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 
Abstract—This paper focuses on a heterogeneous scenario in 

which cellular and wireless local area technologies coexist and in 
which mobile devices are enabled with device-to-device 
communication capabilities. In this context, this paper assumes a 
network architecture in which a given user equipment (UE) can 
receive mobile service either by connecting directly to a cellular 
base station or by connecting through another UE that acts as an 
access point and relays the traffic from a cellular base station. 
The paper investigates the optimization of the connectivity of 
different UEs with the target to minimize the total transmission 
power. An optimization framework is presented, and a 
distributed strategy based on Q-learning and softmax decision 
making is proposed as a means to solve the considered problem 
with reduced complexity. The proposed strategy is evaluated 
under different conditions, and it is shown that the strategy 
achieves a performance very close to the optimum. Moreover, 
significant transmission power reductions of approximately 40% 
are obtained with respect to the classical approach, in which all 
UEs are connected to the cellular infrastructure. For multi-cell 
scenarios, in which the optimum solution cannot be easily known 
a priori, the proposed approach is compared against a 
centralized genetic algorithm. The proposed approach achieves 
similar performance in terms of total transmitted power, while 
exhibiting much lower computational requirements.  
 

Index Terms—Power efficient communications, D2D, Q-
learning, AP selection  

I. INTRODUCTION 

ITH the proliferation of bandwidth-intensive 
applications, user data traffic and the corresponding 
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network load are increasing exponentially. As a result, 
conventional cellular architectures are facing unprecedented 
challenges to meet user demands, particularly for users located 
at cell edges or in indoor positions, where a significant portion 
of the data traffic is being generated. To provide broadband 
services with satisfactory user experience in these locations, 
when conventional cellular architectures are used, an 
increased link budget is required, leading to larger transmit 
power consumption at both base stations (BSs) and user 
equipment (UE). As a result, there has been increasing interest 
in evolving network architectures, functionalities and 
technologies to better address these challenges. 

In particular, the classical cellular network concept is being 
shifted towards the so-called heterogeneous networks 
(HetNets) composed of multiple access technologies, such as 
cellular and wireless local area networks, and multiple cell 
layers of different sizes [1][2]. The use of device-to-device 
(D2D) communications, in which UEs are able to directly 
communicate, is also envisaged as an important component of 
these future networks because it opens the door for a number 
of possibilities, such as proximity services and cellular 
coverage extension by means of relaying other UEs. [3]. 
Initiatives in this direction are being conducted by the 3rd 
Generation Partnership Project (3GPP) in Long Term 
Evolution (LTE) Release 12 [4] and by the Wi-Fi Alliance, 
which has recently developed Wi-Fi Direct technology [5], 
which allows a UE to act as an access point (AP) for other 
UEs. In this way, different UEs communicate between 
themselves, and one of them can share its cellular connection 
with others by relaying their traffic to/from a cellular BS.  

There are different taxonomies of D2D use cases [3]-[8]. In 
[7], the D2D use cases are divided into two categories. The 
first category is simple D2D communication, in which the 
sender and receiver exchange data with each other, and in the 
second category, D2D users act as a relay for the other users. 
In this paper, we focus on the second category, considering a 
cellular network where the UEs have the capability to act as 
APs and relay traffic from the cellular infrastructure to other 
UEs. In [8], a survey on the multiple D2D use cases is 
presented. The cases are categorized as in-band D2D, in which 
the D2D link and the cellular link use the same spectrum, and 
out-of-band D2D, in which the D2D link and the cellular links 
use different frequency bands or even different technology 
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(e.g., LTE for the cellular link and IEEE 802.11 for the D2D 
link). In this paper, we focus on the out-of-band D2D case, 
which is identified in [8] as an emerging area of research 
because the majority of current mobile devices are equipped 
with more than one wireless interface (e.g., Wi-Fi and LTE), 
which facilitates the implementation and results in advantages 
compared to in-band D2D, such as the possibility to have 
simultaneous communication in the cellular and D2D links 
and the lack of interference between the two.  

In [9], different use cases and scenarios of D2D for further 
research towards Fifth Generation (5G) networks are 
identified. D2D applications are split into three groups, one of 
them being network enhancement based services, in which 
D2D communications are envisaged to improve connectivity, 
Quality of Service (QoS) and capacity via activation of the 
appropriate communication modes (i.e., cellular, direct D2D 
and relay mode). In this paper, we address the last problem, 
namely, the selection between the cellular and the relay mode 
to enhance the network performance. Indeed, due to the 
shorter distances and associated lower propagation losses in 
the D2D link, it is expected that the higher bit rates associated 
with mobile broadband services can be more efficiently 
achieved (e.g., with less power consumption) than when the 
UEs at the cell edge connect directly to the BS. In this 
scenario, given the randomness associated with the 
propagation in mobile environments, the variability in the 
generation of data traffic and the mobility of UEs and UEs 
acting as APs, there will be situations in which it may be more 
efficient for a certain UE to connect to another UE acting as 
an AP or to connect directly to the cellular BS, leading to a 
dynamic network architecture in which the UEs can 
dynamically change the way they connect to the cellular 
infrastructure. Consequently, it is crucial to have intelligent 
decision mechanisms to determine the best connection for 
each UE. Such decisions need to consider aspects such as the 
propagation conditions of the different links, the load existing 
in each macrocell and in each AP, the bit rate requirements of 
each UE and the total power consumption.  

In this context, this paper considers the optimization of the 
UE connectivity with the objective of minimizing the total 
transmit power, thus targeting an efficient solution from the 
perspective of energy consumption. The design of strategies 
that are efficient in providing the desired wireless services 
with minimum power consumption is relevant not only from 
an ecological perspective but can also lead to significant 
economic benefits. As an example, it is stated in [10] that the 
energy bill for a mobile operator accounted for approximately 
18% of the operational expenditures in a mature European 
market and increased to 32% in other markets, such as India. 
Following this trend, several initiatives have addressed 
research towards energy-efficient wireless communications 
[11]. Transmit power reduction can also be beneficial from the 
perspective of health because both users and regulators are 
concerned about the potential undesirable effects of wireless 
network radiation on the human body. Different national 
authorities at the worldwide level have conducted intensive 
studies in this direction, usually recommending the 

minimization of exposure to citizens as a precautionary 
measure [12]-[14].  

