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Abstract—This paper focuses on a heterogeneous scenario in
which cellular and wireless local area technologies coexist and in
which mobile devices are enabled with device-to-device
communication capabilities. In this context, this paper assumes a
network architecture in which a given user equipment (UE) can
receive mobile service either by connecting directly to a cellular
base station or by connecting through another UE that acts as an
access point and relays the traffic from a cellular base station.
The paper investigates the optimization of the connectivity of
different UEs with the target to minimize the total transmission
power. An optimization framework is presented, and a
distributed strategy based on Q-learning and softmax decision
making is proposed as a means to solve the considered problem
with reduced complexity. The proposed strategy is evaluated
under different conditions, and it is shown that the strategy
achieves a performance very close to the optimum. Moreover,
significant transmission power reductions of approximately 40%
are obtained with respect to the classical approach, in which all
UEs are connected to the cellular infrastructure. For multi-cell
scenarios, in which the optimum solution cannot be easily known
a priori, the proposed approach is compared against a
centralized genetic algorithm. The proposed approach achieves
similar performance in terms of total transmitted power, while
exhibiting much lower computational requirements.

Index Terms—Power efficient communications,
learning, AP selection
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1. INTRODUCTION

‘ N JiTH  the proliferation of bandwidth-intensive
applications, user data traffic and the corresponding
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network load are increasing exponentially. As a result,
conventional cellular architectures are facing unprecedented
challenges to meet user demands, particularly for users located
at cell edges or in indoor positions, where a significant portion
of the data traffic is being generated. To provide broadband
services with satisfactory user experience in these locations,
when conventional cellular architectures are wused, an
increased link budget is required, leading to larger transmit
power consumption at both base stations (BSs) and user
equipment (UE). As a result, there has been increasing interest
in evolving network architectures, functionalities and
technologies to better address these challenges.

In particular, the classical cellular network concept is being
shifted towards the so-called heterogeneous networks
(HetNets) composed of multiple access technologies, such as
cellular and wireless local area networks, and multiple cell
layers of different sizes [1][2]. The use of device-to-device
(D2D) communications, in which UEs are able to directly
communicate, is also envisaged as an important component of
these future networks because it opens the door for a number
of possibilities, such as proximity services and cellular
coverage extension by means of relaying other UEs. [3].
Initiatives in this direction are being conducted by the 3rd
Generation Partnership Project (3GPP) in Long Term
Evolution (LTE) Release 12 [4] and by the Wi-Fi Alliance,
which has recently developed Wi-Fi Direct technology [5],
which allows a UE to act as an access point (AP) for other
UEs. In this way, different UEs communicate between
themselves, and one of them can share its cellular connection
with others by relaying their traffic to/from a cellular BS.

There are different taxonomies of D2D use cases [3]-[8]. In
[7], the D2D use cases are divided into two categories. The
first category is simple D2D communication, in which the
sender and receiver exchange data with each other, and in the
second category, D2D users act as a relay for the other users.
In this paper, we focus on the second category, considering a
cellular network where the UEs have the capability to act as
APs and relay traffic from the cellular infrastructure to other
UEs. In [8], a survey on the multiple D2D use cases is
presented. The cases are categorized as in-band D2D, in which
the D2D link and the cellular link use the same spectrum, and
out-of-band D2D, in which the D2D link and the cellular links
use different frequency bands or even different technology
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(e.g., LTE for the cellular link and IEEE 802.11 for the D2D
link). In this paper, we focus on the out-of-band D2D case,
which is identified in [8] as an emerging area of research
because the majority of current mobile devices are equipped
with more than one wireless interface (e.g., Wi-Fi and LTE),
which facilitates the implementation and results in advantages
compared to in-band D2D, such as the possibility to have
simultaneous communication in the cellular and D2D links
and the lack of interference between the two.

In [9], different use cases and scenarios of D2D for further
research towards Fifth Generation (5G) networks are
identified. D2D applications are split into three groups, one of
them being network enhancement based services, in which
D2D communications are envisaged to improve connectivity,
Quality of Service (QoS) and capacity via activation of the
appropriate communication modes (i.e., cellular, direct D2D
and relay mode). In this paper, we address the last problem,
namely, the selection between the cellular and the relay mode
to enhance the network performance. Indeed, due to the
shorter distances and associated lower propagation losses in
the D2D link, it is expected that the higher bit rates associated
with mobile broadband services can be more efficiently
achieved (e.g., with less power consumption) than when the
UEs at the cell edge connect directly to the BS. In this
scenario, given the randomness associated with the
propagation in mobile environments, the variability in the
generation of data traffic and the mobility of UEs and UEs
acting as APs, there will be situations in which it may be more
efficient for a certain UE to connect to another UE acting as
an AP or to connect directly to the cellular BS, leading to a
dynamic network architecture in which the UEs can
dynamically change the way they connect to the cellular
infrastructure. Consequently, it is crucial to have intelligent
decision mechanisms to determine the best connection for
each UE. Such decisions need to consider aspects such as the
propagation conditions of the different links, the load existing
in each macrocell and in each AP, the bit rate requirements of
each UE and the total power consumption.

In this context, this paper considers the optimization of the
UE connectivity with the objective of minimizing the total
transmit power, thus targeting an efficient solution from the
perspective of energy consumption. The design of strategies
that are efficient in providing the desired wireless services
with minimum power consumption is relevant not only from
an ecological perspective but can also lead to significant
economic benefits. As an example, it is stated in [10] that the
energy bill for a mobile operator accounted for approximately
18% of the operational expenditures in a mature European
market and increased to 32% in other markets, such as India.
Following this trend, several initiatives have addressed
research towards energy-efficient wireless communications
[11]. Transmit power reduction can also be beneficial from the
perspective of health because both users and regulators are
concerned about the potential undesirable effects of wireless
network radiation on the human body. Different national
authorities at the worldwide level have conducted intensive
studies in this direction, usually recommending the

minimization of exposure to citizens as a precautionary

measure [12]-[14].

Based on the above, the main contributions of this work are
summarized as follows:

1) A new optimization framework is presented to determine
the best connectivity option for each UE in a
heterogeneous network with out-of-band D2D capabilities
used for relaying data. The objective is to minimize the
total power consumption in the scenario while satisfying
the bit rate requirement of each UE. The main differences
from the classical relay selection due to the consideration
of D2D are: (i) the UEs acting as APs may have their own
data to transmit, (ii) different frequency bands and
technologies are used for the cellular link and the D2D
link, and (iii) the UEs acting as APs can exhibit mobility.
To the authors’ best knowledge, no previous work has
addressed the optimization of this use case from the
perspective of total power consumption.

2) A new distributed strategy based on Q-learning and
softmax decision making is proposed as a means to
implement the presented optimization framework. In this
approach, each UE autonomously decides the most
appropriate AP or cellular BS to receive the required
service based on its previous experience of using the
different APs/BSs. The main advantage of this type of
distributed approaches is that it allows for a reduction in
complexity in comparison to centralized approaches that
address the global optimization by jointly considering all
APs and UEs. Therefore, the distributed approach can
scale better when increasing the network size.

