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Removal of pollutants present in pharmaceutical industry water by coal-based 

activated carbons 

J. Lladó1*, M. Solé-Sardans1, C. Lao-Luque1, E. Fuente2, B. Ruiz2 

Abstract  

Several studies have demonstrated the presence of pollutants from the pharmaceutical industry in 

surface and groundwater. The main inputs of pollutants come from households, hospitals and the 

industry and many of these compounds are not completely removed by WWTPs. The purpose of 

this research is to study the adsorption of paracetamol, phenol and salicylic acid using coal-based 

activated carbons. A lignite from Mequinenza (M) and an anthracite from Coto Minero Narcea 

(CN) from Spain were chemically activated with alkaline agents obtaining two activated carbons 

(MAC and CNAC). Two commercial activated carbons widely used in water treatment (F400 and 

NPK) were selected for comparison purposes. The activated carbons were characterized and the 

results showed a high surface BET (1839 m2 g-1) and total pore volume (0.83 cm3 g-1) on CNAC 

while MAC was characterized by high sulphur content (6%). Vapour isotherms indicated a 

chemical interaction between the surface functional groups of MAC and the water molecules. The 

highest uptake of the three pharmaceutical compounds was achieved by CNAC. MAC showed a 

high affinity for anion salicylates (at pH 4-8). The maximum adsorption capacity of the pollutants 

onto the activated carbons followed the order salicylic acid > phenol > paracetamol which can be 

explained by hydrophobicity. 
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1. Introduction 

In recent years, the emission of emerging contaminants (pharmaceuticals, pesticides, personal 

care products) has been causing serious environmental problems in aqueous media. These 

pollutants and their metabolites have been found in high concentrations in wastewater treatment 

plants (WWTPs) effluents, due to their resistance to biological degradation (Osorio et al. 2012; 

Postigo et al. 2010).  

Among these emerging contaminants, by the end of the 20th century pharmaceuticals were 

identified as a cause of great concern (Ayscough et al. 2000; Halling-Sørensen et al., 1998; 

Sebastine and Wakeman, 2003). The discovery of a variety of pharmaceutical substances (such as 

antidepressants, antibiotics, antihistamines, analgesics and other medicines) in surface, ground, 

and drinking waters (Mompelat et al. 2009) is raising concern about the potentially adverse 



 
 

environmental consequences of these contaminants (García-Mateos et al. 2015; Kümmerer, 2001; 

Méndez-Diaz et al. 2010; Petrie et al. 2015).  

Previous studies have demonstrated that the use of conventional treatment systems, as activated 

sludge (Carballa et al., 2004; Gracia-Lor et al. 2012) is not sufficient to effectively remove this 

type of organic compounds. It is therefore necessary to investigate new technologically viable and 

economically feasible alternatives to effectively remove these pharmaceutical pollutants from 

water. Currently, the solutions under investigation are focused primarily on improving the 

purification process and use of activated carbon, ozone treatment or the ultraviolet radiation. 

Activated carbon is an adsorbent material with a high adsorption capacity used in a wide range of 

liquid and gas phase applications, including water treatment, air purification, solvent vapour 

recovery, food and beverage processing and pharmaceutical industry. In the future, apart from the 

traditional areas of application, several new purposes for activated carbon are expected to emerge 

due to strict governmental regulations related with water quality. 

More than 50% of the activated carbon manufactured in USA and China is based on coal (Roskill, 

1998). Coal is a carbon-rich sedimentary rock that is formed from plants subjected to high 

pressure and heat over millions of years. During its formation and transformation, it incorporates 

different mineral matter including sulphur and heavy metals. The degree of change undergone by 

a coal as it matures from peat to anthracite is known as coalification. Coalification has an 

important influence on physical and chemical properties (e.g. carbon content) of the coals and is 

referred to as the 'rank' of the coal (peat (from 50% to 64% of carbon content), lignite, sub-

bituminous, bituminous, anthracite (92-96% of carbon) (Kural, 1994)). 

Coal has a direct important role as an energy resource. It generates 41% of the total world 

electricity supply and is needed to produce 66% of the world’s steel (Schernikau, 2015). 

However, the combustion of coal generates pollutant and greenhouse gas emissions (CO2, SO2, 

NOx...), making coal a problematic fuel from environmental point of view (Spörl et al., 2013).  

So, carbons with a high content in sulphur are no suitable for combustion and it would be 

necessary to find different alternatives for coal such as activated carbons manufacturing. 

The adsorption of pollutants on activated carbon depends on the physic-chemical characteristics 

of the adsorbent (e.g. functional groups, surface area, mineral matter) and the nature of the 

adsorbate (e.g. .molecular size, functional groups,...) (Moreno-Castilla, 2004). The presence of 

mineral matter (or ashes) can enhance the adsorption of water by means hydrogen bonds, and 

decrease the adsorption of the aromatic pollutants. Moreover, the presence of oxygen, nitrogen, 

and/or sulphur groups and aromatic rings on the surface of the activated carbon and the functional 

groups of the aromatic molecules can produce different dispersion interactions between aromatic 

rings.   