Based on the above, the main contributions of this work are 
summarized as follows: 
1) A new optimization framework is presented to determine 

the best connectivity option for each UE in a 
heterogeneous network with out-of-band D2D capabilities 
used for relaying data. The objective is to minimize the 
total power consumption in the scenario while satisfying 
the bit rate requirement of each UE. The main differences 
from the classical relay selection due to the consideration 
of D2D are: (i) the UEs acting as APs may have their own 
data to transmit, (ii) different frequency bands and 
technologies are used for the cellular link and the D2D 
link, and (iii) the UEs acting as APs can exhibit mobility. 
To the authors’ best knowledge, no previous work has 
addressed the optimization of this use case from the 
perspective of total power consumption.   

2) A new distributed strategy based on Q-learning and 
softmax decision making is proposed as a means to 
implement the presented optimization framework. In this 
approach, each UE autonomously decides the most 
appropriate AP or cellular BS to receive the required 
service based on its previous experience of using the 
different APs/BSs. The main advantage of this type of 
distributed approaches is that it allows for a reduction in 
complexity in comparison to centralized approaches that 
address the global optimization by jointly considering all 
APs and UEs. Therefore, the distributed approach can 
scale better when increasing the network size. 

3) The proposed strategy is evaluated under different 
conditions, revealing that its performance is very close to 
the optimum and that it can provide significant power 
consumption reduction with respect to the classical 
approach, in which the UEs connect directly to the cellular 
BSs. The proposed approach is also benchmarked against a 
centralized genetic algorithm, showing similar 
performance despite the decentralized operation. 

The paper is organized as follows. Section II presents a 
summary of related work, and Section III elaborates the 
system model and the proposed optimization framework. 
Section IV presents the proposed Q-learning based solution 
for AP/BS selection, which is evaluated in Section V. Finally, 
conclusions are summarized in Section VI. 

II. RELATED WORK 

Multi-hop cellular networks (MCN) [15], in which the 
traffic of a UE is relayed to a cellular infrastructure node by 
means of intermediate relay stations, have received significant 
interest in recent years as a means to enhance the capacity, 
data rates and coverage of cellular networks. For example, 
architectural aspects and routing protocols were studied in 
[16]-[19], and different relay selection schemes were recently 
proposed in [20]-[22].   

The focus of this work is on the out-of-band relaying D2D 
use case in which the cellular link and the relay link make use 
of different technologies. In this respect, in [23], the relay 
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selection probability is analyzed in the uplink of an LTE-
based, multi-hop cellular network with out-of-band relaying. It 
accounts for the intercell interference in the cellular network, 
as well as for the fact that both the cellular link and the relay 
link using IEEE 802.11 can limit the capacity. The method 
assumes, however, a regular channel allocation of IEEE 
802.11 channels to relays in different hexagonal cells that may 
not be realistic because the deployment of Wi-Fi access points 
is usually highly irregular. In [24], a network selection scheme 
is considered in a heterogeneous scenario with LTE and Wi-Fi 
APs that accounts for the backhaul capacity for each AP. The 
considered scenario assumes APs deployed at specific 
positions, in contrast to this work, which assumes that the UEs 
can act as APs and relay the traffic of other UEs towards the 
LTE network. Another important difference of this paper with 
respect to prior studies is that we assume that a UE acting as 
an AP and relaying data to other UEs may also have its own 
information to be transmitted, whereas previous works usually 
assume that a UE can only act as a relay when it does not have 
its own data to be transmitted. In [25][26], the combination of 
LTE-A with D2D communications is explored for the 
provision of multicast services, analyzing the potentialities in 
terms of energy consumption. Similarly, in [27], the use of 
Wi-Fi in conjunction with LTE is studied for the provision of 
in-car communications. A simulation analysis is presented to 
show that this approach can provide higher bit rates than direct 
connection to the LTE network. In [28], the so-called user-
provided networks are considered, in which mobile hosts with 
3G/4G connections are incentivized to forward data for others. 
Whereas that scenario is similar to the one considered in this 
paper, the focus of [28] is placed on the incentive mechanisms 
and not on the optimization of the connectivity options to 
minimize the transmitted power. Finally, in [29], the 
opportunistic coverage extension of a cellular network was 
analyzed to provide service to UEs outside of the direct 
coverage area of the cellular BS by means of relaying, and a 
learning-based approach was used to select both the spectrum 
of the D2D link and the node that provides the coverage 
extension.  

There are also a number of works that have considered 
different approaches for AP selection in wireless local access 
networks (WLAN). Apart from the classical approach, in 
which the AP is selected based on signal strength, different 
studies have proposed other metrics to achieve a more 
efficient AP association, such as the packet error rate, the 
throughput and the bandwidth per user [30]-[32]. Other 
approaches, such as [33], consider the load balancing problem 
under max-min fairness considerations, whereas in [34]-[37], 
game theory concepts are considered for the association of 
UEs to APs. However, none of the above works assumes the 
scenario in which the APs can be used to relay traffic from the 
UEs to the cellular infrastructure, as considered in this work.  

III. SYSTEM MODEL AND PROBLEM FORMULATION 

A. System model 

The scenario considered in this work is represented in Fig. 1. 

It assumes a cellular network where each UE (e.g., current 
smartphones) can be turned into an AP and can be used to 
provide wireless connectivity to other UEs. Let us consider J 
macrocell BSs denoted as the set β={S1,...,SJ} with cellular 
technology (e.g., LTE or LTE-A), K UEs acting as APs 
denoted as the set ={A1,....AK} and N UEs not acting as APs 
denoted as U={u1,...,uN}. In the following, the UEs of set  
will be referred to simply as “APs”, whereas those of set U 
will be referred to as “UEs”. The bit rate requirement of UE un 
is Rn. To achieve that bit rate, UE un must connect to one BS 
in set β or one of the APs in set . In this respect, the purpose 
of this work is to perform an efficient selection of the AP or 
BS for each UE because this selection will impact the total 
radio resource consumption. This work assumes 
communication in the downlink direction, i.e., from the 
BSs/APs to the UEs, although it could easily be extended to 
consider the uplink direction. 

The BS/AP selection process is executed at a time scale 
where all short-term effects, such as the frequency-selective 
fast fading, have been averaged. This time scale prevents the 
UE from continuously changing the BS or AP due to random 
channel variations that occur on a very short time scale.  

