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Abstract

We propose here a numerical model for a three-dimensional simulation of glass
forming processes. Using the basic philosophy of the Particle Finite Element
method (PFEM), we introduce several new features adapting the strategy to
suit the problem of interest. A modified fractional step method for the solu-
tion of the flow equations is applied. This approach, on the one hand, inherits
the computational efficiency of the original fractional step approach, and on
the other hand shows better mass conservation features. These features are
particularly attractive taking into account the importance of the correct pre-
diction of the glass product’s wall thickness. A smart mesh update strategy
and a simple mechanical contact scheme are introduced. In order to account for
temperature-dependent viscosity, the heat equation is coupled to the mechanical
model. Viscosity is obtained from the temperature field via an empirical law.
The model is validated and an example modeling the processes in the final blow
mold of the bottle manufacturing process is proposed.

Keywords: bottle manufacturing, numerical simulation, benchmark, PFEM,
counter blow, thermo-mechanical

1. Introduction

In spite of its very long history, bottle manufacturing remains a challenging
process and requires further improvements. The continuously growing compe-
tition calls for the optimization of the existing processes, diminishing the risks
of producing deficient bottles. Thus, such optimization must be based upon
a detailed knowledge of the process variables (such as the final topology, wall
thickness, stress and temperature distribution) and their dependence upon the
input parameters (inlet pressure, cooling conditions, etc). The typical questions
that need to be answered are: How can the container weight be reduced with-
out compromising on its strength? What are the optimal operation conditions
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(air pressure, mould temperature) and duration of the different forming stages?
Up-to-date the answers to these and similar questions are predominantly based
upon the experience and craftsmanship rather than scientific knowledge.

Numerical modeling and simulation can serve as an efficient tool for answer-
ing many questions arising when facing unexpected effects in the real products.
Apart from being considerably cheaper than conducting expensive and time-
consuming trial-and-error procedures common to factories, only numerical sim-
ulation can provide such (otherwise impossible or difficult to obtain) results as:
stress distributions within the solidifying melt and temperature distribution.

Up-to-date, there exist several computational tools used by industries for
bottle manufacturing simulation. Usually these software model the glass manu-
facturing process using axis-symmetric formulations. This approximation greatly
reduces the associated computational costs. However, it over-simplifies the pro-
cess: even though many bottle molds are purely axis-symmetric, nearly all
containers produced do have non-symmetrical thickness distributions. Addi-
tionally, axisymmetric formulations cannot be applied to modeling bottles with
non-circular cross-sections, such as e.g. fragrance containers. Thus, 3D simu-
lations appear to be obligatory for obtaining reliable predictions. However, 3D
simulations are typically characterized by excessive computational times.

Generally, two classes of methods can be applied to the problem at hand:
the fixed mesh (Eulerian) and the mesh-moving (Lagrangian or Arbitrary La-
grangian Eulerian (ALE)) ones. Eulerian formulations require excessively fine
meshes for the correct representation of the domain evolution and typically in-
troduce errors in mass conservation (whenever the Level Set method is used for
representing the glass-air interface evolution). On the other hand, Lagrangian
approaches lead to strongly non-linear systems of equations and large mesh de-
formations. Thus, a robust and computationally efficient 3D model still presents
a major challenge.

In the present work a 3D viscous incompressible fluid formulation using an
updated Lagrangian framework is proposed, where the current configuration is
the reference one. It adopts the basic features of the Particle Finite Element
Method (PFEM) [1]. The key idea of the PFEM is that the variables of interest
are stored at the nodes instead of the Gauss points. This results in a hybrid be-
tween a standard FE and a mesh-free method. A finite element mesh is created
at every time step of the transient problem and the solution is then stored at
the nodes. At every time step the governing equations are solved in the stan-
dard Finite Element (FE) fashion. The discrete operators are updated at every
non-linear iteration step according to the newly obtained domain configuration,
ensuring excellent convergence of the iterative procedure. The nodes obtain
their new positions and the mesh is re-generated using an unconstrained Delau-
nay technique. The approach is adapted to the problem at hand introducing
a simple but efficient contact algorithm, boundary tracking and a re-meshing
strategy. In terms of the method for solving the governing equations, we use
a modified fractional step approach, combining the classical technique with a
quasi-incompressible prediction [2], [3]. The approach on the one hand allows
for a highly computationally efficient solution and, on the other hand, leads to
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Figure 1: Different stages of bottle manufacturing process

an accurate mass conservation, which is essential for the problems of interest.

The paper concludes with two numerical examples. The first one is used for
the validation of the model. The second one shows the potential of the method.
Moreover, it can be used as a reference for the comparison and validation of
the future models for the bottle forming simulation. Even though several glass
forming simulation results are published in literature ([4], [5], [6], [7]), there exist
no well-established benchmark up-to-date. The example we propose focuses on
the modeling of the final blow stage of a glass manufacturing process. The
material and geometrical data as well as all the boundary conditions necessary
for reproducing the example are specified.

2. Glass forming

2.1. Industrial process

Prior to presenting the model for the glass (in particular, bottle) forming, let
us review the industrial process and introduce the corresponding terminology.
The standard bottle manufacturing process is sketched on Fig. 1.