3) The proposed strategy is evaluated under different
conditions, revealing that its performance is very close to
the optimum and that it can provide significant power
consumption reduction with respect to the -classical
approach, in which the UEs connect directly to the cellular
BSs. The proposed approach is also benchmarked against a
centralized  genetic  algorithm, showing  similar
performance despite the decentralized operation.

The paper is organized as follows. Section II presents a
summary of related work, and Section III elaborates the
system model and the proposed optimization framework.
Section IV presents the proposed Q-learning based solution
for AP/BS selection, which is evaluated in Section V. Finally,
conclusions are summarized in Section VI.

II. RELATED WORK

Multi-hop cellular networks (MCN) [15], in which the
traffic of a UE is relayed to a cellular infrastructure node by
means of intermediate relay stations, have received significant
interest in recent years as a means to enhance the capacity,
data rates and coverage of cellular networks. For example,
architectural aspects and routing protocols were studied in
[16]-[19], and different relay selection schemes were recently
proposed in [20]-[22].

The focus of this work is on the out-of-band relaying D2D
use case in which the cellular link and the relay link make use
of different technologies. In this respect, in [23], the relay
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selection probability is analyzed in the uplink of an LTE-
based, multi-hop cellular network with out-of-band relaying. It
accounts for the intercell interference in the cellular network,
as well as for the fact that both the cellular link and the relay
link using IEEE 802.11 can limit the capacity. The method
assumes, however, a regular channel allocation of IEEE
802.11 channels to relays in different hexagonal cells that may
not be realistic because the deployment of Wi-Fi access points
is usually highly irregular. In [24], a network selection scheme
is considered in a heterogeneous scenario with LTE and Wi-Fi
APs that accounts for the backhaul capacity for each AP. The
considered scenario assumes APs deployed at specific
positions, in contrast to this work, which assumes that the UEs
can act as APs and relay the traffic of other UEs towards the
LTE network. Another important difference of this paper with
respect to prior studies is that we assume that a UE acting as
an AP and relaying data to other UEs may also have its own
information to be transmitted, whereas previous works usually
assume that a UE can only act as a relay when it does not have
its own data to be transmitted. In [25][26], the combination of
LTE-A with D2D communications is explored for the
provision of multicast services, analyzing the potentialities in
terms of energy consumption. Similarly, in [27], the use of
Wi-Fi in conjunction with LTE is studied for the provision of
in-car communications. A simulation analysis is presented to
show that this approach can provide higher bit rates than direct
connection to the LTE network. In [28], the so-called user-
provided networks are considered, in which mobile hosts with
3G/4G connections are incentivized to forward data for others.
Whereas that scenario is similar to the one considered in this
paper, the focus of [28] is placed on the incentive mechanisms
and not on the optimization of the connectivity options to
minimize the transmitted power. Finally, in [29], the
opportunistic coverage extension of a cellular network was
analyzed to provide service to UEs outside of the direct
coverage area of the cellular BS by means of relaying, and a
learning-based approach was used to select both the spectrum
of the D2D link and the node that provides the coverage
extension.

There are also a number of works that have considered
different approaches for AP selection in wireless local access
networks (WLAN). Apart from the classical approach, in
which the AP is selected based on signal strength, different
studies have proposed other metrics to achieve a more
efficient AP association, such as the packet error rate, the
throughput and the bandwidth per user [30]-[32]. Other
approaches, such as [33], consider the load balancing problem
under max-min fairness considerations, whereas in [34]-[37],
game theory concepts are considered for the association of
UEs to APs. However, none of the above works assumes the
scenario in which the APs can be used to relay traffic from the
UEs to the cellular infrastructure, as considered in this work.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System model
The scenario considered in this work is represented in Fig. 1.

It assumes a cellular network where each UE (e.g., current
smartphones) can be turned into an AP and can be used to
provide wireless connectivity to other UEs. Let us consider J
macrocell BSs denoted as the set f={S,...,S,} with cellular
technology (e.g., LTE or LTE-A), K UEs acting as APs
denoted as the set A={A4,....Ax} and N UEs not acting as APs
denoted as U={u,...,uy}. In the following, the UEs of set A
will be referred to simply as “APs”, whereas those of set U
will be referred to as “UEs”. The bit rate requirement of UE u,
is R,. To achieve that bit rate, UE u, must connect to one BS
in set B or one of the APs in set A. In this respect, the purpose
of this work is to perform an efficient selection of the AP or
BS for each UE because this selection will impact the total
radio resource consumption. This work assumes
communication in the downlink direction, i.e., from the
BSs/APs to the UEs, although it could easily be extended to
consider the uplink direction.

The BS/AP selection process is executed at a time scale
where all short-term effects, such as the frequency-selective
fast fading, have been averaged. This time scale prevents the
UE from continuously changing the BS or AP due to random
channel variations that occur on a very short time scale.

Each AP has the capability to provide wireless Internet
access to other UEs. In general, different possibilities exist for
this access. This work assumes that a UE acting as an AP is
also connected to the cellular infrastructure, so that the AP
relays the data traffic of a BS to the UE using a 2-hop
approach. Then, in the example of Fig. 1, UE u; has different
possibilities for obtaining service: direct connection to S,, 2-
hop connection S>,—>A,—u;, 2-hop connection S,—>As3—>u; and
2-hop connection S;—>A4;—u;. In contrast, UE u,, out of the
coverage area of the macrocells, has only one possibility:
S>—>A,—uy. This work could be easily extended to consider
other possibilities for providing access through the APs, for
example, in the case that the APs are fixed and have wired
connection to the Internet (as in the Dynamic Network
Architecture proposed in [38]), in which case no relaying
would be needed.

For the APs, it is considered that, in addition to relaying the
traffic of other UEs, they may have their own service
requirements. Then, the bit rate requirement of AP Ay is Ry .

B. Macrocell link

It is assumed that the J BSs operate with the same LTE
carrier composed of M resource blocks (RB) of bandwidth B
that can be assigned to the N UEs (if directly connected to one
of the BSs) or to one of the K APs. As previously mentioned,
BS/AP selection is executed after having averaged the short-
term effects (e.g., frequency-selective fast fading), so we are
only concerned with the average number of RBs required by
each UE or AP to achieve their desired bit rate in a given BS,
but not with modelling the scheduling process that will decide
which specific RBs are allocated to each UE/AP in the short-
term. Then, the average number of RBs required at BS §;
(j=1,...,.J) to serve its UEs can be expressed as
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Fig. 1. Considered scenario: Heterogeneous network with D2D capabilities.
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where c,;is a binary indicator that takes the value 1 if UE u, is
connected to BS §; and 0 otherwise. Similarly, a;; takes the
value 1 if AP 4, is connected to BS §; and 0 otherwise, and by,
takes the value 1 if UE u, is connected to AP 4; and 0
otherwise. ry,; is the capacity that UE u, can obtain when
allocated to one RB of BS S}, and r,;; is the capacity that AP
Ay can obtain in one RB when connected to BS ;. The
subscript U in the notation ry,; reflects that it is the capacity
achieved by a UE when directly connected to a BS, and the
subscripts 7, j represent the number of the UE and the BS,
respectively. Similarly, the subscript A in 7, reflects that it is
the capacity achieved by an AP when connected to a BS, and
the subscripts &k and j represent the number of the AP and the
BS, respectively. The first term in (1) corresponds to the
average number of RBs required by the UEs that are
connected directly to BS S, to achieve their bit rate
requirements R,, whereas the second term corresponds to the
number of RBs required by the APs connected to BS S; to
achieve their own requirements R, plus those of the UEs they
are serving.