Each AP has the capability to provide wireless Internet 
access to other UEs. In general, different possibilities exist for 
this access. This work assumes that a UE acting as an AP is 
also connected to the cellular infrastructure, so that the AP 
relays the data traffic of a BS to the UE using a 2-hop 
approach. Then, in the example of Fig. 1, UE u1 has different 
possibilities for obtaining service: direct connection to S2, 2-
hop connection S2A2u1, 2-hop connection S2A3u1 and 
2-hop connection S1A1u1. In contrast, UE u2, out of the 
coverage area of the macrocells, has only one possibility: 
S2A2u2. This work could be easily extended to consider 
other possibilities for providing access through the APs, for 
example, in the case that the APs are fixed and have wired 
connection to the Internet (as in the Dynamic Network 
Architecture proposed in [38]), in which case no relaying 
would be needed.  

For the APs, it is considered that, in addition to relaying the 
traffic of other UEs, they may have their own service 
requirements. Then, the bit rate requirement of AP Ak is RA,k. 

B. Macrocell link 

It is assumed that the J BSs operate with the same LTE 
carrier composed of M resource blocks (RB) of bandwidth B 
that can be assigned to the N UEs (if directly connected to one 
of the BSs) or to one of the K APs. As previously mentioned, 
BS/AP selection is executed after having averaged the short-
term effects (e.g., frequency-selective fast fading), so we are 
only concerned with the average number of RBs required by 
each UE or AP to achieve their desired bit rate in a given BS, 
but not with modelling the scheduling process that will decide 
which specific RBs are allocated to each UE/AP in the short-
term. Then, the average number of RBs required at BS Sj 
(j=1,…,J) to serve its UEs can be expressed as 
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that AP Ak is active is denoted as k and is given by 
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UE un is given by 

 

, ,
, , 2

, , ,

/
log 1 A D k n

D k n A
N A D k n

P L
r B

P I

 
    

 (8) 

 
where LD,k,n is the average propagation loss between UE un and 
AP Ak, PN,A=No·BA is the noise power at the UE and ID,k,n is the 
average interference observed at UE un coming from the rest 
of APs Ak’ that work at the same frequency as AP Ak. It is 
given by 
 

 , , ' , '
' 1 , ',
'

· ·
K

A
D k n k k k

k D k n
k k

P
I F

L


   (9) 

 
where Fk,k’ is a binary indicator that takes the value 1 if AP Ak 
operates in the same frequency as Ak’ and 0 otherwise. The 
criterion to decide which frequencies are assigned to each AP 
is out of the scope of this paper, so Fk,k’ is assumed to be an 
input. 

D. Problem formulation 

The possibility of using APs to relay traffic to UEs is 
intended to achieve a more efficient resource usage and a 
reduction in the total transmit power in comparison with the 
case when the UEs are directly connected to the BSs. In 
particular, UEs with very high bit rate requirements located at 
the edge of a macrocell require a large amount of RBs and, 
correspondingly, a large total power if connected directly to 
the BS. In contrast, if connected through another AP with 
better propagation conditions to the BS, this may lead to less 
RBs/power allocated in the BS for the same bit rate 
requirement at the expense of some additional power 
transmitted in the link with the AP. Clearly, a trade-off will 
exist between the usage of resources in the macrocells and the 
usage of resources in the D2D links, which leads to an 
optimization problem to identify the best way to associate the 
UEs with the different BSs/APs, i.e., to find the optimum 
values of the binary indicators cn,j and bk,n defined in (1). 

The focus of this work is on the selection of the BS/AP by 
the UEs, not on the selection of the BS by the APs. In this 
respect, the values of ak,j, which specify the connections 
between APs and BSs, are obtained by assuming that each AP 
is connected to the BS with the lowest propagation losses. 

The target for the optimization is to minimize the total 
average transmitted power. From the perspective of green 

communications, total power is considered to be the relevant 
metric because the power of both the BSs and APs is 
generated from the electrical grid, so both transmit powers 
contribute to the CO2 footprint. The total transmitted power is 
given by 
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· · .
J K
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P P M P
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The first term is the total power transmitted by the BSs, 

expressed in terms of the average number of required RBs, 
Mreq,j, whereas the second term is the total power transmitted 
by all APs. Therefore, the considered optimization problem 
can be formulated as follows: 
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subject to the following constraints: 
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        n=1,...,N  (12) 

,req jM M                 j=1,…,J  (13) 

, , ,D k n k n nr b R              n=1,...,N,    k=1,...,K (14) 

, ,
1

1
N

k k n k n
n

b 


      k=1,...,K  (15) 

 
Constraint (12) reflects the fact that UE un can only be 

connected to one AP/BS, so at most, one of the values of bk,n 
and cn,j should equal 1. All values of bk,n and cn,j could be 0 if 
there is no possibility of connection for UE un. In turn, the 
total number of RBs required by a BS, Mreq,j, should be less 
than the number of available RBs, M, as represented in 
constraint (13). Constraint (14) reflects that UE un can only be 
connected to an AP Ak in which the available bit rate in the 
D2D link, rD,k,n, is higher than or equal to the required bit rate 
Rn. Finally, the resource sharing of all UEs connected to AP Ak 
to allow all of them to receive their required bit rate, as stated 
in constraint (15). 

The fulfilment of constraints (13)-(15) ensures that all the 
UEs and APs are served with their required bit rates Rn and 
RA,k, respectively. However, depending on the number of 
available RBs M and the specific propagation conditions, it is 
possible that no solution exists that fulfils all of the considered 
conditions. In such a case, either some UEs should not be 
admitted to the system or their achieved bit rate will be below 
the minimum requirements. 

The problem formulated by (11) and (12)-(15) is a binary 
nonlinear optimization problem. It falls within the category of 
integer programming, which is known to be NP-hard [39]. 
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IV. SOLUTION FOR DISTRIBUTED AP/BS SELECTION 

The NP-hard problem presented in the previous section can 
be solved by different methods (e.g., branch and bound and 
genetic algorithms). However, these solutions would require 
simultaneously considering all UEs, APs and BSs at a given 
time and performing the optimization in a centralized way. 
This method would lead to high complexity as the number of 
UEs/APs/BSs increases. Moreover, in addition to being 
nonlinear, the objective function (11) cannot be expressed in a 
closed form as a function of binary variables bk,n and cn,j 
because the term Mreq,j(bk,n,cn,j) for BS Sj depends on the values 
of Mreq,j’(bk,n,cn,j’) for the BSs other than Sj, which captures the 
mutual interference existing between BSs, as can be seen in 
relations (1)-(3). The same occurs for the term k(bk,n) 
corresponding to AP Ak. Due to these coupling effects between 
variables, additional complexity arises when having to 
compute the total power (11) for a given combination of input 
variables bk,n and cn,j because it involves iterative numerical 
analysis.  