Typically, high speed machines are fed a stream of molten glass' that is cut
with a shearing blade into “gobs” of predetermined weight. These gobs fall into
the first blank mold as shown in Fig. 1 a), where the temperature drops to
the so-called “working temperature range” (some 1150°C for soda-lime glasses).
At the base of the mold a cylindrical plunger for shaping the bottle neck is
inserted. Air pressure or a plunger is applied in order to push the gob to the
bottom of the mold (Fig. 1 b)). Afterwards, air compressed to = 0,15 MPa is
blown from the bottom of the mold forcing the gob to rise and take the shape of
the mold (Fig. 1 ¢)). This stage is known as a counter-blow process, suggesting
that the “blow” is performed against gravity. The intermediate product of the
counter-blow is known as “parison”.

Afterwards, the parison is removed from the first mold, turned upside down
(Fig. 1 d)) and transferred into the second mold, where it is hung in order
to stretch due to gravity (Fig. 1 e)), usually until the contact with the mold
bottom is established. Finally, air pressure (slightly lower than the one used in
the counter blow mold) is applied leading to the final shape of the bottle (Fig.
1 f)). This stage is known as final blow process. The bottle is then removed
from the mold and is transferred to the annealing oven where it is reheated to
remove the residual stresses produced during forming and finally it is cooled to
the ambient temperature. The forming process, from the time when the gob is
dropped into the first mold until the final product is removed from the second
mold takes around 6 seconds.

2.2. Material properties

Glass is a visco-elastic material. At low temperatures (roughly, below 400
°C) elastic effects dominate, while above 550 °C elastic effects are negligible.
One can also consider the transition zone where both effects are important
(see (Fig. 2(a)). In the following we shall consider the temperature dependent
properties of a typical soda-lime glass.

Mechanical properties: viscosity and density. The viscosity is the most impor-
tant property in the glass forming process. For example, in a typical tempera-
ture range encountered in glass forming processes (between approximately 700
and 1200°C) glass viscosity varies from 140 - 106 Pa s at 700°C to some 400
Pa s. The dependence of glass viscosity upon temperature is typically given by
Fulcher expression [8]:

lOgl()/L = A+ (1)

T—1Ty
where Ty, A and B are constants from experiments. In the present work, the
following parameter values are considered (except for example 2): T,=220°C,
B=4700, A=-2.8. The glass viscosity as a function of temperature is shown in a
logarithmic scale on Fig. 2(b). Due to very large variations of viscosity during

IThe most prevalent glass used for glass containers is soda-lime NasO — CaO — SiO2 glass.
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Figure 2: Viscosity-temperature curve of soda-lime glass used for beverage containers [8].

the forming process it is mandatory to include thermo-mechanical coupling in
the model in order to obtain realistic predictions.

The temperature distribution in the glass is non-uniform at any stage of the
glass manufacturing process. Thus, the viscosity is also non-homogeneous both
in space and time. In the context of numerical modeling, Lagrangian formu-
lations are very advantageous when dealing with non-constant properties: the
property (for example, viscosity) is automatically transported being “attached”
to the moving nodes. In the Eulerian framework, the representation of each non-
constant property evolution would require solving the corresponding transport
equation.

Glass density does not undergo considerable changes (2438 kg/m3 at 700°C
and 2367 kg/m3 at 1100 °C), thus constant density is an acceptable approxi-
mation.

Thermal properties. Heat transfer in the glass is governed not exclusively by
conduction, but also by the radiation, which may even be predominant. For
strongly absorbing semi-transparent materials this radiation can be modeled
as a diffusion process, thus an effective conductivity taking into account both
processes is often defined [4]. Real radiation models are complex and computa-
tionally expensive. In the scope of this work they are not discussed.

Variation of the specific heat in the temperature range of interest is negligible
(1400-1420 J/kg*K between 700 and 1200°C). The value of the diffusivity D
changes from 0.0000015 m? /s at 700°C to 0.0000065 m? /s at 1100 °C.

3. Numerical model

The numerical model for the complex phenomenon of glass forming devel-
oped here consists of a mechanical and thermal modules. These models are
coupled in order to take into account the temperature-dependent material prop-
erties’ evolution.



Kinematic framework. Lagrangian description for modeling the glass forming
processes appears attractive as it allows to track the evolution of the deforming
domain naturally. The position of the evolving domain coincides with the posi-
tion of the mesh nodes, defined by the solution of the flow problem. An accurate
interface capturing using Eulerian approaches would require much higher mesh
resolution to achieve similar precision. The additional cost associated to the
Lagrangian description is due to the necessity of re-meshing the computational
domain in order to avoid excessive element distortion.

The Particle Finite Element Method (PFEM) applied in the present work
for modeling the glass forming process is based on the updated Lagrangian de-
scription of the governing equations. The key idea of the PFEM is that the
variables of interest are stored at the nodes instead of the Gauss points. A
finite element mesh is created at every time step of the transient problem and
the solution is then stored at the nodes [1]. The nodes are generally maintained
(unless adaptive refinement or erasal is performed), thus the mesh re-generation
consists in reconnecting the existing nodes. The nodes move to their new posi-
tion according to their velocity and then the finite element mesh is re-generated
using an unconstrained Delaunay triangulation/tesselation [9].

In the following the governing equations for the glass are specified. Air is ne-
glected, thus the glass-air interface becomes simply the glass domain boundary.
The fully sticking contact with the mold is considered. In Section 3.2 the issues
related to the boundary identification and contact treatment are explained in
detail.