The transmit power per RB at BS S; is Pgp;. Assuming the
Shannon bound, the capacity per RB in the link between UE
u, and BS S, ry,,,;, can be estimated as

P,/ .
N

+1

U,n,j

where Ly,; is the propagation loss between UE u, and BS §;
that includes the distance-dependent losses and the slow
fading (shadowing). Py=N, B is the noise power measured
over the bandwidth B with N, as the noise power spectral
density. Iy,,; represents the average intercell interference per
RB measured at UE u, if connected at BS S, given by

J P, M., .

I,y = YT o=t (3)
f:::], LU‘n,/
J'#J

where M,,,;/M is the fraction of time that an RB will be
utilized on average by BS ;..

Similarly, the capacity per RB in the link between AP A,
and BS S, 4, is given by

P, /L, .
rA.k,j=Blog2(1+—”” J @)

PN +1A.k,j

where L, ; is the propagation loss between AP A4; and BS S,
including the distance-dependent losses and shadowing, and
1,4, 1s the average intercell interference observed at AP A4 if
connected at BS S, given by

J P M.
[A!k!/_ — Zﬂ.ﬂ 3)
’ LAM, M

=l
7%

C. Device to Device (D2D) link

The communication between an AP of set A and a UE of set
U makes use of a device-to-device (D2D) technology'. The
D2D link between the AP and the UE is assumed to have
bandwidth B, that is shared on the time domain between the
UEs connected to the AP, e.g., by means of a scheduling
algorithm or a medium access control (MAC) protocol. It is
also assumed that the APs can simultaneously use the D2D
interface and the cellular interface to connect with other UEs
and with the infrastructure, respectively, and that both
interfaces operate at different frequency bands so that no
mutual interference exists. Correspondingly, when the APs
relay data from the infrastructure to other UEs, full duplex
relay is assumed. It is assumed that a control mechanism exists
at the APs so that UE u, receives at most its bit rate
requirement R, Then, if the achievable bit rate rpy, (where
subscript D,k,n denotes the D2D link between AP 4; and UE
u,) is higher than the requirement R,, the AP will only
transmit data for this UE during the fraction of time 6, given

0., =min£l, R, J (6)
"pjen

In this way, the average power transmitted by AP 4, to
provide service to UE u, would be P, 6,,, where P, is the
transmit power of AP A, assumed to be constant (and equal
for all access points), which is the usual approach in current
implementations of Wi-Fi systems that do not apply dynamic
transmit power control. In this way, the AP will spend only the
minimum power needed to provide the UE with its bit rate
requirement. In the case rpy,<R,, UE u, cannot obtain its
required bit rate through AP A4;.

Under the above considerations, the total fraction of time

! We assume the work at this stage to be technology-agnostic. In practice,
there could be different possibilities, such as IEEE 802.11, LTE D2D, etc.

0018-9545 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2016.2517700, IEEE

Transactions on Vehicular Technology

VT-2015-00472.R2

that AP A, is active is denoted as ©; and is given by
®k = Zbk,nek,n . (7)

The criterion of ;<1 should be fulfilled so that all UEs
connected to AP A; are able to reach their bit rate
requirements.

The achievable bit rate 7p, in the link between AP A; and
UE u, is given by

+1/

Yok = B, log, [1 +MJ (®)
N, A D.k,n
where Ly , is the average propagation loss between UE u, and
AP Ay, Py =N, B, is the noise power at the UE and I, is the
average interference observed at UE u, coming from the rest
of APs A that work at the same frequency as AP A4;. It is
given by

=3t e.r ©)
D,k.n — L k' ok
{3 b

where F ;- is a binary indicator that takes the value 1 if AP A4,
operates in the same frequency as A, and O otherwise. The
criterion to decide which frequencies are assigned to each AP
is out of the scope of this paper, so Fy - is assumed to be an
input.

D. Problem formulation

The possibility of using APs to relay traffic to UEs is
intended to achieve a more efficient resource usage and a
reduction in the total transmit power in comparison with the
case when the UEs are directly connected to the BSs. In
particular, UEs with very high bit rate requirements located at
the edge of a macrocell require a large amount of RBs and,
correspondingly, a large total power if connected directly to
the BS. In contrast, if connected through another AP with
better propagation conditions to the BS, this may lead to less
RBs/power allocated in the BS for the same bit rate
requirement at the expense of some additional power
transmitted in the link with the AP. Clearly, a trade-off will
exist between the usage of resources in the macrocells and the
usage of resources in the D2D links, which leads to an
optimization problem to identify the best way to associate the
UEs with the different BSs/APs, i.e., to find the optimum
values of the binary indicators c,; and b, defined in (1).

The focus of this work is on the selection of the BS/AP by
the UEs, not on the selection of the BS by the APs. In this
respect, the values of a;;, which specify the connections
between APs and BSs, are obtained by assuming that each AP
is connected to the BS with the lowest propagation losses.

The target for the optimization is to minimize the total
average transmitted power. From the perspective of green

communications, total power is considered to be the relevant
metric because the power of both the BSs and APs is
generated from the electrical grid, so both transmit powers
contribute to the CO, footprint. The total transmitted power is
given by

J K
PTOTIZPRB,j’Mreq,j"'ZPA'@k' (10)
= k=1

The first term is the total power transmitted by the BSs,
expressed in terms of the average number of required RBs,
M., whereas the second term is the total power transmitted
by all APs. Therefore, the considered optimization problem

can be formulated as follows:

bfn,icn,PT‘)T =
(L K (11
= bmm ZPRBJ 'Mm“- (bk,n’cn,j ) +ZPA'®1{ (bk,n )
N AE k=1
subject to the following constraints:
K J
2biat26, S n=l N (12)
k=1 j=l
M, <M J=l.J (13)
Foin 20 R, n=1,..,N, k=1,..K (14)
N
0,=>b.,0.,<1 kl,.K (15)
n=1

Constraint (12) reflects the fact that UE u, can only be
connected to one AP/BS, so at most, one of the values of by,
and c,; should equal 1. All values of b, and c,; could be 0 if
there is no possibility of connection for UE u,. In turn, the
total number of RBs required by a BS, M, ;, should be less
than the number of available RBs, M, as represented in
constraint (13). Constraint (14) reflects that UE u, can only be
connected to an AP A, in which the available bit rate in the
D2D link, rp ., is higher than or equal to the required bit rate
R,. Finally, the resource sharing of all UEs connected to AP 4,
to allow all of them to receive their required bit rate, as stated
in constraint (15).

The fulfilment of constraints (13)-(15) ensures that all the
UEs and APs are served with their required bit rates R, and
R, respectively. However, depending on the number of
available RBs M and the specific propagation conditions, it is
possible that no solution exists that fulfils all of the considered
conditions. In such a case, either some UEs should not be
admitted to the system or their achieved bit rate will be below
the minimum requirements.