To overcome the above limitations, in the following, a 
distributed approach is proposed, in which the different UEs 
autonomously select the AP or BS that they will be connected 
to. The main advantage of using distributed approaches is that 
they allow for a reduction in complexity and signaling 
overhead because each UE needs to consider only its own 
selection possibilities. Moreover, to avoid the abovementioned 
additional complexity needed to explicitly compute the total 
power according to (11), the considered distributed 
approaches are based on actual measurements performed by 
UEs when connected to the different APs/BSs.  

The proposed distributed approach is based on Q-learning 
[40]. Each UE un keeps a record of its experience when using 
each of the APs Ak k=1,…,K stored in a value QAP,n(k) and 
each of the BSs Sj j=1,…,J stored in a value QBS,n(j). 
Whenever an AP Ak or a BS Sj has been used by UE un, the 
value of QAP,n(k) or QBS,n(j), respectively, is updated following 
a single-state, Q-learning approach with null discount rate 
given by 

 

       , , ,1 ·AP n AP n AP nQ k Q k W k     (16) 

       , , ,1 ·BS n BS n BS nQ j Q j W j     (17) 

 
where (0,1) is the learning rate and WAP,n(k) and WBS,n(j) are 
the rewards resulting from the use of AP Ak or BS Sj, 
respectively. The rewards WAP,n and WBS,n reflect the degree of 
fulfillment of the optimization target as well as the different 
constraints. In that respect, if we consider that the target to 
minimize in (11) is the total transmit power by the BSs and the 
APs to ensure the UE bit rate requirements Rn, the reward will 
be based on the total power and on the actual achieved bit rate 

n̂r since the last AP/BS selection. In this way, those APs/BSs 

that lead to lower power consumption levels provide larger 
rewards and correspondingly larger values of QAP,n(k) or 
QBS,n(j). The computation of the reward is detailed in the 
following sub-sections. 

A. Reward computation 

1) Reward WAP,n(k) when a UE is connected through an AP 
In this case, considering that AP Ak is connected to BS Sj, 

the total power needed to serve UE un results from two 
contributions: 
- PA∙θk,n is the total power of AP Ak devoted to serving UE un.  
- Pk,n,j is the power of BS Sj devoted to delivering the traffic of 

UE un through the link between BS Sj and AP Ak. It is given 
by 
 

, , , , ,·k n j RB j k n jP P M  (18) 

 
where Mk,n,j is the number of RBs in BS Sj required by UE un 

when connected through AP Ak given by 
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R
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Based on the above discussion, the reward function when 

UE un is connected to AP Ak is defined as 
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·
1       otherwise       

n n
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A j

r R
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 (20) 

 
where Pmax,j is the maximum power of BS Sj given by 
Pmax,j=M∙PRB,j. Note that (20) assigns a value of 0 whenever 
the achieved bit rate (i.e., measured bit rate) during the 
connection n̂r is below the requirement Rn. In contrast, if the 

service requirement has been successfully fulfilled, the reward 
is a value between 0 and 1 that decreases when the required 
power consumption increases. The condition 

n̂ nr R  when the 

UE is not getting its required bit rate can occur for three 
different reasons: (i) a lack of RBs at BS Sj to provide the 
service through AP Ak, meaning that constraint (13) is not 
fulfilled. (ii) The propagation conditions in the D2D link do 
not allow achieving Rn, meaning that constraint (14) is not 
fulfilled. (iii) There is an excessive load in AP Ak, meaning 
that constraint (15) is not fulfilled. Consequently, the 
formulation of the reward function in (20) takes into account 
the constraints of the optimization problem. 
2) Reward WBS,n(j) when a UE is connected through a BS 

In this case, the total power consumption is in the BS. By 
making similar considerations as before, the transmitted power 
from BS Sj devoted to UE un is given by 

  

, , ,·n j RB j n jP P M  (21) 

 
where Mn,j is the number of RBs that BS Sj would need to 
serve the requirements of UE un and is given by 
 

,
, ,

.n
n j

U n j

R
M

r
  (22) 
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Based on this, the reward function when the UE is 
connected to BS Sj is defined as 

 

  ,,

max,

ˆ0                     if    

.
 1       otherwise       

n n

n jBS n

j

r R

PW j

P


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

 (23) 

B. Computation of the QAP,n(k) and QBS,n(j) values at 
initialization 

At initialization, i.e., when AP Ak or BS Sj have not been 
previously used by UE un, the values of QAP,n(k) and QBS,n(j) 
can be computed using expressions similar to the reward (20), 
(23), but replacing the first condition (because there is no 
measured value of n̂r ), as explained in the following. 

For the case of an AP, the initial value of QAP,n(k) is defined 
as 

 
   , , ,

, , , , ,

max,

0         if    1   

.·
1        otherwise       

k n k n j

AP n initial A k n k n j
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OR M M
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P P





  
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 

 (24) 

 
The first condition in (24) reflects the case that AP Ak is not 

appropriate to serve UE un because the propagation conditions 
in the link between the AP and the UE are not able to provide 
the service requirements (i.e., k,n>1) or because the link 
between the AP and the BS would require more RBs to 
provide the service than are available (i.e., Mk,n,j>M). 

Similarly, for the case of a BS, the initial value of QBS(j) is 
given by 

 
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max,
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1             otherwise       
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j

M M

Q j P

P

 
 




 (25) 

C. Selection criterion 

At the time when UE un needs to select an AP/BS for 
receiving service, it uses the available values of QAP,n(k) and 
QBS,n(j) to apply a softmax selection policy [40], in which AP 
Ak or BS Sj is randomly selected with probabilities PrAP(k,n) 
and PrBS(j,n), respectively, defined as 
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where  is the so-called temperature parameter. High 
temperature causes the different options to be nearly 
equiprobable. In contrast, low temperature leads to a greater 
difference in selection probability for APs/BSs that differ in 

their Q value estimates, and the higher the value of Q, the 
higher the probability of selecting the corresponding AP/BS. 
Softmax decision making is a common means of balancing the 
exploitation and exploration dilemma in reinforcement 
learning-based schemes [40]. Softmax decision making 
exploits what the UE already knows to obtain a reward (i.e., 
selecting APs/BSs that have provided good results in the past), 
but it also explores ways to take better actions in the future 
(i.e., the selection must try first a variety of combinations and 
progressively favor those that appear to be the best ones) [40]. 

