, at which the148

negative curvature of a peak changes to a positive curvature of the valley, and hence the rate of variation of the149

signal is maximum. As the geophysical signal, by hypothesis, has much smaller gradients almost everywhere, the150

gradient of the signal will be dominated by the gradient of the perturbation when it is present, and especially at151

nodal points. Hence, as a first approximation the nodal sampling will be given by the local maxima of the gradient,152

that is, by the zeroes of the second derivative of the oversampled image. In two dimensions the situation is slightly153

more complicated. The NS will be given by the local minima of the Laplacian of the oversampled image, as the154

second derivative along the oscillating direction cancels, and it is small (almost flat) along the orthogonal direction.155

Interestingly, for a given percusion on a elastic membrane (e.g., a drum) the points that do not oscillate are called156

nodal points and they are determined by the condition of vanishing Laplacian.157

In the lines below we will provide a step-by-step description of the algorithm used to estimate the approximation158

to nodal sampling when a parameter β is given, but let us first provide a simplified overview of it. In the first159

step of the algorithm, the original image with N × N samples is oversampled. The oversampled image is a new160

image with NL ×NL samples (NL = βN ), so that each point in the original image is associated to β2 points of161

the oversampled grid, which correspond to the subpixels included in the area covered by the original pixel. The162

following steps of the algorithm aim to obtain a corrected image with the same number of samples as the original163

one, that is, N ×N . This corrected image is constructed by taking the values of the oversampled image at specific164

points, each point in the corrected image being one specific point of its associated β2 subpoints. The choice of165

points in the oversampled grid leading to the corrected image is iteratively refined, but the oversampled image is166

never changed, just the grid. By construction, the points in the corrected image are assigned to the same physical167

positions of those of the original image. The displacement implied by taking a subpixel different from the one168

at the center of the pixel is smaller than the pixel size, so we accept this representativity error as it is expected169
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to be smaller than the error caused by Gibbs effects. The grid of selected points of the oversampled image is170

modified until attaining a quality goal, which implies that the impact of the contaminations in the corrected image171

is minimum. At that moment, we have the approximation to the nodal sampling grid for the given oversampling172

factor β.173

The algorithm proceeds as follows:174

1) The oversampled brightness temperature image T (µ, ν) is obtained as described in section III-A with a given175

oversampling factor β and oversampling points {Xµ, Yν}µ,ν=0,...,βN−1.176

2) The high-resolution Laplacian of the oversampled image, ∆HT (µ, ν), is computed at each point as the177

difference between the average of the TB values at the six first neighbours of that point (according to SMOS178

hexagonal geometry, see [20]) and the value at that point [24]; namely:179

∆HT (µ, ν) ≡ [T (µ+ 1, ν) + T (µ− 1, ν) + T (µ, ν + 1)+

T (µ, ν − 1) + T (µ+ 1, ν − 1) + T (µ− 1, ν + 1)] /6− T (µ, ν) (6)

3) The first approximation to the set of nodal points in the oversampled image, denoted by180

{Xµ0(m,n), Yν0(m,n)}m,n=0,...,N−1, is calculated as the local minima of the high-resolution Laplacian at181

each β × β block (corresponding to each pixel in the original image), i.e., mβ ≤ µ0(m,n) < (m + 1)β,182

nβ ≤ ν0(m,n) < (n+ 1)β, and183

|∆HT (µ0(m,n), ν0(m,n))| ≤ |∆HT (µ(m,n), ν(m,n))| (7)

∀ µ, ν : mβ ≤ µ(m,n) < (m+ 1)β , nβ ≤ ν(m,n) < (n+ 1)β

4) Start of the iterative loop: given the current i-th approximation to the nodal grid, {Xµi(m,n), Yνi(m,n)}, the184

corrected image ti at the original resolution, defined by ti(m,n) ≡ T (µi(m,n), νi(m,n)), is obtained.185

5) The current selection of nodal points is iteratively fine tuned: For each position in the coarse grid (m,n), at186

the i-th iteration:187

5.1 The average value of the six first neighbours of the current corrected image is computed. It is denoted188

by t̄i(m,n), and it is given by:189

t̄i(m,n) ≡ (ti(m+ 1, n) + ti(m− 1, n) + ti(m,n+ 1) +

ti(m,n− 1) + ti(m+ 1, n− 1) + ti(m− 1, n+ 1))/6 (8)