3.1. Mechanical model

At forming temperatures, elastic effects in the glass are negligible and the
behavior is nearly iscochoric. Thus, hot glass can be modeled as a viscous
incompressible fluid. The total stress tensor can be decomposed into hydrostatic
and viscous parts and, therefore, the motion of the hot glass can be described
by the Navier-Stokes equations for viscous incompressible fluid. These can be
written for the glass domain 2 in Cartesian coordiantes as

Dv
P TVP =V (2ue(v)) = pg (2)
V-v=0 (3)
where v is the velocity vector, p the pressure, ¢ - time, % is the material deriva-
. . . . . . _ vvav”
tive, g the gravity, p the density, u the dynamic viscosity and € = ~~-5— -

the deviatoric strain rate.

Boundary conditions. At the mold walls T'y and other fixed domain parts (e.g.
bottle neck during the gravity stretching), homogeneous Dirichlet boundary
conditions are prescribed, i.e.

v=0 at I'y (4)



Two type of Neumann boundary conditions will be distinguished. The first
one is the so-called “free-surface” condition that can be approximated for van-
ishing velocity gradients as: p = 0 at I';,. This condition will be prescribed at
the evolving outer surface of the glass prior to the contact with the mold and
at the inner surface prior to the application of the compressed air. A Neumann
boundary condition will be used in order to account for the air pressure p, at
T,:

t, = p.n at I'), (5)

This condition is prescribed at the inner surface of the glass.

3.1.1. Finite Element formulation

An equal order linear interpolations for the velocity and pressure variables
over 4-noded tetrahedra (3D) is used here for the space discretization of the
governing equations Eqgs. (2), (3). We use Backward Euler time discretization
scheme exclusively for the sake of simplicity. All the arguments presented in
the paper are valid for any implicit time integration scheme. Being standard,
the space and time discretization are not discussed here (see e.g. [10], [11]). A
pressure stabilization term is added due to the use of the equal order velocity-
pressure interpolation (see e.g. [12] or [13]).

Given v,, and p,, at t,, the time discrete problem consists in finding v,,+1
and p,,,; at £,41 as the solution of

‘_’n - ‘_’n — — -
“T + Vi1 + Gppyy = F (6)

DV, 11+ SPpyq =0 (7)

M

where M is the mass matrix, L is the Laplacian matrix, G is the gradient matrix,
¥ and P are the velocity and pressure respectively and F is the body force vector.
Note the absence of the convective term due to Lagrangian kinematic framework.

The matrices and vectors are assembled from the element contributions de-
fined as

M=p / NNTdQ, (8)
Qe
L= / VNVNTaQ, (9)
Qe
G=— / VNN, (10)
Qe
F= / NpgdS, +/ pendly, (11)
Qe T
D=-G” (12)
S=r7L (13)

N stands for standard linear FE shape functions vector, 2. is the ele-
ment integration domain, 7 is an algorithmic stabilization coefficient defined
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as T = (ZH,:'H + %) , where h is the element size [12]. Note also that the

discrete operators given by Eqgs. (8)-(13) correspond to the unknown current
configuration X, according to the updated Lagrangian approach [1], [14].
Thus, the system is non-linear and must be solved in an iterative manner by
updating the discrete operators at every non-linear iteration.

Modified fractional step technique for the efficient solution of governing equa-
tions. Solving the governing equation system monolithically (i.e. for velocities
and pressure simultaneously) has a considerable computational cost [15]. Pres-
sure segregation or fractional step methods are known for their high compu-
tational efficiency, however they often lead to mass conservation problems [16].
We propose to use the modified version of the fractional step approach presented
in [2] and further developed in [3]. On the one hand, it inherits the high com-
putational efficiency of the original fractional step procedure ( [17], [18], [19])
due to the decoupling of the velocity and the pressure. On the other hand, it
has much better mass conservation properties.

The fractional step split is applied here at purely algebraic level to the gov-
erning equations system defined by Eqs. (6)-(7). The momentum equation is
split into two parts by introducing the intermediate velocity v and the original
monolithic system is replaced by

MY ;:" + pLvn41 +Gpl =F (14)
vn 1~ v _ _

Mlit +G (Pyy1 —Phy) =0 (15)

DV, 41 +SP,yq =0 (16)

where v is an auxiliary vector, representing the intermediate or “fractional”
nodal velocities and p? 11 is the guess of the end-of-step nodal pressure vector.
Eq. (14) is known as “fractional momentum” and Eq. (15) as “end-of-step
momentum” equations. The novelty of [2] in contrast to the classical fractional
step approach consists in using p? 41 instead of p,, in the fractional momentum
equation.
The pressure Poisson’s equation is obtained by enforcing the incompressibil-
ity condition (Eq. (16)) with the end-of-step momentum equation (Eq. (15)),
leading to
DV = AtDM™'G (P,,;1 — P%y1) + SPpia (17)

Using the typical approximation DM ™'G ~ L, we arrive at the final system of
discretized equations to be solved:

(MV ;;’" T L+ prm) —F (18)
Dv = AtlL (f)n+1 - f’%+1) + 8P, 41 (19)
Vpil —V _ _
M% +G (Pn+1 - PZH) =0 (20)



Fractional momentum equation solution and pressure prediction. The momen-
tum equation (Eq. (18)) is non-linear due to the dependence of the discrete
operators on the unknown current configuration X,, 1. Thus, it must be solved
iteratively. For this reason, let us define the residual of the fractional momentum
equation as

V-V,

o F <M L+ Gpgﬂ) (21)

The modified fractional step method proposed in [2] consists in considering
the pressure variation in the fractional momentum equation. Thus, p? 41 can-
not be considered constant in the residual expression. In order to obtain the
fractional momentum equation dependent on the velocity exclusively (and thus
maintain the decoupling of the velocities and the pressure), a prediction for the
pressure pJ 41 can be computed using an assumption of slight compressibility.
Following this assumption the current-step pressure is obtained by adding the
term proportional to the divergence of velocity to the pressure of the previous
step (see [14], [2] for details):

tn+1
pi+1:pn+n/ V- vdt (22)

tn
where k is the compressibility parameter of the fluid. The discrete form of Eq.
(22) using linear velocity-pressure finite elements reads

tnt1
M,p?,, = M,p,, + & / Dvdt (23)
t

n

where M, is the pressure mass matrix.