To facilitate the algorithm convergence as the best actions 
are being identified by the algorithm, a cooling function is also 
considered in this paper to reduce the value of the temperature 
 as time passes. Specifically, the following logarithmic 
cooling function is considered: 

 

 
0

2log 1 t


 


 (28) 

 
where 0 is the initial temperature, and t is the time elapsed 
since the UE made the first selection. 

D. Admission control 

Given that the AP/BS selection is performed by the UE, the 
load in the selected node may already be too high to support 
the new UE. Consequently, an admission control is used at the 
selected node to ensure that the number of connected UEs is 
sufficiently low to ensure that the required bit rates can be 
provided. This factor is captured in the constraint (13) for the 
BSs and (15) for the APs. Then, when a UE attempts to 
connect to BS Sj, if the resulting value of Mreq,j after including 
the new UE is higher than M (or in general than a certain 
threshold), the new UE is not admitted to this BS. When the 
UE attempts to connect to AP Ak, if the resulting value of 

k

after including the new UE is higher than 1 (or in general than 
a certain threshold), the new UE is not admitted to this AP. 
When this occurs, the reward for the selected AP/BS is set to 
0, and another node is selected. 

E. Implementation and complexity considerations 

Although a detailed analysis of the implementation of the 
proposed approach for specific technologies is out of the scope 
of this paper and is left for future work, in this section, we 
present some high level considerations on how this 
implementation could be addressed, emphasizing the practical 
feasibility of the proposed approach.  

Each UE needs to store the values QAP,n(k) and QBS,n(j) of 
the candidate BSs and APs and to update them based on the 
obtained reward each time it is connected to a BS or AP. 
When the UE has been connected directly to a BS, the UE 
computes the reward based on (23), which requires that the 
UE measures the achieved bit rate n̂r  and the power 

transmitted by the BS, Pn,j. This power can be calculated by 
the UE from (21) by measuring the average number of RBs 
Mn,j that the BS has devoted to it. In addition, the power per 
RB PRB,j and the power available at the BS Pmax,j can be sent 
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The noise power spectral density is No=-164 dBm/Hz, and the 
required bit rates by the different UEs and APs are Rn=5 Mb/s 
and RA,k=5 Mb/s. The simulation time is measured in generic 
units denoted as “time steps” that specify when the different 
events of the simulation occur (e.g., UEs generating and 
finalizing activity periods). In this way, the results are 
applicable to different times simply by mapping the time step 
to a specific time unit. 

The UEs and the UEs acting as APs generate activity 
periods whose duration is geometrically distributed with an 
average of 30 time steps. At the beginning of each activity 
period, the UE performs the AP/BS selection process 
explained in Section IV.C, and at the end of the period, it 
updates the Q values based on (16)(17). Unless otherwise 
stated, the time between the end of one activity period and the 
beginning of the next one is also geometrically distributed 
with average of 30 time steps.  

Each simulation experiment is run for a total of 10000 time 
steps. The Q-learning algorithm has been configured with 
learning rate =0.1, and different values of the temperature 
parameter  are analyzed, including the logarithmic cooling 
given by (28). 

A. Performance in terms of transmit power consumption 

To gain first insight into the behavior of the proposed 
strategy, the single cell scenario of Fig. 2(a) is considered, 
with K=4 APs and N=6 UEs. In this single cell scenario, with 
a reduced number of APs and UEs, the proposed algorithm is 
benchmarked against the optimum solution to the problem 
obtained by testing all possible combinations. Two variants of 
the scenario are considered. Scenario 1A considers that the 
K=4 APs and the N=6 UEs are static and located at the 
positions indicated in Fig. 2(a). In turn, to obtain the global 
performance for different positions of the UEs, scenario 1B 
considers the case where the positions of the N=6 UEs are 
randomly varied. Specifically, 200 runs of experiments are 
executed corresponding to different uniform random 
distributions of the UEs’ positions in scenario 1B.  

Fig. 3 presents an evaluation of the proposed Q-learning 
approach for both scenarios 1A and 1B. Two fixed values, 
=0.01 and =0.1, are compared against the logarithmic 
cooling function given by (28) with 0=0.1. As a reference for 

comparison, Fig. 3 also includes the results with two simpler 
strategies. The first is the case in which all UEs are connected 
to the BS with the lowest propagation loss (denoted as “All to 
Macro”). This situation corresponds to the classical approach, 
in which no relaying through the APs is used. The second is 
the random case in which each UE selects randomly, with the 
same probability, the BS with the lowest path loss or an AP 
connected to this BS. As a relevant performance metric of the 
behavior of the proposed algorithm, Fig. 3(a) presents the total 
transmitted power increase with respect to the optimum 
solution for the different strategies. The optimum solution has 
been obtained by performing an exhaustive analysis of all 
possible combinations at each simulation time step. The 
optimum solution depends on the UEs that are active at each 
time step, so it can change during the simulation. The 
presented results correspond to the average values along the 
whole simulation time. As another performance metric of 
interest, Fig. 3(b) plots the rate of accepted requests by the 
admission control described in Section IV.D.  

From Fig. 3(a), it can be observed that the proposed 
approach with =0.01 and with logarithmic cooling achieves 
performance very close to the optimum (e.g., differences of 
less than 1% are observed for the logarithmic cooling case). 
Moreover, significant transmit power reductions are achieved 
with the proposed strategy in comparison to the classical 
approach, in which all UEs are connected to the BS with the 
lowest propagation loss (i.e., “All to macro”). Such approach 
requires on the order of 40% higher transmit power, which 
demonstrates the efficiency of the proposed method to reduce 
the power consumption and thus contribute to the overall 
energy savings. 