5.2 A new oversampling point {Xµi+1(m,n), Yνi+1(m,n)} is searched for, verifying that the lower resolution190

Laplacian, ∆Lti+1(m,n) would be reduced in absolute value if the corrected image at that point were191

substituted with the new oversampling point; more precisely, defining the lower-resolution Laplacian192

estimate as193
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∆̂Li+1
T (m,n) ≡ t̄i(m,n)− T (µi+1(m,n), νi+1(m,n)) (9)

where {Xµi+1(m,n), Yνi+1(m,n)} is defined such that mβ ≤ µi+1(m,n) < (m+1)β , nβ ≤ νi+1(m,n) <194

(n+ 1)β and195

|∆̂Li+1
T (m,n)| ≤ |t̄i(m,n)− T (µ, ν)| (10)

∀ ν, µ : mβ ≤ µ < (m+ 1)β , nβ ≤ ν < (n+ 1)β

5.3 End of iterative loop: The algorithm is iterated from 4) until a break condition is reached (the reason196

for a break condition being explained later).197

In Fig. 5 three different subgrids on an oversampled image are presented; the background brightness temperature198

image is a zoom of the oversampled image in Fig. 4b. White stars indicate which points belong to each subgrid.199

Fig. 5a presents the regular N × N subgrid which leads to the same values of brightness tempeatures as the200

original image. The initial guess of nodal points (step 3) is shown in Fig. 5b. The brightness temperature image201

reconstructed sampling the signal at that subgrid is shown in Fig. 6b. Nodal points estimated after 20 iterations202

are depicted in Fig. 5c. From these images it is clear how the nodal points selection has been fine tuned after 20203

iterations and that nodal points have concentrated in the spaces between a peak and a valley. Final reconstructed204

brightness temperature is obtained sampling the original image at the final selection of nodal points (Fig. 6c). A205

significant reduction of the general ripples and tails in this image can be appreciated when comparing it to the206

nominal reconstruction (Fig. 6a).207

The break condition in 6.3 can be defined in several ways, typically associated to the increase in quality of208

the signal. As it will be discussed in the results section, the spatial standard deviation of the corrected images209

rapidly decreases (indicating that spurious large amplitude oscillations are being removed, as confirmed by visual210

inspection) during the first iterations and then stagnates. The number of points being updated also decreases very211

rapidly until it attains a non-zero minimum.212

Note that, as many points may be updated when passing from the i-th iteration to the (i+1)-th iteration, the213

lower-resolution Laplacian estimate, ∆̂Li+1T (m,n), needs not to coincide with the lower-resolution Laplacian of214

the (i+1)-th corrected image, ∆Lti+1(m,n) = t̄i+1(m,n)− ti+1(m,n). This may eventually lead to an oscillatory215

behaviour, in which the same points get updated to one value then back to the previous one. This seems to happen216

if no break condition is introduced. For the sake of simplicity, in the present version of the algorithm a very simple217

break condition has been introduced: the algorithm stops when 20 iterations have been reached, as from all the218

tests performed no significant image improvement has been observed after this amount of iterations.219

The nodal sampling technique has been implemented using as input data the Fourier components of the brightness220

temperatures generated by MIRAS Testing Software (MTS) [25]. Nodal sampling has been applied to the images221

presented in this section using an oversampling factor β = 9 and the number of iterations has been fixed to 20.222
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The computational time of running the nodal sampling algorithm under these conditions is around 4 minutes per223

orbit using a standard workstation. This compares favourably the computational time required for the standard224

processing from level 0 (raw data) to level 1B (brightness temperatures) using the MTS software, which takes225

around 20 minutes. The nodal sampling algorithm could be straightforwardly extended to a domain of side l = 128,226

as the one used in the SMOS Level 1 Operational Processor.227

IV. RESULTS228

As discussed in the sections above, the reduction of sidelobes is particularly crucial for sea surface salinity, where229

very small variations of brightness temperatures are important for a quality retrieval. In this paper, the algorithm230

performance has been throughly analyzed using snapshots over the ocean. For all the images presented in this231

manuscript, brightness temperatures are at the antenna reference frame. Overlaying the TB images, the red line232

gives the fundamental hexagon in the (ξ, η) antenna reference frame and the blue line of the inner curved hexagon233

limited by the unity circle contours (dashed lines) defines the Nyquist Alias Free-Field of View (AF-FOV) [26].234