In order to avoid matrix inversion for obtaining the current step pressure,
the pressure mass matrix M, will be taken in the lumped form. Performing the
integration, Eq. (23) can be re-written as

Pl =D, + KAM, "DV, (24)

Expressing the pressure in terms of velocity according to Eq. (24) allows to
define the iterative solution of the non-linear equation t,,, = 0 (with ¥, defined
by Eq. (21)) exclusively in terms of the nodal velocities:

Hév =1,,(vi, D) (25)
Vit =¥ 4 ov )
Ply1 =D, + M, 'kADV ! Xt = X4 At (27)

[1532)

where “i” stands for the non-linear iteration index at time ¢,4; and H is the
tangent matrix defined as
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H="%¢

(28)
As the non-constant pressure term is now included in the residual, it must be
accounted for in the linearization.

According to [3] the dynamic tangent matrix can be approximated as:

M
H= " +uL+At / B”C,.BdQ. (29)
At Q.

where the operator B and the volumetric constitutive matrix C,, are defined
(in 2D) as

8N1 ONQ ONS
ox 8]97 ox 81(37 ox 61(37
B=| 0 5+ 0 52 0 %2 (30)
8N1 o] 1 8N2 8]3712 8N'3 o) 3
oy ox oy ox oy ox

1 (F " 0
C.==-1|x & O
0 0 O

(31)

Elimination of the unknown pressure variables from the left-hand-side of the
modified fractional momentum equation enables us to solve it for the veloci-
ties only (as it is done in the standard fractional step), thereby preserving the
decoupling of the nodal velocities and pressures. However at every non-linear
iteration the nodal pressure needs to be updated using Eq. (24).

Pressure Poisson’ equation and the correction step. The next step to be carried
out is the correction of the pressure, i.e. obtaining the end-of-step incompressible
pressure field using Eq. (19). Solution of Eq. (19) requires to impose the
pressure boundary conditions due to the presence of the Laplacian L. According
to the methodology presented in [2], p,,;; = Py, can be used as an essential
boundary condition for the pressure necessary for solving the Poisson’s equation
for the pressure. The quality of this approximation is related exclusively to the
value of the compressibility constant s used in the prediction step. Having
the pressure fixed to the predicted value p? 41 at the free surface, the pressure
Poisson’s equation is solved elsewhere in the domain to yield the end-of-step
pressure vector p,, .

This step can be thus viewed as a correction of the predicted pressure p¥ 1
to the correct end-of-step one everywhere except for the free surface, where the
“slightly compressible” pressure is maintained. Consequently, the projection
step is carried out according to Eq. (20) and returns the end-of-step divergence-
free velocity everywhere in the domain except for the pressure boundary, where
the divergence-free velocity is approximated.

The implementation of the modified fractional step scheme is very similar
to that of the classical fractional step method. It is summarized in Table 1.

10



1. Solve the fractional momentum, Eq. (18)
e Update the nodal pressure vector according to Eq. (24) and add it
to the fractional momentum residual

e Update the discrete operators according to the new nodal positions
Xn+1

e Repeat two previous steps until convergence for the velocity field is
achieved

2. Solve the pressure Poisson’s Eq. (19), using the predicted pressure as the
boundary condition

3. Solve the end-of-step momentum equation (Eq. (20))

Table 1: Implementation procedure for the modified fractional step scheme

3.2. Contact modeling and boundary mesh

Contact modeling. Accurate modeling of contact between the glass and the
wall of the mold is essential for predicting the wall thickness of the glass object
correctly. Literature exhibits a large number of numerical methods. In Eulerian
non-matching grid formulations a large variety of methods has been proposed
ranging from penalty approaches ([20], [21]) to augmented Lagrange multipliers
[22]. For the matching grid methods the contact modeling is usually done using
simple geometric considerations [4]. In this study we assume that the mold is a
rigid body and the glass sticks to the mold. This is a reasonable and commonly
accepted approximation (see e.g. [6], [4]).

We propose here a simple algorithm that allows preserving the overall strat-
egy of the PFEM, but at the same time does not lead to the incorrect pre-
diction of the wall thickness. For the sake of minimizing the computational
cost associated with re-meshing, PFEM utilizes unconstrained Delaunay trian-
gulation/tetrahedrization ([23]) equipped with the alpha-shape technique for
detecting boundaries.

Modified PFEM contact algorithm. Considering that the nodes follow a vari-
able distribution h(z), which is the minimum distance between two nodes, the
alpha-shape technique (see [24], [1]) applied to the unconstrained Delaunay mesh
allows to distinguish whether an element defined by the four nodes must be cre-
ated or not. The radius r of a sphere defined by the examined nodes is compared
to the corresponding size h (average size of the inter-nodal distances). If the
ratio ;7 > «, where « is the alpha-shape parameter typically taken as 1.5 in
3D, the element is not created and the nodes are marked as belonging to the
boundary (for details on the alpha-shape techniques one can see [1]). For the
correct contact representation we propose to combine the alpha-shape technique
with the boundary markers.