The relevance of the temperature parameter  can also be 
observed in Fig. 3(a). This parameter controls the trade-off 
between exploration and exploitation in the learning 
mechanism. Looking at the softmax criterion in section IV.C, 
low temperature results in a greater difference in selection 
probability for APs/BSs that differ in their Q value estimates, 
and the higher the value of Q, the higher the probability of 
selecting a given AP/BS. As a result, with low values of , the 
system tends to converge quickly towards appropriate 
solutions with selection probabilities close to 1. In this way, 
the system can quickly exploit what has been learnt by 
selecting the BSs/APs that provide the largest reward, at the 
expense that it will have less exploratory capability to identify 
other solutions in case the conditions change. In contrast, with 
large values of temperature, the differences in the selection 
probabilities for the BSs/APs become smaller, even if their Q 
values are different. As a result, the UEs require more time to 
identify the BSs/APs providing the largest reward, so they will 
have less exploitation capability but higher exploration 
capability to react to changes. In the results presented in Fig. 
3(a), it can be observed that the choice =0.01 achieves a 
much better performance than =0.1 because in the latter case, 
there is excessive exploration, leading to the selection of non-
optimal solutions in some cases. In fact, additional results not 
shown in the figure for the sake of simplicity revealed that 

(a)                                                          (b) 
Fig. 3. (a) Increase of the total transmitted power with respect to the
optimum solution. (b) Fraction of accepted requests by admission control for
the different strategies. 
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increasing  to larger values, such as =1, results in 
performance very close to the random case, meaning that the 
selection probabilities of (26) and (27) are similar for all 
BSs/APs. In turn, when considering logarithmic cooling, it can 
be observed in Fig. 3 that the performance improves with 
respect to the fixed case =0.01, mainly because the 
logarithmic cooling tends to reduce the temperature values as 
time elapses, so the best solutions are progressively selected 
with higher probability.   

As shown in Fig. 3(b), the proposed approach with =0.01 
and with logarithmic cooling achieves the best performance, 
with 100% acceptance. In contrast, for the rest of the 
strategies, the acceptance ratio degrades significantly, 
especially for the case in which all UEs are connected to a 
macrocell. 

B. Convergence analysis 

This section analyzes the convergence behavior of the 
proposed approach towards the optimum solution. For this 
purpose, scenario 1A is considered. Because the optimum 
solution depends on the number of UEs that are active at each 
time, the analysis in this section considers that all UEs are 
continuously generating activity periods with an average 
duration of 30 time steps without any inactivity period 
between them. In this way, all UEs are active, and the 
optimum solution does not change during the simulation. In 
addition, no traffic is generated by the APs in this study.  

Table I presents the AP and BS selection probabilities 
PrBS(j,n) and PrAP(k,n) for the different UEs when the system 
has converged at the end of a simulation. The Q-learning 
approach with logarithmic cooling is considered. For all UEs, 
the probability of connecting to the access point A1 is greater 
than 98%. A detailed analysis of the power required with all 
combinations, not shown here for the sake of brevity, reveals 
that this is actually the optimum solution in this scenario to 
minimize the total transmitted power.  

Fig. 4 depicts the evolution of the total transmitted power as 
a function of the total aggregated number of decisions (i.e., 
AP/BS selections) made by all UEs. The total number of 
decisions is a representative metric of the convergence 
because the algorithm progressively learns the optimum 
solution as new decisions are made by the different UEs. The 
total power progressively decreases until reaching the 
optimum value after a total of 17 decisions made by all of the 
UEs. Then, considering that there are 6 UEs in the scenario, 
every UE requires, on average, between 2 and 3 decisions to 
identify the proper AP. Fig. 5 illustrates the evolution of the 
APs selected by each UE. The figure reflects that after a total 
of 17 decisions, all UEs are connected to A1, which 

corresponds to the optimum solution. Although it is not shown 
in this paper for the sake of brevity, similar values of the total 
number of decisions to find the optimum solution are observed 
in other scenarios where UEs and APs are located at different 
positions.  

C. Comparison with a centralized genetic algorithm for the 
multi-cell scenario 

As previously discussed, due to the dramatic increase in the 
number of combinations for the multi-cell scenario, it is not 
feasible to obtain the optimum solution, so the proposed 
approach is benchmarked against a genetic algorithm that is 
taken as a near-optimal performance bound. The genetic 
algorithm jointly considers all UEs, BSs and APs in the 
optimization process. Therefore, its implementation requires a 
centralized approach, as opposite to the proposed Q-learning, 
which is executed in a distributed way at each UE. In this 
respect, the objective of this study is to benchmark how far 
from the centralized technique the proposed distributed 
approach can be and not to discuss the implementation 
considerations associated with the comparison between the 
two techniques. 

The genetic algorithm used for the benchmark is triggered 
each time that a UE begins or ends an activity period to 
consider the possible reconfigurations that may be required as 
a result of these events. The genetic algorithm operates 

 
Fig. 4. Evolution of the total transmit power as a function of the total number
of decisions made by the UEs in scenario 1A. 
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Fig. 5. Evolution of the AP or the BS selected by the different UEs as a 
function of the total number of decisions in scenario 1A. 

0

1

2

3

4

0 5 10 15 20 25 30

Se
le
ct
ed

 A
P/
B
S

Total number of decisions

u1 u2 u3 u4 u5 u6u1 u2 u3 u4 u5 u6

A2

A3

A4

A1

S0

TABLE I 
SELECTION PROBABILITIES PRBS(J,N) AND PRAP(K,N) FOR THE DIFFERENT  

UES IN SCENARIO 1A 
 S1 A1 A2 A3 A4 

u1 0 0.985 0.005 0.005 0.005 
u2 0 0.990 0.003 0.003 0.004 
u3 0.005 0.980 0.005 0.005 0.005 
u4 0.003 0.988 0.003 0.003 0.003 
u5 0 0.989 0.004 0.004 0.003 
u6 0 0.988 0.004 0.004 0.004 
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iteratively by evaluating in each iteration a population (also 
known as generation) of Npop individuals or chromosomes, 
each corresponding to a candidate solution of the optimization 
problem [42]. The number of genes in each chromosome is 
NACT, corresponding to the number of active UEs in the 
scenario at the time the algorithm is triggered. Then, the g-th 
gene is associated to UE ug and takes an integer value 
depending on the BS or the AP to which the UE is connected. 
Specifically, the gene takes the value j if the UE is connected 
to BS Sj and takes value J+k if the UE is connected to AP Ak. 
The chromosomes considered in each generation correspond 
to solutions that fulfill the constraints (12)-(15) of the 
optimization problem (11). Each chromosome is evaluated in 
terms of a cost or fitness function that captures the total 
required transmitted power associated with the solution 
represented by this chromosome. The cost function C(i) 
corresponding to the i-th chromosome is given by (10). 