The problem formulated by (11) and (12)-(15) is a binary
nonlinear optimization problem. It falls within the category of
integer programming, which is known to be NP-hard [39].
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IV. SOLUTION FOR DISTRIBUTED AP/BS SELECTION

The NP-hard problem presented in the previous section can
be solved by different methods (e.g., branch and bound and
genetic algorithms). However, these solutions would require
simultaneously considering all UEs, APs and BSs at a given
time and performing the optimization in a centralized way.
This method would lead to high complexity as the number of
UEs/APs/BSs increases. Moreover, in addition to being
nonlinear, the objective function (11) cannot be expressed in a
closed form as a function of binary variables by, and c,;
because the term M, (b .,c,.;) for BS S; depends on the values
of M,y ;(binsCyj) for the BSs other than S, which captures the
mutual interference existing between BSs, as can be seen in
relations (1)-(3). The same occurs for the term ©u(by,,)
corresponding to AP 4. Due to these coupling effects between
variables, additional complexity arises when having to
compute the total power (11) for a given combination of input
variables by, and c,; because it involves iterative numerical
analysis.

To overcome the above limitations, in the following, a
distributed approach is proposed, in which the different UEs
autonomously select the AP or BS that they will be connected
to. The main advantage of using distributed approaches is that
they allow for a reduction in complexity and signaling
overhead because each UE needs to consider only its own
selection possibilities. Moreover, to avoid the abovementioned
additional complexity needed to explicitly compute the total
power according to (11), the considered distributed
approaches are based on actual measurements performed by
UEs when connected to the different APs/BSs.

The proposed distributed approach is based on Q-learning
[40]. Each UE u, keeps a record of its experience when using
each of the APs A4; k=1,...,K stored in a value Q,p,(k) and
each of the BSs S, j=1,..J stored in a value QOzs.(j).
Whenever an AP 4, or a BS §; has been used by UE u,, the
value of Qp (k) or Ozs.(j), respectively, is updated following
a single-state, Q-learning approach with null discount rate
given by

QAP,n (k) <« (1 _a)QAP,n (k)"'a'WAP,n (k)
QBS,n (]) <~ (1 _a)QBS,n (J) +aWs, (])

(16)
(17)

where a.e(0,1) is the learning rate and Wyp (k) and W ,(j) are
the rewards resulting from the use of AP 4; or BS S,
respectively. The rewards W,p, and Wpgs, reflect the degree of
fulfillment of the optimization target as well as the different
constraints. In that respect, if we consider that the target to
minimize in (11) is the total transmit power by the BSs and the
APs to ensure the UE bit rate requirements R, the reward will
be based on the total power and on the actual achieved bit rate
7, since the last AP/BS selection. In this way, those APs/BSs

that lead to lower power consumption levels provide larger
rewards and correspondingly larger values of Qup.(k) or
Ogpsn(j)- The computation of the reward is detailed in the
following sub-sections.

A. Reward computation

1) Reward Wp (k) when a UE is connected through an AP
In this case, considering that AP 4, is connected to BS §;,

the total power needed to serve UE u, results from two

contributions:

- P60, 1s the total power of AP 4, devoted to serving UE u,,.

- Py, is the power of BS §; devoted to delivering the traffic of
UE u, through the link between BS §; and AP 4,. It is given

by
P

k., j

= PRB,j.Mk‘n.j (18)

where M, is the number of RBs in BS §; required by UE u,
when connected through AP 4, given by

(19)

Tak,j

Based on the above discussion, the reward function when
UE u, 1s connected to AP A, is defined as

0 if 7 <R,
w., (k)= PO +P . 20
i (K) -8 bn o otherwise 20)
PA + Pmax,j

where P, is the maximum power of BS §; given by
Paxj/=M-Pgg;. Note that (20) assigns a value of 0 whenever
the achieved bit rate (i.e., measured bit rate) during the
connection 7 is below the requirement R,. In contrast, if the

service requirement has been successfully fulfilled, the reward
is a value between 0 and 1 that decreases when the required
power consumption increases. The condition 7 < R, when the

UE is not getting its required bit rate can occur for three
different reasons: (i) a lack of RBs at BS S; to provide the
service through AP 4;, meaning that constraint (13) is not
fulfilled. (ii) The propagation conditions in the D2D link do
not allow achieving R,, meaning that constraint (14) is not
fulfilled. (iii) There is an excessive load in AP 4;, meaning
that constraint (15) is not fulfilled. Consequently, the
formulation of the reward function in (20) takes into account
the constraints of the optimization problem.
2) Reward Wps,(j) when a UE is connected through a BS

In this case, the total power consumption is in the BS. By
making similar considerations as before, the transmitted power
from BS §; devoted to UE u, is given by

P =P 2D

RB,j

M,

where M,; is the number of RBs that BS S; would need to
serve the requirements of UE u, and is given by

RZ
M, =20 (22)

Uy
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Based on this, the reward function when the UE is
connected to BS S; is defined as

0 if 7 <R,
WBS,n (]) = 1 ij

23
otherwise (23)

max, j

B.  Computation of the Q4p (k) and QOss ,(j) values at
initialization

At initialization, i.e., when AP 4, or BS S; have not been
previously used by UE u,, the values of Q4p (k) and Ogs,.(7)
can be computed using expressions similar to the reward (20),
(23), but replacing the first condition (because there is no
measured value of 7 ), as explained in the following.

For the case of an AP, the initial value of Q4p (k) is defined

as
o it (a1 0r i, )
(k)= : j &
QAP,n,zmnal ( ) 1_% OtherWise ( )
PA +Pmax,;/'

The first condition in (24) reflects the case that AP A, is not
appropriate to serve UE u, because the propagation conditions
in the link between the AP and the UE are not able to provide
the service requirements (i.e., 6 ,>1) or because the link
between the AP and the BS would require more RBs to
provide the service than are available (i.e., My, >M).

Similarly, for the case of a BS, the initial value of Ops(j) is
given by

0 if (M,,>M)
QBS,n,initiul (]) = P’ i
P

max, j

(25)

otherwise

C. Selection criterion

At the time when UE u, needs to select an AP/BS for
receiving service, it uses the available values of Q,p,(k) and
Ogs.a(j) to apply a sofimax selection policy [40], in which AP
A; or BS S; is randomly selected with probabilities Pr,p(k,n)
and Pryg(j,n), respectively, defined as

Qap.n (k)
e T
K QAP./: (k ') J QB.S n (j')
Se t 4Ye
k'=1 Jj'=
Ops.0 (/)

Pr,, (k,n)= (26)

@7)

where 1 is the so-called temperature parameter. High
temperature causes the different options to be nearly
equiprobable. In contrast, low temperature leads to a greater
difference in selection probability for APs/BSs that differ in

their O value estimates, and the higher the value of Q, the
higher the probability of selecting the corresponding AP/BS.
Softmax decision making is a common means of balancing the
exploitation and exploration dilemma in reinforcement
learning-based schemes [40]. Sofimax decision making
exploits what the UE already knows to obtain a reward (i.c.,
selecting APs/BSs that have provided good results in the past),
but it also explores ways to take better actions in the future
(i.e., the selection must try first a variety of combinations and
progressively favor those that appear to be the best ones) [40].