Let us distinguish the outer boundary of the glass domain and the mold wall
with an interface and wall flags, respectively. As the interface nodes approach

11



(a) Glass and wall are separated (b) Fluid element is created

Figure 3: Schematic representation of the standard PFEM contact algorithm

the wall nodes, the distance between them diminishes and an element is cre-
ated. According to the standard PFEM algorithm such an element immediately
obtains the properties of the fluid, thus bringiung the fluid and the solid into
contact (see Fig. 3).

However, this newly created element (see Fig. 3(b)) defines a “premature”
contact (both mechanical and thermal) between the glass and the wall, as the
distance between the original fluid boundary nodes and the wall are still of
order h. This implies introducing an error of order h in the determination of
the thickness of the fluid layer (glass wall in our case). In this work we propose a
simple change in the contact algorithm that leads to a considerable improvement
in the accuracy of thickness determination.

We propose to consider such the newly created contact element a purely ge-
ometrical entity, that does not contribute to the governing equation system and
thus does not result in any resistance to the fluid motion. This can be formally
described as: if the mesher creates an element that contains both interface and
wall nodes, mark it as a fictitious element and multiply its contribution (resid-
ual and tangent matrix) by zero during the finite element assembly process.
Nevertheless, fictitious elements can be used for tracking the distance between
the interface nodes and the wall. Moreover, creating fictitious elements as geo-
metric entities enables maintaining the original PFEM unconstrained meshing
strategy.

The distance d between the interface node and the wall is computed within
each fictitious element. As long as d is larger than a given tolerance ¢, the
fictitious element is maintained and no actual contact between the fluid and the
solid is established. As soon as d reached a value lower than a given tolerance
€, the interface node is erased, thus the glass domain gets connected to the wall
via a real element in a fully sticking contact (see Fig. 4 ¢) and d)). This way,
the error in the determination of the thickness of the bottle becomes controlled
by the user-defined tolerance e¢. In the simulations used in the present work, €
was taken as 10 % of the element size.

Preserving the boundary mesh quality. The domain deformation occurring in a
glass forming process can be viewed as a stretch in different directions. This
leads to the danger of decreasing the mesh resolution and possibility of creating
non-physical “holes” at the glass domain boundary due to alpha-shape (see
stretching of a domain fragment fixed at the top on Fig. 5(a)). In order to
preserve the mesh quality and avoid the creation of holes, an adaptive refinement

12
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(a) Glass and wall are separated (b) Fictitious contact elements are created

d<e {

(c) Removal of interface nodes close to the wall (d) Stick contact between the glass and the wall

Figure 4: Schematic representation of the modified PFEM contact algorithm

lo li<1.5l0 12>1.5l0

(a) Mesh deterioration (b) Mesh-preserving refinement

Figure 5: Mesh refinement at the boundary

of glass domain boundary is used. A new node is introduced at the center of
the boundary elements edge as the corresponding length reaches of 1.5 times
the original value (see Fig. 5(b)).

3.8. Thermal model

During glass forming process the temperature distribution within the glass
is highly non-uniform. First of all, the temperature varies in the thickness
direction of the glass domain due to cooling of the free surfaces. Second, when
the glass reaches the mold wall a local rapid cooling occurs, resulting in a strong
increment of viscosity, thus altering the shape evolution: zones with the higher
temperature will undergo stronger stretching and thinning [25]. Thus, inclusion
of the heat equation is mandatory and purely mechanical models ignoring the
heat transfer must be discarded when modeling the problem of interest.

Assuming that the conduction obeys the Fourier law which relates the heat
flux with the temperature and the thermal conductivity, the heat transfer equa-
tion can be written in the Lagrangian reference frame as:

13



DT
T EV2T + ¢ (32)

where c is the specific heat, T' is the temperature, k is the thermal conductivity
and ¢ is the internally generated heat flux. Using linear temperature finite
elements and the Backward Euler scheme for space and time discretization,
respectively, leads to the following equation:

PRLLER Sy S ¥ NG (33)
At
where M and L are the mass and Laplacian matrices and Q = er Ngqdf2..
Note the absence of the convective term in the Lagrangian framework. Heat
convection is automatic in the Lagrangian model, as the heat is convected by
the moving Lagrangian grid “attached to the material”.

The problem must be equipped with the Dirichlet boundary conditions (fixed
temperature T' = T, at mold in the locations to be specified) and Neumann
boundary condition (adiabatic condition will be considered in this work. Heat
conduction prior to the contact with the mold (occurring due to convection of
the air in contact with the glass) will not be considered here. Once the contact
with the mold has taken place, the direct heat conduction between the glass and
the mold takes place. Temperature field 7,11 obtained as a solution of Eq. (33)
is used for computing the viscosity distribution (Eq. (1)) for the mechanical

model. More details on the thermo-mechanical coupling can be found in [26],
[27].

8.4. Owverall solution algorithm

To this end all the “ingredients” of the thermo-mechanical model are defined.
Table 2 presents the overall solution algorithm for the bottle forming process.