Based on the above, the operation of the genetic algorithm 
is as follows: 
1) At initialization, a set of Npop chromosomes that fulfill the 

constraints (12)-(15) are randomly generated.  
2) The cost function C(i) is evaluated for each chromosome i. 
3) The following operators are applied to the chromosomes to 

obtain the new set of Npop chromosomes that constitute the 
next generation: 
3.1) Selection: The algorithm selects two chromosomes 

(parents) to be used to obtain two new chromosomes 
(children) for the subsequent generation. The parents 
are selected according to a roulette wheel process, in 
which chromosomes with lower cost are selected with 
higher probability. Specifically, the probability of 
selecting chromosome i is given by 
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3.2) Recombination: The two selected chromosomes are 

recombined following the one-point-crossover 
methodology (see [42] for details) to obtain a new 
chromosome. 

3.3) Mutation: Consists of changing the value of a gene 
belonging to the new chromosomes resulting from the 
recombination step. The probability of mutating one 
gene is given by Pmut=1/NACT. When a gene is mutated, 
its new value is selected randomly among the values 
{1, ...,J+K }, excluding the current value of the gene. 

3.4) It is checked whether the resulting chromosome fulfills 
the constraints (12)-(15). If they are fulfilled, the 
chromosome is kept. Otherwise, it is discarded. The 
selection, recombination and mutation steps are 
repeated until obtaining a total of Npop valid 
chromosomes for the next iteration/generation. 

4) Steps 2 and 3 are repeated iteratively until reaching a 
maximum number of iterations/generations. The solution of 

the algorithm corresponds to the chromosome with the 
minimum cost that has been found throughout all the 
generations. 
The evaluation is performed in the multi-cell scenario with 

the J=3 BSs shown in Fig. 2(b). There are K=12 APs and a 
variable number of UEs N. Twenty runs of experiments with 
different uniform random distributions of the positions of UEs 
and APs are executed. UEs are randomly distributed in the 
whole area, whereas the APs are randomly distributed in 
square regions of side 100 m centered on each of the BS 
locations to reflect the fact that the APs that are located far 
from the BSs are not be useful for relaying the traffic of UEs 
located closer to a BS. Each execution of the genetic algorithm 
consists of 100 generations with a population of Npop=30 
individuals. The required bit rates of UEs and APs are 
Rn=RA,k=2 Mb/s. The rest of the simulation parameters are the 
same as in the beginning of section V. 

Fig. 6 shows a comparison of the proposed Q-learning 
approach with logarithmic cooling and 0=0.1 with respect to 
the other considered strategies in terms of the total transmit 
power as a function of the number of UEs N. In this case, the 
APs work at different frequencies, so they do not mutually 
interfere. The results observed with the Q-learning 
methodology with =0.01 and with logarithmic cooling 
improve the results obtained by the “All to macro” and 

Fig. 6. Total average transmitted power aggregated for all BSs and APs when
increasing the number of UEs N for K=12 access points. 
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“random” strategies by significantly reducing the total 
transmitted power. Moreover, the proposed Q-learning 
approach with logarithmic cooling achieved similar 
performance to the genetic algorithm. Although this does not 
mathematically prove the guaranteed convergence to the 
optimum solution, as in Section V.B, because the genetic 
algorithm could converge to either a global or a local 
optimum, the results reveal that the proposed distributed 
approach is able to achieve very close performance to a 
classical optimization approach, such as the genetic algorithm, 
in spite of being much less complex. In terms of convergence 
time, the Q-learning approach achieves convergence to a 
solution after an average number of 7.3 decisions per UE. In 
terms of computational complexity, the simulation of 10000 
time steps for the case of J=3 BSs, K=4 APs and N=10 UEs 
lasts approximately 10 s with the Q-learning approach in a 
state-of-the-art computer. In contrast, the same execution of 
the simulation with the genetic algorithm lasts approximately 
90 minutes. This reflects the dramatic reduction in 
computational complexity of the proposed distributed 
approach. 

Fig. 7 evaluates the impact of the interference in the D2D 
links in the case that all APs work at the same frequency, i.e., 
Fk,k’ =1 in (9). In this case, the interference among the different 
APs reduces the capacities rD,n,k in the D2D links, which 
increases the activity k for the different APs, reducing their 
availability for relaying traffic and, as a consequence, the UEs 
tend to connect more frequently to the BSs. As a result, the 
total transmitted power increases with respect to the case 
where all APs use different frequencies. However, the power 
reduction with respect to the reference case, where all UEs 
connect through the BSs, is still significant. 

Finally, to test the behavior when increasing the number of 
BSs, Fig. 8 considers a multi-cell scenario with J=7 BSs and 
K=21 APs (using different frequencies) in an area of 1540 m x 
1700 m. The figure plots the total average transmitted power 
by all nodes for the proposed Q-learning scheme and for the 
case when the UEs are connected only to the macrocells. 
Similar results as in the previous cases are obtained, revealing 
that the proposed approach achieves a significant power 
reduction.  

D. Influence of mobility and dynamic changes in the role of 
APs and UEs 

This section presents some illustrative results to provide 
insight into the capability of the proposed Q-learning 
methodology to adapt to changes in scenarios where UEs 
and/or APs move and when the role of the APs and UEs 
changes dynamically. In the first experiment, we focus on the 
situation where a moving AP becomes available or 
unavailable to relay traffic for a particular UE. For that 
purpose, we consider the multi-cell scenario with the positions 
of the BSs, APs and UEs shown in Fig. 2(b). At t=2000 time 
steps, AP A3 begins to move from its initial position (200,800) 
following a straight trajectory to the right until reaching 
position (900,800) at t=9000 time steps. Then, the AP remains 
at this position until the end of the simulation at t=10000 time 

steps. All UEs are continuously generating activity periods of 
average duration of 30 time steps without any inactivity period 
between them. At the beginning of each period, the UEs 
perform the AP/BS selection. The APs work at different 
frequencies.  