To facilitate the algorithm convergence as the best actions
are being identified by the algorithm, a cooling function is also
considered in this paper to reduce the value of the temperature
T as time passes. Specifically, the following logarithmic
cooling function is considered:

%

- log, (1+1) 8)

where 7, is the initial temperature, and ¢ is the time elapsed
since the UE made the first selection.

D. Admission control

Given that the AP/BS selection is performed by the UE, the
load in the selected node may already be too high to support
the new UE. Consequently, an admission control is used at the
selected node to ensure that the number of connected UEs is
sufficiently low to ensure that the required bit rates can be
provided. This factor is captured in the constraint (13) for the
BSs and (15) for the APs. Then, when a UE attempts to
connect to BS §;, if the resulting value of M,.,; after including
the new UE is higher than M (or in general than a certain
threshold), the new UE is not admitted to this BS. When the
UE attempts to connect to AP 4, if the resulting value of @,

after including the new UE is higher than 1 (or in general than
a certain threshold), the new UE is not admitted to this AP.
When this occurs, the reward for the selected AP/BS is set to
0, and another node is selected.

E. Implementation and complexity considerations

Although a detailed analysis of the implementation of the
proposed approach for specific technologies is out of the scope
of this paper and is left for future work, in this section, we
present some high level considerations on how this
implementation could be addressed, emphasizing the practical
feasibility of the proposed approach.

Each UE needs to store the values Q4p,(k) and Ops,(j) of
the candidate BSs and APs and to update them based on the
obtained reward each time it is connected to a BS or AP.
When the UE has been connected directly to a BS, the UE
computes the reward based on (23), which requires that the

UE measures the achieved bit rate 7 and the power

transmitted by the BS, P,;. This power can be calculated by
the UE from (21) by measuring the average number of RBs
M,; that the BS has devoted to it. In addition, the power per
RB Ppgg; and the power available at the BS P, ; can be sent
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by the BS through broadcast channels. When the UE has been
connected through an AP, the UE computes the reward from
(20). This requires that the UE measures the achieved bit rate
7, , the power devoted by the D2D link (P4-6),) and the power

devoted by the BS (Py,;). To obtain 0;,, the UE can measure
the fraction of time that it has received information from the
AP. In turn, the power Py, ; can be determine by the AP using
(18) after measuring the number of RBs that the BS has
delivered to the UE, My, ;, and using the powers Pgz; and
P, from the BS broadcast channels. With this information,
the AP can deliver to the UE the values of Py, Py ,;and P,
using a dedicated control signaling message that depends on
the technology used for the D2D communication (e.g., Wi-Fi
direct). This message will be sent when the reward has to be
computed at the end of the data transmission. Alternatively,
another implementation option could be that the AP directly
computes the reward and sends it to the UE. The initial Q
values from (24) and (25) can be obtained following a similar
approach. The difference is that the values of My, , 0, and
M,; cannot be directly measured from the actual data
transmissions but are estimated from the bit rate requirements
R, and expressions (2)(4)(8) using signal-to-noise-and-
interference measurements.

Existing D2D technologies, such as Wi-Fi direct and LTE
D2D, already include control messages and procedures that
would support the required signaling between UEs and APs.
For instance, in the case of Wi-Fi direct [5], there are
discovery procedures to facilitate the identification of the UEs
acting as APs, and there are probe requests/responses, beacons
and association requests/responses through which the required
information to compute the reward could be exchanged.

In terms of complexity, the Q-learning approach requires
that each UE performs the following operations. First, to
update the Q-values for each AP/BS following (16)(17), it
requires 2 products and a summation per AP/BS. Second, at
the time of selecting the AP/BS, the UE has to compute the
probabilities (26)(27) for all BS/APs, which requires J+K
exponential functions, J+K summations and J+K divisions.
Therefore, the amount of required operations is considered to
be very affordable.

V. PERFORMANCE EVALUATION

The performance evaluation of the proposed approach by
means of simulations has been carried out in the two baseline
scenarios illustrated in Fig. 2. Scenario 1 in Fig. 2(a) assumes
a single BS S located in the upper left corner of a square area
of 400 m x 400 m. In turn, scenario 2 in Fig. 2(b) is a multi-
cell scenario configured initially with J =3 BSs deployed in an
area of 1000 m x 1000 m. Different positions of the UEs and
APs are considered in the simulations, as well as different
numbers of UEs and APs. The rationality for the choice of
these two scenarios is the following. Scenario 1 is a simple
case that allows for the computation of the optimum solution
by performing an exhaustive search among all possible
combinations of by, and c,;. Therefore, scenario 1 allows
direct comparison between the proposed algorithm and the

8
gt ss Fj UE acting as AP Q’ UE
T
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Fig. 2. BS, AP and UE locations in: (a) Scenario 1 (b) Scenario 2.
Coordinates are measured in meters.

optimum solution. In turn, scenario 2 is a more realistic multi-
cell case, where the choice of J=3 BSs has been selected as a
reasonable number of BSs that a UE can detect as candidate
cells to receive service in a typical macrocell deployment.
However, in this scenario, the total number of possible
combinations increases dramatically (e.g., up to 3.67-10"° for
J=3, K=12 and N=60), so it is not possible to test them all to
obtain the optimum solution. For this reason, the proposed
algorithm is compared for benchmarking purposes against a
genetic algorithm, which is a well-known heuristic search
method used to locate near-optimal solutions in complex
problems, such as the one considered here. Then, in this case,
the genetic algorithm, which operates with full knowledge of
all APs/BSs/UEs at each time instant, is taken as a near-
optimal performance bound for the proposed decentralized
approach, in which each UE makes its own decisions.

The following general propagation model is assumed for
computing the propagation losses between the UEs/APs and
the BS (i.e., Ly, L4x;) and in the D2D links between the UEs
and the APs (i.e., Lp,):

(1000,1000)

L(dB)=K,+f3,log f(GHz)+a,logd (km)+S (29)

Based on [41] and references therein, the considered
parameters in (29) are K,=122.1 dB, £,=21, and «,=37.6.
Moreover, /=2.6 GHz is used for the propagation loss between
the BSs and the UEs or APs and f=2.4 GHz for the
propagation loss between the APs and the UEs. S(dB) is the
shadowing, which follows a Gaussian distribution with mean 0
and standard deviation o©=6 dB. Spatially correlated
shadowing is considered with exponential autocorrelation and
decorrelation distance d.,,,=10 m. The shadowing of the links
BS-AP and AP-UE are assumed to be independent.

In scenario 1, it is assumed that the different APs work at
different frequencies (i.e., Fy; =0 for all £ and £’) so that there
is no interference in the D2D links. In scenario 2, both the
case where all APs work at the same frequency and the case
where all APs work at different frequencies are analyzed.