4. Examples

In this section two numerical examples are solved. We mentioned previously
that there exist practically no established benchmark for the glass forming mod-
els. In the majority of literature on the numerical modeling of the glass man-
ufacturing process the data provided is insufficient for reproducing the tests.
Thus, in this section we first validate the proposed formulation by solving one
of the very few examples suitable for the validation of the glass forming simula-
tion model on a simple rectangular geometry. Next we propose a numerical test
dealing with the bottle-forming that could serve as a reference in the future.
The main aim is to accurately define all the data necessery for reporducibility
of this example.

14



1. Discretize the glass domain with a finite element mesh.

2. Identify the external boundaries for the fluid and glass-mold wall contact
elements (using the alpha-shape technique + boundary markers)

3. Solve the Lagrangian equations for the glass. Obtain nodal velocities,
pressure and displacements.

4. Move the mesh nodes to a new position (according to the computed dis-
placements).

5. Solve the heat transfer equation. Obtain the temperature distribution of
the glass.

6. Update viscosity according to the obtained temperature distribution using
Eq. 1

7. Re-generate the mesh for the glass domain (nodes are generally main-
tained)

8. Go back to the next time step. Start the solution from Step 2

Table 2: Solution strategy for the bottle forming simulation

4.1. TV panel pressing

This example reported by Berndhauser in [28] models the manufacturing of a
TV glass panel. Even though it does not deal explicitly with the bottle manufac-
turing process, the characteristics of the example are very similar (pressing the
glass gob into a mold, accounting for thermo-mechanical nature of the process).
Moreover, it provides simple nearly rectangular geometry which facilitates the
validation. A portion of molten glass in the shape of cylindrical gob, is pressed
into the mold by the plunger (see Fig 6). The plunger is moving downwards
with a prescribed time-dependent velocity. During pressing, the glass is flowing
while it cools down because of the contact with the colder mold and plunger.
The problem settings and material properties presented below are taken from
[28].

The problem to be simulated accounts for the thermo-mechanical process
involving the plunger, the glass and the mold. The mold and the plunger are
considered to be rigid. The overall time of 3 seconds is simulated. The plunger
descends with the vertical velocity v, = (—0.0842¢~1535" 4 0.00842) m/s for
0.0s < t < 1.5 s. For 1.5s < t < 3.0s it remains still. The no-slip condition at
the glass-wall interface is considered.

The thermal conditions are as follows: the initial glass temperature T, =
1000 °C. The initial temperature of the plunger and the mold is T}, = 73,=500

°C. Dirichlet boundary condition for the temperature is prescribed at the outer
surface of the mold and the outer surface of the plunger. The rest of the mold
and the plunger surfaces are considered to be adiabatic (heat flux @ = 0).
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Plunger

Plunger

Mould

Figure 6: Cross section of the glass pressing process: initial and final states

Figure 7: TV screen forming set-up (one quarter): mold, gob and plunger

The geometry of the model is shown in Fig. 7. Geometrical details can
be found in Fig. 8. The initial distance between the mold and the plunger
dgl = 4.67376 cm is equal to the original height of the glass gob. The gob has
a cylindrical shape with a radius of » = 13.243 cm.

Material properties of the plunger, the mold and the glass are summarized
in Table 3. Gravity of 9.8 m/s? is considered.

Results. According to the benchmark proposal, the temperature, pressure and
the glass front evolution are analyzed. The values of the variables of interest are
inspected at several locations indicated in Fig. 9. “Sensor” lines are located at
four corners of the plain part of the mold bottom as L1: x=0, y=0; L2: x=0.22
m y=0; L3: x=0, y=0.16 m; L4: x=0.22, y=0.16 m.

Fig. 10 displays the evolution of the temperature at L1 reported in [28].
One can see the compressing gob due to the plunger descend. In the beginning
the temperature field exhibits a sharp discontinuity at the glass/mold and the
glass/plunger interface. As time evolves, the transition region appears. At t=1.5
s the plunger stops and the process is governed by diffusion only.

A comparison of the results obtained in the present work with the reference
data is displayed in Fig. 11. One can see a good agreement between the com-
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(a) Cross section of the plunger; front and side view
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— e
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1=16 cm

I=5cm

I=3cm }

Side view

(b) Cross section of the mold; front and side view

Figure 8: Dimensions of the mould and the plunger.

Glass

Viscosity 10723+t Pas
Conductivity A4 5 W/m K
Specific heat ¢, 1400 J/kg K

Density p, 2500 kg/m3

Plunger and mold

Conductivity Ay, 20 W/m K
Specific heat ¢, 500 J/kg K

Density p, 8000 kg/m?

Table 3: Material properties of the model components
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Figure 9: Location of the inspection lines (“sensors”) [28]
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Figure 10: Temperature evolution at L1 according to [28]
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pared values. In the beginning the temperature is distributed almost uniformly
across the glass thickness (z-direction). Around 0.75 s the maximum tempera-
ture concentrates in the middle plain of the gob. At the end of the simulation
the maximum temperature in the middle of the glass thickness reduces from
1000 °C to some 950 °C.

The slightly smaller temperature observed at t=0.01 s in the lowest edge of
the moving plunger (z=0.075) is a spurious overshoot, likely to occur due to the
steep temperature gradient (this phenomenon is addressed, for example, [29]).
Steep temperature gradient is present at both contact interfaces, namely at
z=0.03 and z=0.075. However, since mold and the adjacent glass at the bottom
(z=0.03) are not moving, no convection occurs there and thus the overshoot is
observed only at the contact above (z=0.075), where glass is in contact with the
moving plunger. We note that the overshoot is only of some 3 C (which is less
than 1 % of the temperature difference between the mold and the glass).