An example of an RFI source produced by a ship on the Atlantic Ocean has been used to illustrate the nodal235

sampling performance in strongly RFI-contaminated images. A point source (such as an RFI source or the Sun)236

is seen by the instrument not only as a single strong point source, but also as a systematic structure with visible237

sidelobes (so-called tails) at ±30, ±90 and ±150 degrees with respect to the positive x-axis from the RFI source238

centre, that contaminate other parts of the image. This can be clearly appreciated in the brightness temperatures239

corresponding to the current image reconstruction approach in Fig. 7a. The associated brightness temperature240

image in the fundamental hexagon after applying the nodal sampling algorithm is shown in Fig. 7b. Comparing241

this image to the nominal one, a clear reduction of the general ripples and the sidelobes along the RFI directions242

can be appreciated. As shown in the histograms of TB values, the distribution of brightness temperatures has been243

concentrated in the expected range for the geophysical signal when NS is applied (Fig. 7d) with respect to the244

nominal processing (Fig. 7c). Red bars in the histograms account for negative values and those values higher than245

350 K (i.e. non-natural emission). As evidenced by the graphs, the bulk of the negative brightness temperatures has246

been removed by sampling the signal at the selected nodal points. A part of the negative TB values in the nominal247

image have become values higher than 350 K in the nodal sampled brightness temperature image. This fact explains248

the increase of the excess bar accounting for those values higher than 350 K. However, considering a mask of the249

brightness temperature images (pixels corresponding to non-natural emission, that is negative TB and values higher250

than 350 K, have been marked) it can be observed that points assigned by the NS (Fig. 7f) to values higher than251

350 K correspond to values which are also contaminated in the nominal image (Fig. 7e). In this image, the RFI252

source has a wider extent after applying nodal sampling than in the nominal case. This widening of sources seems253

to happen with very deteriorated signals and, according to our experiences is not a systematic low-pass filter effect254

but rather a non-linear adaptive interpolation. This can be clearly seen in Fig. 6, where some RFI sources present255

this widening effect with respect to the TB image in the nominal case (Fig. 6a), but not some others, such as the256

ones located around (ξ, η) positions (0.28,0.04) and (0.25,0.41), which in fact have been removed using NS (Fig.257

March 25, 2015 DRAFT



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 10

6c). Cuts of the brightness temperature image along the directions of the RFI show a quite significant reduction258

of the sidelobe levels (Fig. 8; note that the scale of the y-axis is logarithmic to better show the full variability of259

brightness temperatures). It can be clearly observed that using the proposed approach (blue line), sidelobes levels260

have been considerably decreased and the TB is smoother than in the nominal processing (black line). These results261

have been compared with those from a clean snapshot taken 18 days later (as the satellite overpassed the same262

zone), when no RFI was present (Fig. 9). Cuts of the clean image, performed along the directions shown in Fig. 8d,263

are presented in Fig. 10. Results indicate that nodal sampling is reducing the small ripples present in the image264

even in the clean scene while maintaining the geophysical contributions.265

To further assess if the geophysical signal is preserved when nodal sampling is applied, SMOS TB measurements266

over ocean have been compared with modeled brightness temperatures, derived from the Geophysical Model267

Function (GMF) presented in [27], and applying it to geophysical priors [28]. Then, the difference between both268

brightness temperatures has been computed and the statistics of this new variable have been evaluated. In this269

analysis, an ascending overpass in a very stable zone over the Pacific Ocean (longitude-latitude coordinates: [137◦270

W-95◦ W,45◦ S-5◦ S], where the operational OTT -Ocean Target Transformation- is computed [29], [30], has been271

used. The OTT is used in the operational processing to correct for residual antenna-frame systematic errors. The272

median for all the snapshots over that zone of the brightness temperatures difference per each point in the Extended273