The BSs have M=25 RBs of bandwidth B=180 kHz. The
transmit power per RB for all BSs is Prz =29 dBm. The APs
have bandwidth B,=20 MHz and transmit power P,=20 dBm.
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Fig. 3. (a) Increase of the total transmitted power with respect to the
optimum solution. (b) Fraction of accepted requests by admission control for
the different strategies.
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The noise power spectral density is N,=-164 dBm/Hz, and the
required bit rates by the different UEs and APs are R,=5 Mb/s
and R, ;=5 Mb/s. The simulation time is measured in generic
units denoted as “time steps” that specify when the different
events of the simulation occur (e.g., UEs generating and
finalizing activity periods). In this way, the results are
applicable to different times simply by mapping the time step
to a specific time unit.

The UEs and the UEs acting as APs generate activity
periods whose duration is geometrically distributed with an
average of 30 time steps. At the beginning of each activity
period, the UE performs the AP/BS selection process
explained in Section IV.C, and at the end of the period, it
updates the Q values based on (16)(17). Unless otherwise
stated, the time between the end of one activity period and the
beginning of the next one is also geometrically distributed
with average of 30 time steps.

Each simulation experiment is run for a total of 10000 time
steps. The Q-learning algorithm has been configured with
learning rate o=0.1, and different values of the temperature
parameter T are analyzed, including the logarithmic cooling
given by (28).

A. Performance in terms of transmit power consumption

To gain first insight into the behavior of the proposed
strategy, the single cell scenario of Fig. 2(a) is considered,
with K=4 APs and N=6 UEs. In this single cell scenario, with
a reduced number of APs and UEs, the proposed algorithm is
benchmarked against the optimum solution to the problem
obtained by testing all possible combinations. Two variants of
the scenario are considered. Scenario 1A considers that the
K=4 APs and the N=6 UEs are static and located at the
positions indicated in Fig. 2(a). In turn, to obtain the global
performance for different positions of the UEs, scenario 1B
considers the case where the positions of the N=6 UEs are
randomly varied. Specifically, 200 runs of experiments are
executed corresponding to different uniform random
distributions of the UEs’ positions in scenario 1B.

Fig. 3 presents an evaluation of the proposed Q-learning
approach for both scenarios 1A and 1B. Two fixed values,
1=0.01 and 1=0.1, are compared against the logarithmic
cooling function given by (28) with 1,=0.1. As a reference for

comparison, Fig. 3 also includes the results with two simpler
strategies. The first is the case in which all UEs are connected
to the BS with the lowest propagation loss (denoted as “All to
Macro”). This situation corresponds to the classical approach,
in which no relaying through the APs is used. The second is
the random case in which each UE selects randomly, with the
same probability, the BS with the lowest path loss or an AP
connected to this BS. As a relevant performance metric of the
behavior of the proposed algorithm, Fig. 3(a) presents the total
transmitted power increase with respect to the optimum
solution for the different strategies. The optimum solution has
been obtained by performing an exhaustive analysis of all
possible combinations at each simulation time step. The
optimum solution depends on the UEs that are active at each
time step, so it can change during the simulation. The
presented results correspond to the average values along the
whole simulation time. As another performance metric of
interest, Fig. 3(b) plots the rate of accepted requests by the
admission control described in Section IV.D.

From Fig. 3(a), it can be observed that the proposed
approach with t=0.01 and with logarithmic cooling achieves
performance very close to the optimum (e.g., differences of
less than 1% are observed for the logarithmic cooling case).
Moreover, significant transmit power reductions are achieved
with the proposed strategy in comparison to the classical
approach, in which all UEs are connected to the BS with the
lowest propagation loss (i.e., “All to macro”). Such approach
requires on the order of 40% higher transmit power, which
demonstrates the efficiency of the proposed method to reduce
the power consumption and thus contribute to the overall
energy savings.

The relevance of the temperature parameter t can also be
observed in Fig. 3(a). This parameter controls the trade-off
between exploration and exploitation in the learning
mechanism. Looking at the sofimax criterion in section IV.C,
low temperature results in a greater difference in selection
probability for APs/BSs that differ in their QO value estimates,
and the higher the value of Q, the higher the probability of
selecting a given AP/BS. As a result, with low values of 1, the
system tends to converge quickly towards appropriate
solutions with selection probabilities close to 1. In this way,
the system can quickly exploit what has been learnt by
selecting the BSs/APs that provide the largest reward, at the
expense that it will have less exploratory capability to identify
other solutions in case the conditions change. In contrast, with
large values of temperature, the differences in the selection
probabilities for the BSs/APs become smaller, even if their Q
values are different. As a result, the UEs require more time to
identify the BSs/APs providing the largest reward, so they will
have less exploitation capability but higher exploration
capability to react to changes. In the results presented in Fig.
3(a), it can be observed that the choice t=0.01 achieves a
much better performance than t=0.1 because in the latter case,
there is excessive exploration, leading to the selection of non-
optimal solutions in some cases. In fact, additional results not
shown in the figure for the sake of simplicity revealed that
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TABLEI
SELECTION PROBABILITIES PRgs(J,N) AND PR ,p(K,N) FOR THE DIFFERENT
UES IN SCENARIO 1A

S A, A, A, A,
w| 0 0.985 | 0.005 | 0.005 | 0.005
w| 0 0.990 | 0.003 | 0.003 | 0.004
u; | 0.005 | 0.980 | 0.005 | 0.005 | 0.005
u,| 0.003 | 0.988 | 0.003 | 0.003 | 0.003
us| 0 0.989 | 0.004 | 0.004 | 0.003
us| 0 0.98% | 0.004 | 0.004 | 0.004

increasing T to larger values, such as t=1, results in
performance very close to the random case, meaning that the
selection probabilities of (26) and (27) are similar for all
BSs/APs. In turn, when considering logarithmic cooling, it can
be observed in Fig. 3 that the performance improves with
respect to the fixed case 1=0.01, mainly because the
logarithmic cooling tends to reduce the temperature values as
time elapses, so the best solutions are progressively selected
with higher probability.

As shown in Fig. 3(b), the proposed approach with 1=0.01
and with logarithmic cooling achieves the best performance,
with 100% acceptance. In contrast, for the rest of the
strategies, the acceptance ratio degrades significantly,
especially for the case in which all UEs are connected to a
macrocell.

B. Convergence analysis

This section analyzes the convergence behavior of the
proposed approach towards the optimum solution. For this
purpose, scenario 1A is considered. Because the optimum
solution depends on the number of UEs that are active at each
time, the analysis in this section considers that all UEs are
continuously generating activity periods with an average
duration of 30 time steps without any inactivity period
between them. In this way, all UEs are active, and the
optimum solution does not change during the simulation. In
addition, no traffic is generated by the APs in this study.

Table I presents the AP and BS selection probabilities
Prgs@j,n) and Pryp(k,n) for the different UEs when the system
has converged at the end of a simulation. The Q-learning
approach with logarithmic cooling is considered. For all UEs,
the probability of connecting to the access point A, is greater
than 98%. A detailed analysis of the power required with all
combinations, not shown here for the sake of brevity, reveals
that this is actually the optimum solution in this scenario to
minimize the total transmitted power.