Evolution of glass front in the vertical direction of the xz-cross section (long
side, x=0.23 m, y=0) is shown in Fig. 4.1. In the reference [28] the location of
the glass front is reported only for t>1 s. We included the results spanning over
the total simulation time. Since the plunger reaches zero velocity at t=1.5 s, the
glass front position remains constant afterwards. One can see good agreement
between the results of the present work and the ones obtained in [28]. Slightly
slower increment in height may be attributed to either different mesh resolu-
tions or presence of the gravity in the present work (gravity was neglected in
[28]). One other factor that may influence this result is the volume conservation
of the method. Spurious volume gain would lead to the faster domain evolu-
tion, while volume losses would lead to a slower growth. In order to exclude
this source of inaccuracy of our method, the glass volume evolution had been
recorded throughout the simulation (see Fig. 4.1). One can see excellent volume
conservation features of the present method. Maximum volume variation ob-
served was below 4 %. Volume conservation features of the method are further
analyzed in the next example.

The pressure evolution at four inspection lines is shown in Fig. 4.1. It is
important to note that pressure varies insignificantly in the thickness direction.
Thus a single value is representative. Originally, glass does not reach the position
of sensors L2, L3 and L4 (thus, zero values are observed). First, the glass front
reaches L2, then L3 and, finally, the further most corner L4. The maximum
pressure of appx. 1.1 MPa is reached at L1 (t=1.25 s). An example of the
pressure distribution at t=0.50 s is shown in Fig. 4.1.

4.2. Bottle manufacturing: final blow process

In this example we concentrate our attention on the second stage of the
bottle manufacturing process, namely the gravity stretching and the final blow.
The objective of this example is to test the capability of the presented numerical
approach to solving this challenging problem. Moreover, we strive to establish
an example that may be used as a first approximation to a benchmark for
the thermo-mechanical simulations of the bottle forming process. In order to
facilitate the modeling and reduce computational time, the mold is modeled
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Figure 11: Temperature along L1 at different time steps. Comparison with [28§]
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Figure 12: TV screen pressing: pressure and volume data.
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Figure 13: Pressure and glass front evolution in the gob
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Glass
Viscosity p = 265677693762693¢ ~0-0233569026+T Py g
Conductivity Ag 1.5 W/mK
Specific heat ¢, 1409 J/kg K
Density pg 2400 kg/m3

Table 4: Material properties of glass in the final blow simulation

‘ 7240C

800°C

TEMPERATUR
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I 1087.1
10352
983.37
9315
879.62
827.75
775.87
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(a) Contour (b) Points (¢) 3D model (d) Initial temperature

Figure 14: Model for the final blow simulation

merely as a set of nodes discretizing its inner wall providing Dirichlet boundary
for both the mechanical and the thermal problem. The thermal problem is
modeled considering convective and diffusive heat transfer modes (radiation is
neglected). We note again that adopting the Lagrangian framework, convection
in the glass phase is automatically solved due to the mesh motion. No convection
condition at the glass domain boundary is prescribed.

The initial geometry consists of the mold wall and the parison. The geometry
data is shown in Fig. 14(c).

The 3D model can be obtained by applying rotation to the surface (rep-
resenting the parison) and the curve (mold wall) around the vertical axis (see
Fig. 14(a)). The location of the points necessary for reproducing the geometry
is shown in Fig. 14(b) and the corresponding coordinates are summarized in
Table 5. The mold and the glass domain share the point G. The bottle neck
and the mold are fixed. The domain boundaries are defined as follows: Dirichlet
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Points b y zZ

A 0 0 —0.2815
B —0.0346 | 0.0 | —0.30848
C —0.042 0 —0.3020
D —0.0429 0 | —0.20632
E —0.0275 0 —0.1127
F —0.0163 0 —0.0662
G —0.0144 0 —0.0185
H —0.0145 0 —0.0014
I —0.0100 0 0

J —0.0086 0 —0.0185
K —-0.01004 | O —0.0803
L —-0.01139 | 0O —0.1420
M —0.01874 | 0 —0.2241
N —0.01963 | 0O —0.2440
@) 0 0 —0.2447
P 0 0 —0.2815
Q —0.028 0 —0.2276
R —0.034 0 —0.27
S —0.029 0 —0.22
T —0.0246 0 —0.169

Table 5: Model for the final blow simulation
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Figure 15: The initial domain and the location of Dirichlet and Neumann boundaries in the
final blow mold.

boundary I'y comprises of the bottle neck and the mold wall. The mold wall
becomes part of the computationally domain 2 only once the contact with the
glass is established (see Section 3.2 for details). The mold wall, the glass domain
as well as Dirichlet and Neumann boundaries are shown in Fig. 15.

We shall also distinguish the free outer boundary of the glass domain I';.
Note, that as soon as the glass node belonging to I'; touches the wall, it becomes
a part of I'y.