Alias-Free Field of View (EAF-FOV) region is presented in Fig. 11. Left column plots correspond to the nominal274

and right column plots to the nodal sampled images. Results correspond to X (top row) and Y-polarization (bottom275

row), using only pure dual epochs, that is, epochs with all arms at the same polarization status, either X or Y276

[31]. The statistics computed for all the points in the AF-FOV and EAF-FOV regions are also indicated in the277

plots. As shown in the figure, spatial structures observed in the brightness temperatures difference derived with278

the nominal processing can also be recognised in NS case, although the later are smoother, as indicated by the279

standard deviation. This means that NS is correcting rapidly-oscillating errors but without introducing changes in280

the behaviour of the systematic antenna-frame errors.281

To characterize the extent of the error reduction when NS is applied, the standard deviation for all the snapshots282

over that zone of the difference between measured and modeled brightness temperatures has been computed for283

each point in the EAF-FOV region. Figure 12 shows that it is significantly reduced in most of the pixels using284

nodal sampling (right column) with respect to the nominal case (left column). Note that Sun alias and its tails can285

be clearly distinguished in the standard deviation plots. The histograms of those standard deviations are shown in286

Fig. 13. These distributions reveal that the brightness temperatures retrieved using nodal sampling are closer to the287

modeled ones than using the current SMOS image reconstruction baseline, since the average standard deviation has288

been reduced by approximately 1 K for both polarizations.289

The study has been extended in order to see the overall performance of the nodal sampling algorithm over the290

Earth’s oceans. A 9-day (June 12-21, 2014) 0.25◦ resolution global map of the First Stokes brightness temperatures291

difference between SMOS measurements and the model [27] is presented in Fig. 14 for nominal image reconstruction292

and Fig. 15 for the nodal sampled brightness temperatures. In both cases, the corresponding OTT has been subtracted293
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to the brightness temperatures before computing the difference with the modeled TB. Brightness temperatures at294

BOA (Bottom of the Atmosphere) have been used and their values in the AF-FOV region have been averaged to295

produce these maps. It is worth noting that using nodal sampling, the residual difference between the corrected-296

OTT brightness temperatures and the modeled brightness temperature is significantly decreased with respect to297

the nominal image reconstruction. Besides, the reduction in the standard deviation of the First Stokes brightness298

temperature differences is approximately 0.7 K when nodal sampling is used (Fig. 17) with respect to the nominal299

image reconstruction (Fig. 16).300

Since each error of 0.5 K represents an error of approximately 1 psu, a gain of quality of about 2 psu is expected301

in the salinity retrievals over clean and stable zones of the ocean when nodal sampling is introduced, and of302

approximately 1.4 psu over the global ocean. This gain of quality is quite considerable taking into account that the303

SMOS mission requirement is 1 psu of accuracy at level 2.304

V. CONCLUSIONS AND FUTURE WORK305

In this paper a new algorithm for SMOS image reconstruction, the Nodal Sampling, has been introduced. NS is306

based on oversampling reconstructed images by an appropriate extension in Fourier space and then subselecting a307

grid of points with the condition of minimum distorsion by oscillatory perturbations to reconstruct the signal. The308

method has shown to be easy to implement, it leads to correct general ripples and significantly reduces sidelobes309

which are visually quite noticeable.310

Validation over ocean scenes has shown that applying Nodal Sampling as SMOS image reconstruction provides a311

considerable error reduction on brigthness temperatures. This reduction is of approximately 1 K on clean orbits as312

the ones used to compute the Ocean Target Transformation, and of 0.7 K in average over the whole ocean. Therefore,313

an estimated quality gain of around 1.4 psu can be expected in the salinity retrievals with Nodal Sampling.314

While Nodal Sampling always diminishes the impact of tails and ripples, it has an unequal performance on the315

area where RFI sources are located. In some cases, the affected area is larger while in other cases this area becomes316

muchs smaller than in the nominal case. Both effects (increase or decrease in the size of the RFI area) can take317

place in the same snapshot (see for instance Figure 6), what indicates that Nodal Sampling is not equivalent to apply318

a linear filter (which would produce the same effect all over the image). The reasons for this different behaviour of319