Fig. 4 depicts the evolution of the total transmitted power as
a function of the total aggregated number of decisions (i.e.,
AP/BS selections) made by all UEs. The total number of
decisions is a representative metric of the convergence
because the algorithm progressively learns the optimum
solution as new decisions are made by the different UEs. The
total power progressively decreases until reaching the
optimum value after a total of 17 decisions made by all of the
UEs. Then, considering that there are 6 UEs in the scenario,
every UE requires, on average, between 2 and 3 decisions to
identify the proper AP. Fig. 5 illustrates the evolution of the
APs selected by each UE. The figure reflects that after a total
of 17 decisions, all UEs are connected to A4;, which
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Fig. 4. Evolution of the total transmit power as a function of the total number
of decisions made by the UEs in scenario 1A.
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Fig. 5. Evolution of the AP or the BS selected by the different UEs as a
function of the total number of decisions in scenario 1A.

corresponds to the optimum solution. Although it is not shown
in this paper for the sake of brevity, similar values of the total
number of decisions to find the optimum solution are observed
in other scenarios where UEs and APs are located at different
positions.

C. Comparison with a centralized genetic algorithm for the
multi-cell scenario

As previously discussed, due to the dramatic increase in the
number of combinations for the multi-cell scenario, it is not
feasible to obtain the optimum solution, so the proposed
approach is benchmarked against a genetic algorithm that is
taken as a near-optimal performance bound. The genetic
algorithm jointly considers all UEs, BSs and APs in the
optimization process. Therefore, its implementation requires a
centralized approach, as opposite to the proposed Q-learning,
which is executed in a distributed way at each UE. In this
respect, the objective of this study is to benchmark how far
from the centralized technique the proposed distributed
approach can be and not to discuss the implementation
considerations associated with the comparison between the
two techniques.

The genetic algorithm used for the benchmark is triggered
each time that a UE begins or ends an activity period to
consider the possible reconfigurations that may be required as
a result of these events. The genetic algorithm operates
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iteratively by evaluating in each iteration a population (also
known as generation) of N,,, individuals or chromosomes,
each corresponding to a candidate solution of the optimization
problem [42]. The number of genes in each chromosome is
Nycr, corresponding to the number of active UEs in the
scenario at the time the algorithm is triggered. Then, the g-th
gene is associated to UE u, and takes an integer value
depending on the BS or the AP to which the UE is connected.
Specifically, the gene takes the value j if the UE is connected
to BS §; and takes value J+k if the UE is connected to AP 4;.
The chromosomes considered in each generation correspond
to solutions that fulfill the constraints (12)-(15) of the
optimization problem (11). Each chromosome is evaluated in
terms of a cost or fitness function that captures the total
required transmitted power associated with the solution
represented by this chromosome. The cost function C(7)
corresponding to the i-th chromosome is given by (10).
Based on the above, the operation of the genetic algorithm
is as follows:
1) At initialization, a set of N,,, chromosomes that fulfill the
constraints (12)-(15) are randomly generated.
2) The cost function C(i) is evaluated for each chromosome i.
3) The following operators are applied to the chromosomes to
obtain the new set of N,,, chromosomes that constitute the
next generation:

3.1) Selection: The algorithm selects two chromosomes
(parents) to be used to obtain two new chromosomes
(children) for the subsequent generation. The parents
are selected according to a roulette wheel process, in
which chromosomes with lower cost are selected with
higher probability. Specifically, the probability of
selecting chromosome i is given by

(30)

3.2) Recombination: The two selected chromosomes are
recombined following the one-point-crossover
methodology (see [42] for details) to obtain a new
chromosome.

3.3) Mutation: Consists of changing the value of a gene
belonging to the new chromosomes resulting from the
recombination step. The probability of mutating one
gene is given by P,,,~=1/N,cr. When a gene is mutated,
its new value is selected randomly among the values
{1, ....J+K }, excluding the current value of the gene.

3.4) It is checked whether the resulting chromosome fulfills
the constraints (12)-(15). If they are fulfilled, the
chromosome is kept. Otherwise, it is discarded. The
selection, recombination and mutation steps are
repeated until obtaining a total of N,, valid
chromosomes for the next iteration/generation.

4) Steps 2 and 3 are repeated iteratively until reaching a
maximum number of iterations/generations. The solution of
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Fig. 6. Total average transmitted power aggregated for all BSs and APs when
increasing the number of UEs N for K=12 access points.

the algorithm corresponds to the chromosome with the

minimum cost that has been found throughout all the

generations.

The evaluation is performed in the multi-cell scenario with
the J=3 BSs shown in Fig. 2(b). There are K=12 APs and a
variable number of UEs N. Twenty runs of experiments with
different uniform random distributions of the positions of UEs
and APs are executed. UEs are randomly distributed in the
whole area, whereas the APs are randomly distributed in
square regions of side 100 m centered on each of the BS
locations to reflect the fact that the APs that are located far
from the BSs are not be useful for relaying the traffic of UEs
located closer to a BS. Each execution of the genetic algorithm
consists of 100 generations with a population of N,,,=30
individuals. The required bit rates of UEs and APs are
R,=R ;=2 Mb/s. The rest of the simulation parameters are the
same as in the beginning of section V.

Fig. 6 shows a comparison of the proposed Q-learning
approach with logarithmic cooling and t,=0.1 with respect to
the other considered strategies in terms of the total transmit
power as a function of the number of UEs M. In this case, the
APs work at different frequencies, so they do not mutually
interfere. The results observed with the Q-learning
methodology with 1=0.01 and with logarithmic cooling
improve the results obtained by the “All to macro” and
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Fig. 7. Total average transmitted power aggregated for all BSs and APs when

the APs work at the same and at different frequencies.
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“random” strategies by significantly reducing the total
transmitted power. Moreover, the proposed Q-learning
approach with logarithmic cooling achieved similar
performance to the genetic algorithm. Although this does not
mathematically prove the guaranteed convergence to the
optimum solution, as in Section V.B, because the genetic
algorithm could converge to either a global or a local
optimum, the results reveal that the proposed distributed
approach is able to achieve very close performance to a
classical optimization approach, such as the genetic algorithm,
in spite of being much less complex. In terms of convergence
time, the Q-learning approach achieves convergence to a
solution after an average number of 7.3 decisions per UE. In
terms of computational complexity, the simulation of 10000
time steps for the case of J=3 BSs, K=4 APs and N=10 UEs
lasts approximately 10 s with the Q-learning approach in a
state-of-the-art computer. In contrast, the same execution of
the simulation with the genetic algorithm lasts approximately
90 minutes. This reflects the dramatic reduction in
computational complexity of the proposed distributed
approach.

Fig. 7 evaluates the impact of the interference in the D2D
links in the case that all APs work at the same frequency, i.e.,
Fii-=11n (9). In this case, the interference among the different
APs reduces the capacities rp,; in the D2D links, which
increases the activity ®y for the different APs, reducing their
availability for relaying traffic and, as a consequence, the UEs
tend to connect more frequently to the BSs. As a result, the
total transmitted power increases with respect to the case
where all APs use different frequencies. However, the power
reduction with respect to the reference case, where all UEs
connect through the BSs, is still significant.