The temperature at mold walls is fixed to 800 °C. At the bottle neck the
temperature is fixed to 724 °C. At the inner and outer surfaces of the glass
the initial temperature is set to 950 °C. Elsewhere in the glass domain, the
initial temperature distribution is prescribed according to Tj,;+ = 950+ (1140 —
950)(1— %)3, where z is the vertical coordinate of the given node, 2, and
Ztop are the minimum and maximum vertical coordinates of the parison. The
initial temperature distribution is shown in Fig. 14(d). During first two seconds
the parison is exposed to gravity exclusively. At t=2 s air pressure of 0.14 MPa
is applied at the inner cavity. At t=2.6 the process is completed. The glass
density is p = 2400 kg/m?3. The viscosity is computed from the temperature field
according to: p = 265677693762693¢~0-0233569026-T " The industrial partner (see
Acknowledgements) has provided the authors directly with the viscosity values
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for a number of temperatures, rather than the values of Fulcher constants. Thus,
simple exponential fitting to find a function approximating this data was used.

Results. Fig. 16 shows the evolution of the glass object. One can see that
around 0.3 seconds glass reaches the mold and accommodates there until the
air pressure is applied. It takes less than 0.5 seconds to press the glass into the
mold.

Fig. 17 shows the temperature distribution along the vertical coordinate at
the inner bottle surface. In the beginning of the simulation temperature of 950

°C is set at inner (and outer) surfaces (green line). The initial temperature
distribution in the middle of the wall (thickness) is shown in blue. The tem-
perature (and, consequently, viscosity) at the surface of the glass evolves due
to convection and diffusion leading to the final temperature distribution at the
inner surface (shown in red).

Fig. 18 displays the evolution of the glass volume. In case of using the
standard PFEM algorithm (not using the fictitious contact elements approach)
the total volume increases by as much as 35 %. One can distinguish two stages:
the one corresponding to the gravity stretch (the contact between the parison
on the mold becomes established at around 0.3 seconds) and the one of the air
pressure application. Since the contact area during the gravity stretch is mainly
restricted to the bottom of the bottle, the overall volume growth due to contact
is minor. On the other hand, air presses the entire outer surface of the bottle
towards the mold wall. This process starts at t=2 seconds and at around t=2.3
seconds the entire outer surface of the glass is in contact with the wall. A major
spurious volume increment is observed at this stage. From this point onwards
no considerable volume change takes place.

On the other hand, if the fictitious contact elements algorithm is used, the
volume conservation considerably improves. One can observe the line corre-
sponding to the apparent volume (actual volume of the glass + volume of the
fictitious contact elements): the apparent volume increases when the contact
elements are created, but since these elements provide no resistance it reduces
to the actual one when these contract and finally vanish. Thus the apparent and
the actual glass volumes coincide at the end of the simulations (and, practically
coincide at the end of each sub-stage: the gravity stretch and the air blow). In
case of using the proposed contact algorithm, volume gain reduces to 5 %.

Fig. 19 shows the wall thickness distribution at t=2.6 s (vertical axis being
the distance from the top measured along the wall coordinate L). This distri-
bution can be used as the main reference data for the future comparisons.

Summary and conclusions. In this paper we have presented a 3D Lagrangian
thermo-mechanical model for glass forming simulation. The model follows the
PFEM philosophy combining the features of a classical FEM and a Lagrangian
mesh-free method. A modified fractional step methodology has been introduced
for obtaining a computationally efficient solution without compromising on the
mass conservation.
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Figure 16: Gravity stretching and final blow
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Figure 19: Wall thickness distribution along the bottle height

The model was validated using a TV-panel pressing example, a test char-
acterized by features similar to bottle forming but with a simpler geometry. A
numerical example dealing with the gravity stretch and final blow stage of the
bottle manufacturing process has been proposed. We intended to create an ex-
ample that would fulfill the need of a standardized reference lacking up-to-date
in the field of bottle manufacturing simulation. All the data necessary for re-
producing this test (geometry, material’s properties, boundary conditions) has
provided. Even though several strong approximations are introduced in this
example (such as simplified thermal contact, initial temperature distribution),
the example defines a first approximation to a benchmark in the field.

The final blow process was simulated in a reasonable computational time
(around 1 hour using a quad-core I7 PC) on a computational mesh contain-
ing around 300 000 four-noded tetrahedra elements. The facility of the free-
surface evolution tracking together with the automatic transfer of the non-
homogeneous and temperature-dependent material properties proves that La-
grangian approaches are more advantageous for the problem at hand than Eu-
lerian ones. Thermal contact did not require any special technique, being an
intrinsic feature of a matching-mesh method. The proposed mechanical contact
methodology is promising, allowing the user to control the error in the thickness
direction. In the present work the geometrical contact tolerance (i.e. the criti-
cal distance leading to erasal of the interface node of a fictitious element) was
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set to 10 % of the element size. The simulations carried out have proven that
the method possesses excellent mass conservation features ( = 5 % of volume
variation for the given contact tolerance).

Keeping in mind all the advantages of the formulation, it is important to
note that it also has some limitations. For optimal functionality of the method
the mesh size distribution must be as uniform as possible. Thus only the mesh
quality can be easily controlled. Moreover, the time step size was restricted
due to the danger of element inversion. Using a novel Jacobian-independent
Lagrangian explicit stream-line temporal integration [30] is a promising option
that must be investigated further. While keeping the overall architecture of
the approach proposed here, this alternative Lagrangian formulation may lead
to considerable advantages in computational efficiency removing the time step
restrictions faced by the present method. It is important to note that bottle
forming simulations deal with a problem involving very large changes in viscosity
due to temperature variation. Thus, purely mechanical simulations are mean-
ingless for the practical purposes. Even though the heat equation was included
in the present model and viscosity was computed according to the changing
temperature field, the present model did not account for radiative heat trans-
fer. It is essential to include this feature in the next development step of this
numerical method.
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