Nodal Sampling are still under investigation. They may be related to the deterioration of the signal when a large320

RFI is present, that make the points close to the souce impossible to retrieve. Besides, under some circumstances321

the nodal points seem to lie a little beyond the boundaries of the original pixel, so a modification of the standard322

algorithm is required (under investigation).323

The presence of the effects mentioned above open the question about which is the effective resolution of SMOS324

images after applying Nodal Sampling. Answering this question is not straightforward, because Nodal Sampling is325

not linear and so the resolution needs not to be homogeneous across the image. It should be possible to produce326

an assessment of the average effective resolution by analyzing the spectral content of an ensemble of snapshots,327

something that deserves a dedicated study. In addition, it would be very convenient to devise metrics to evaluate328
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the local resolution on each snapshot; this would be helpful not only on operational terms, but also to drive the329

improvements in the method.330

Out of RFI sources the blurring of geophysical structures seems to be not quite significant, as confirmed by the331

better correspondence of NS brightness temperatures with modelled ones than the same comparison with nominal332

brightness temperatures. It is however necessary to make a more precise assessment on the structural content333

of images; we are presently working on a method based on the correspondence of singularity exponents [32].334

Alternative methods include the analysis of the spatial correlations of the signal at level 2 (retrieved sea surface335

salinities).336

The next step is to assess the impact of using the Nodal Sampling technique on the quality of sea surface337

salinity retrievals. This is not straightforward since several aspects of the salinity inversion need to be previously338

addressed. For example, an estimation of the radiometric accuracies is required since NS seems to lead to a decrease339

of the expected errors. Furthermore, the stability of the OTT needs to be evaluated to establish an appropriate340

computation frequency. So, obtaining sea surface salinities from nodal sampled brightness temperatures needs a341

dedicated experimental set up, already in progress.342

Over land, NS could also be useful to improve soil moisture retrievals, specially when the presence of RFI sources343

hampers quality retrievals over the land-affected areas. However, spatial correlation scales are typically smaller over344

land than over ocean; moreover, the requirements on spatial resolution are more stringent. As NS requires spatial345

gradients of the signal to be retrieved considerable smaller than those of the perturbation, NS may present lower346

performance on land applications. NS performance evaluation tests over land are then required. Validation over land347

is more complicated than over ocean since geophysical models of soil moisture have also a wider variability range.348

This is a subject of further research.349

Finally, it is important to mention that the method presented in this paper, although used for improving the quality350

of SMOS images, could be used in any other context in which an image is reconstructed with partial information351

of its Fourier coefficients. NS will be of application if the signal to be separated from the perturbation is of relative352

slow variation. This can be useful to improve image quality in other interferometric instruments, as well as in image353

reconstruction in general.354
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Fig. 1. Spatial frequencies where the visibility samples are measured (red stars). Zero-padding of the lacking spatial frequencies in the

fundamental hexagon is performed before brightness temperature reconstruction (blue stars).

Fig. 2. Brightness temperature image over Pacific Ocean strongly affected by Sun aliases and tails. Nominal processing (G-matrix + Blackman

window) has been used in the image reconstruction.
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Fig. 3. 1D representation of the signal to be retrieved: a mixture of sharp transitions (Gibbs-like contamination), and the geophysical contribution

(low contribution at high frequencies).

(a) SMOS reconstructed image (without Blackman window) (b) Oversampled brightness temperature image

Fig. 4. Brightness temperature in the fundamental hexagon of a snapshot over North-Africa. Oscillating structures are more evident in the

oversampled image. An oversampling factor β = 9 has been used.
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(a) SMOS original sampling (b) First guess of nodal points (c) Nodal points after 20 iterations

Fig. 5. Zoom of the oversampled brightness temperature image (without Blackman window) in Fig. 4b. White stars indicate the selected nodal

points, that is, those points where the original image is sampled.