Finally, to test the behavior when increasing the number of
BSs, Fig. 8 considers a multi-cell scenario with J=7 BSs and
K=21 APs (using different frequencies) in an area of 1540 m x
1700 m. The figure plots the total average transmitted power
by all nodes for the proposed Q-learning scheme and for the
case when the UEs are connected only to the macrocells.
Similar results as in the previous cases are obtained, revealing
that the proposed approach achieves a significant power
reduction.

D. Influence of mobility and dynamic changes in the role of
APs and UEs

This section presents some illustrative results to provide
insight into the capability of the proposed Q-learning
methodology to adapt to changes in scenarios where UEs
and/or APs move and when the role of the APs and UEs
changes dynamically. In the first experiment, we focus on the
situation where a moving AP becomes available or
unavailable to relay traffic for a particular UE. For that
purpose, we consider the multi-cell scenario with the positions
of the BSs, APs and UEs shown in Fig. 2(b). At /=2000 time
steps, AP A3 begins to move from its initial position (200,800)
following a straight trajectory to the right until reaching
position (900,800) at =9000 time steps. Then, the AP remains
at this position until the end of the simulation at /=10000 time
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steps. All UEs are continuously generating activity periods of
average duration of 30 time steps without any inactivity period
between them. At the beginning of each period, the UEs
perform the AP/BS selection. The APs work at different
frequencies.

We focus the analysis on the behavior of UE u; in Fig. 2(b).
Fig. 9(a) shows the evolution of the selection probability
Prgg(2,1) that u; connects directly to BS S, and the probability
Pr,p(3,1) that u; selects the 2-hop connection S,—>A3—u;. The
other selection probabilities, Prgs(j,1) and Pryp(k,1), are
almost zero during the whole simulation and are not
represented in Fig. 9a. At the beginning of the simulation, u,
identifies the direct connection to BS S, as the best option,
with a selection probability close to 1. This is a reasonable
choice because the closest AP, 43, is located far from this UE.
Then, as 4; moves and approaches the position of u;, Fig. 9(a)
shows that the probability Pr,p(3,1) of selecting this AP
begins to increase, and at approximately /=6000 time steps, the
connection through AP A; is identified as the best option.
However, as A3 moves further to the right and away from u;,
the UE identifies that the direct connection through BS S, is
again the best option. This occurs at approximately =7500
time steps, when AP A3 is located at position (750,800).

The second experiment assesses the capability of the
proposed approach to address dynamic changes in the role of
the APs and UEs. For that purpose, we consider the positions
of the BSs, APs and UEs shown in Fig. 2(b). At =1000 time
steps, AP 4, decides to switch off its relaying capabilities and
becomes a UE. Then, at =4000 time steps, UE uy is
configured as an AP, denoted as A4s. These modifications
affect the behavior of UE us, whose selection probabilities are
plotted in Fig. 9(b). At the beginning, the probability Pr,p(1,5)
increases to a value close to 1, meaning that us learns to
connect through AP A,. Then, when 4, becomes a UE at
=1000 time steps, us identifies this situation, and the
probability Prps(1,5) reaches a high value, indicating that the
UE has learnt to use the direct connection to BS §;, which
becomes the best option, as seen in Fig. 2(b). Finally, after
=4000 steps, u4 becomes configured as AP A4s, and us
identifies this new AP as the best connectivity option to
receive service, i.e., Pryp(5,5) reaches a value close to 1. This
experiment reveals the robustness of the proposed approach to
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and Pryp(5,5) for us when there are dynamic changes in the role of APs and
UEs.

adapt to dynamic variations in the operating conditions.

As a third analysis, we consider the scenario of Fig. 2(b)
with the APs and BSs located at fixed positions and all UEs
moving during the simulation following random trajectories.
At each position update, a UE can move forward, move back,
turn left or turn right with the same probability. Like in the
previous experiment, UEs generate continuous activity periods
with average duration of 30 time steps. The mobile speed is
such that a UE moves 3 m in each activity period. All APs
work at different frequencies. For benchmarking purposes, the
proposed Q-learning approach is compared to the centralized
genetic algorithm described in Section V.C executed ideally at
every time step so that it can be considered as an upper
performance bound.

Fig. 10 presents the total transmitted power increase for the
different methodologies with respect to the genetic algorithm.
Significant power reductions are achieved by the proposed Q-
learning approach with respect to the case when all UEs are
connected to the macrocell BSs. In turn, the difference
between the Q-learning approach with logarithmic cooling and
the upper bound given by the centralized genetic algorithm is
only 7%, which can be considered satisfactory performance.
This result reveals the robustness of the proposed approach to
operate under dynamic conditions.
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VI. CONCLUSIONS AND FUTURE WORK

This paper has investigated the optimization of the
connectivity of different UEs in a heterogeneous cellular
scenario with D2D capabilities, in which specific UEs can act
as access points and provide service to other UEs by relaying
their traffic from the base stations, thus leading to a dynamic
network architecture in which each UE can change the way it
connects to the cellular network. In this respect, a new
optimization framework has been presented to determine the
most convenient connectivity option for each UE (i.e., one of
the BSs or another UE acting as an AP), with the target of
minimizing the total transmission power required in the
scenario to fulfill the bit rate requirements of the different
UEs.

A distributed strategy based on Q-learning and softmax
decision making has been proposed as a means to implement
the considered framework. Due to its distributed nature and to
the fact that each UE relies only on its own experience to
make decisions, the proposed approach has less complexity
than centralized approaches that address the global
optimization by jointly considering all APs, BSs and UEs.

The evaluation has demonstrated that the proposed
approach can achieve transmitted power reductions of
approximately 40% with respect to the classical approach in
which the UEs are always connected to the BSs. Moreover,
the temperature parameter in the softmax decision plays a
relevant role for the proposed approach, so a logarithmic
cooling technique has been adopted. The obtained
performance in terms of transmitted power in a single cell
scenario with the proposed approach is very close to the
optimum, with differences below 1%. Moreover, a detailed
analysis of the convergence properties of the proposed
approach has been conducted, showing that the algorithm
converges to the optimum solution after an average of 2 or 3
decisions per UE.

For multi-cell scenarios with high numbers of UEs and APs,
in which the optimum cannot easily be known a priori, the
proposed approach has been benchmarked against a
centralized genetic algorithm, demonstrating that the proposed
approach achieves similar performance in terms of total
transmitted power while exhibiting much lower computational
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complexity (e.g., as a reference, the duration of the presented
simulations with Q-learning is approximately 10 s, whereas
the same simulation with the genetic algorithm lasts
approximately 90 minutes). The robustness of the proposed Q-
learning methodology to operate in dynamic scenarios, where
APs and/or UEs move and where the role of APs and UEs
changes dynamically, has also been illustrated.

As future work, the considered framework could be
extended to optimally determine which of the UEs are more
adequate to act as APs so that the total power is minimized.
Similarly, the considered optimization problem could be
extended by optimizing the values of the transmitted power of
the APs. This would be feasible if the D2D technology
allowed some sort of dynamic power control to automatically
modify the transmitted power. In addition, the framework
could also be extended with consideration of other service
requirements, such as the possibility of reducing the bit rate
for those UEs that cannot achieve the required bit rate through
any AP/BS or by considering other service metrics such as
delay. Finally, the detailed implementation of the proposed
algorithm for specific technologies is also considered as a
future research direction.
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