We focus the analysis on the behavior of UE u1 in Fig. 2(b). 
Fig. 9(a) shows the evolution of the selection probability 
PrBS(2,1) that u1 connects directly to BS S2 and the probability 
PrAP(3,1) that u1 selects the 2-hop connection S2A3u1. The 
other selection probabilities, PrBS(j,1) and PrAP(k,1), are 
almost zero during the whole simulation and are not 
represented in Fig. 9a. At the beginning of the simulation, u1 
identifies the direct connection to BS S2 as the best option, 
with a selection probability close to 1. This is a reasonable 
choice because the closest AP, A3, is located far from this UE. 
Then, as A3 moves and approaches the position of u1, Fig. 9(a) 
shows that the probability PrAP(3,1) of selecting this AP 
begins to increase, and at approximately t=6000 time steps, the 
connection through AP A3 is identified as the best option. 
However, as A3 moves further to the right and away from u1, 
the UE identifies that the direct connection through BS S2 is 
again the best option. This occurs at approximately t=7500 
time steps, when AP A3 is located at position (750,800). 

The second experiment assesses the capability of the 
proposed approach to address dynamic changes in the role of 
the APs and UEs. For that purpose, we consider the positions 
of the BSs, APs and UEs shown in Fig. 2(b). At t=1000 time 
steps, AP A1 decides to switch off its relaying capabilities and 
becomes a UE. Then, at t=4000 time steps, UE u4 is 
configured as an AP, denoted as A5. These modifications 
affect the behavior of UE u5, whose selection probabilities are 
plotted in Fig. 9(b). At the beginning, the probability PrAP(1,5) 
increases to a value close to 1, meaning that u5 learns to 
connect through AP A1. Then, when A1 becomes a UE at 
t=1000 time steps, u5 identifies this situation, and the 
probability PrBS(1,5) reaches a high value, indicating that the 
UE has learnt to use the direct connection to BS S1, which 
becomes the best option, as seen in Fig. 2(b). Finally, after 
t=4000 steps, u4 becomes configured as AP A5, and u5 
identifies this new AP as the best connectivity option to 
receive service, i.e., PrAP(5,5) reaches a value close to 1. This 
experiment reveals the robustness of the proposed approach to 

Fig. 8. Total average transmitted power in a scenario with J=7 BSs and K=21
APs. 
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adapt to dynamic variations in the operating conditions.  
As a third analysis, we consider the scenario of Fig. 2(b) 

with the APs and BSs located at fixed positions and all UEs 
moving during the simulation following random trajectories. 
At each position update, a UE can move forward, move back, 
turn left or turn right with the same probability. Like in the 
previous experiment, UEs generate continuous activity periods 
with average duration of 30 time steps. The mobile speed is 
such that a UE moves 3 m in each activity period. All APs 
work at different frequencies. For benchmarking purposes, the 
proposed Q-learning approach is compared to the centralized 
genetic algorithm described in Section V.C executed ideally at 
every time step so that it can be considered as an upper 
performance bound.  

Fig. 10 presents the total transmitted power increase for the 
different methodologies with respect to the genetic algorithm. 
Significant power reductions are achieved by the proposed Q-
learning approach with respect to the case when all UEs are 
connected to the macrocell BSs. In turn, the difference 
between the Q-learning approach with logarithmic cooling and 
the upper bound given by the centralized genetic algorithm is 
only 7%, which can be considered satisfactory performance. 
This result reveals the robustness of the proposed approach to 
operate under dynamic conditions. 

VI. CONCLUSIONS AND FUTURE WORK 

This paper has investigated the optimization of the 
connectivity of different UEs in a heterogeneous cellular 
scenario with D2D capabilities, in which specific UEs can act 
as access points and provide service to other UEs by relaying 
their traffic from the base stations, thus leading to a dynamic 
network architecture in which each UE can change the way it 
connects to the cellular network. In this respect, a new 
optimization framework has been presented to determine the 
most convenient connectivity option for each UE (i.e., one of 
the BSs or another UE acting as an AP), with the target of 
minimizing the total transmission power required in the 
scenario to fulfill the bit rate requirements of the different 
UEs.  

A distributed strategy based on Q-learning and softmax 
decision making has been proposed as a means to implement 
the considered framework. Due to its distributed nature and to 
the fact that each UE relies only on its own experience to 
make decisions, the proposed approach has less complexity 
than centralized approaches that address the global 
optimization by jointly considering all APs, BSs and UEs. 

The evaluation has demonstrated that the proposed 
approach can achieve transmitted power reductions of 
approximately 40% with respect to the classical approach in 
which the UEs are always connected to the BSs. Moreover, 
the temperature parameter in the softmax decision plays a 
relevant role for the proposed approach, so a logarithmic 
cooling technique has been adopted. The obtained 
performance in terms of transmitted power in a single cell 
scenario with the proposed approach is very close to the 
optimum, with differences below 1%. Moreover, a detailed 
analysis of the convergence properties of the proposed 
approach has been conducted, showing that the algorithm 
converges to the optimum solution after an average of 2 or 3 
decisions per UE. 

For multi-cell scenarios with high numbers of UEs and APs, 
in which the optimum cannot easily be known a priori, the 
proposed approach has been benchmarked against a 
centralized genetic algorithm, demonstrating that the proposed 
approach achieves similar performance in terms of total 
transmitted power while exhibiting much lower computational 

 
Fig. 10. Increase of the total transmitted power with respect to the centralized
genetic algorithm for the different strategies in scenario 2. 
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Fig. 9. (a) Selection probabilities PrBS(2,1) and PrAP(3,1) for u1 in scenario 2
when there is an AP moving. (b) Selection probabilities PrBS(1,5), PrAP(1,5)
and PrAP(5,5) for u5 when there are dynamic changes in the role of APs and
UEs. 
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complexity (e.g., as a reference, the duration of the presented 
simulations with Q-learning is approximately 10 s, whereas 
the same simulation with the genetic algorithm lasts 
approximately 90 minutes). The robustness of the proposed Q-
learning methodology to operate in dynamic scenarios, where 
APs and/or UEs move and where the role of APs and UEs 
changes dynamically, has also been illustrated. 

As future work, the considered framework could be 
extended to optimally determine which of the UEs are more 
adequate to act as APs so that the total power is minimized. 
Similarly, the considered optimization problem could be 
extended by optimizing the values of the transmitted power of 
the APs. This would be feasible if the D2D technology 
allowed some sort of dynamic power control to automatically 
modify the transmitted power. In addition, the framework 
could also be extended with consideration of other service 
requirements, such as the possibility of reducing the bit rate 
for those UEs that cannot achieve the required bit rate through 
any AP/BS or by considering other service metrics such as 
delay. Finally, the detailed implementation of the proposed 
algorithm for specific technologies is also considered as a 
future research direction.  
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