(a) Nominal TB (b) NS TB, first guess (c) NS TB, 20 iterations

Fig. 6. (a) Nominal brightness temperature image from Fig. 4. (b) Retrieved brightness temperature after applying nodal sampling technique,

using subgrid in Fig. 5b. (c) Retrieved brightness temperature after applying nodal sampling technique, using subgrid in Fig. 5c. An oversampling

factor β = 9 has been used in images (b) and (c).
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(e) Nominal TB mask
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(f) Nodal sampling TB mask

Fig. 7. Brightness temperatures in the fundamental hexagon of a snapshot over the Atlantic Ocean strongly affected by an RFI produced by

a ship, UTC time: 11-Feb-2010 21:46:25, Y-polarization. Red bars in the histograms account for negative brightness temperatures and values

higher than 350 K (corresponding to non-natural emission). Pixels with TB values not corresponding to natural emission have been masked.
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(a) Cut at 30 deg. (b) Cut at -30 deg.

(c) Cut along eta (d) Directions for TB cuts

Fig. 8. Cuts along the RFI directions of the brightness temperature image in Fig. 7. Note that the scale is logaritmic to show the full variability

of brightness temperatures in this image contaminated by a strong RFI. A considerable decrease of the sidelobe levels can be appreciated when

applying nodal sampling technique (blue line) with respect to the nominal one (black line).

(a) Nominal TB (b) Nodal sampling TB

Fig. 9. (a) Nominal brightness temperature image over the same zone than Fig. 7. (b) Retrieved brightness temperature after applying nodal

sampling technique, using an oversampling factor β = 9 and 20 iterations.
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(a) Clean image, cut at 30 deg. (b) Clean image, cut at -30 deg. (c) Clean image, cut along eta

Fig. 10. Cuts of brightness temperature of the clean image in Fig. 9. Cuts of the brightness temperatures have been performed along the same

directions shown in Fig. 8d.
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(a) Nominal, X-polarization (b) Nodal sampling, X-polarization

(c) Nominal, Y-polarization (d) Nodal sampling, Y-polarization

Fig. 11. Median of the difference between TB measurements and the theoretically modeled TB for the Extended Alias Free-Field of View

(EAF-FOV). Statistics have been computed using an ascending orbit over a very stable zone in the Pacific Ocean (OTT computation zone).

Dashed lines correspond to the the six unit circles aliases.
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(a) Nominal, X-polarizattion (b) Nodal sampling, X-polarization

(c) Nominal, Y-polarization (d) Nodal sampling, Y-polarization

Fig. 12. Standard deviation of the difference between TB measurements and the theoretically modeled TB for the Extended Alias Free-Field

of View (EAF-FOV). Statistics have been computed using an ascending orbit over a very stable zone in the Pacific Ocean (OTT computation

zone). Sun alias and its tails can be clearly distinguished. Dashed lines correspond to the the six unit circles aliases.
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(b) Y-polarization

Fig. 13. Distributions of the standard deviation of the difference between the TB measurements and the model for nominal (red) and nodal

sampling (black) processing. A reduction of approximately 1 K is obtained when using nodal sampling technique with respect to the SMOS

nominal processing.

Fig. 14. 9-day 0.25◦ resolution map of the First Stokes brightness temperatures difference between SMOS measurements and the model for

nominal image reconstruction. Brightness temperatures at BOA have been used to produce the map. The average for all the pixels in the AF-FOV

region has been performed.
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Fig. 15. 9-day 0.25◦ resolution map of the First Stokes brightness temperatures difference between SMOS measurements and the model for

nodal sampling approach. Brightness temperatures at BOA have been used to produce the map. The average for all the pixels in the AF-FOV

region has been performed.

Fig. 16. 9-day 0.25◦ resolution map of the standard deviation of the First Stokes brightness temperatures difference (SMOS measurements

minus model) for nominal image reconstruction. Brightness temperatures at BOA have been used to produce the map. The average for all the

pixels in the AF-FOV region has been performed.
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Fig. 17. 9-day 0.25◦ resolution map of the standard deviation of the First Stokes brightness temperatures difference (SMOS measurements

minus model) for nodal sampling approach. Brightness temperatures at BOA have been used to produce the map. The average for all the pixels

in the AFFOV region has been performed.
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