 
 

The aim of this work is the modelling of the adsorption of common pharmaceutical industry 

compounds present in aqueous solutions using coal-based activated carbons. With this purpose, 

two activated carbons from lignite (M), from the Mequinenza basin in Zaragoza (Spain), and 

from anthracite (CN), from Coto Minero Narcea in Asturias (Spain), will be developed for 

adsorption of emerging pollutants in water. In addition, two commercial activated carbons, F400 

and NPK obtained from bituminous coal and peat respectively and widely used in waste water 

treatment, were selected for comparison purposes. The four activated carbons were characterized 

on the basis of elemental composition, texture and water vapour isotherms for the purpose of 

establishing the factors involved in the adsorption of three emerging compounds and pollutants 

from the pharmaceutical industry (paracetamol, phenol (antiseptic, for sore throat pain) and 

salicylic acid). Furthermore, the influence of pH upon the adsorption of the different organic 

compounds was investigated. 

2. Materials and methods 

2.1. Adsorbents 

In this study, two activated carbons (CNAC and MAC) were prepared from different evolved 

coals (rank): an anthracite (CN) from Coto Minero Narcea, Asturias, Spain, and a lignite (M) 

from the Mequinenza basin in Zaragoza, Spain (Cabrera et al., 2002).  

The precursors (CN and M) were activated by chemical activation using alkaline hydroxides 

(NaOH and KOH). The coals were mixed with the activated agent in solid state (physical 

mixture). Powdered alkaline hydroxides were selected as they would favour contact between the 

carbonaceous precursor and the activating agents (Ros et al., 2006). The physical mixing method 

is a very easy procedure that simplifies the first step in the preparation of activated carbons by 

chemical activation. It is widely used in the preparation of activate carbons from very different 

such as coals and terrestrial and marine biomass (Ferrera-Lorenzo et al., 2014; Gil et al., 2014; 

Lillo-Ródenas et al., 2001). Mixtures expressed as mass ratio (activating agent:precursor) were 

the following, 3:1 (NaOH:CN) and 1:1 (KOH:M). The mixtures were introduced in a horitzontal 

cylindrical furnace (Carbolite CTF 12/65/550,  and heated up to 830 ºC in a 400 ml min-1 nitrogen 

flow in the case case of the anthracite (CN) and up to 750 ºC in a 150 ml min-1 nitrogen flow for 

the lignite (M), at a heating rate of 5 ºC min-1. The maximum temperature was held for 1 hour in 

both cases. After chemical activation, in order to remove the activation products and any mineral 

matter blocking porosity, the adsorbent materials were washed with a 5M hydrochloric acid 

solution and subjected to a series of deionised water (Milli-Q) rinses. Finally the samples were 

dried at 105 ºC. The activated carbons obtained from the anthracite and lignite (<200 

micrometers) were named CNAC and MAC, respectively. The pH of the activated carbons was 

determined using the methodology of Ros (Ros et al., 2006). 



 
 

The experimental conditions of chemical activation of these coals were different in order to 

develop activated carbons with different pore size distribution with a view to studying their 

behaviours during the removal of pollutants present in pharmaceutical industry wastewater. From 

studies conducted Girón (Giron et al., 2015) on the influence of the alkaline activating agent upon 

the activation of the forest biomass fly ash, it can be inferred that under the same experimental 

conditions NaOH contributes more to the development of mesoporosity than KOH (Girón et al., 

2015). One of the conclusions of this work is: “In general, mesoporosity is favoured by chemical 

activation using NaOH in high concentrations”. Perrin (Perrin et al., 2004), in the work on the 

activation of an anthracite, observed that the development of mesopore volume was favoured by 

using a high NaOH concentration and a high activation temperature (830ºC). In the present study, 

with the objective of obtaining the largest possible mesopore volume and micropores of large size 

in an anthracite-based activated carbon, NaOH was used as activating agent with mass ratio of 3:1 

and high temperature of 830ºC. By contrast for the activation of lignite, KOH was selected as 

activating agent at a mass ratio of 1:1 and an activating temperature of 750ºC, experimental 

conditions that favour the development of micropore volume (Girón et al., 2015). 

Two commercial activated carbons commonly used for the treatment of water were also 

evaluated, Filtrasorb-400 (F400) and Norit PK 1-3 (NPK). F400 was developed by Chemviron 

(Feluy, Belgium) from a bituminous coal by physical activation (steam water). NPK was 

produced by Norit Americas Inc. (Marshall, USA) through steam-water activation of a peat.  

2.2. Adsorbates 

The organic pollutants evaluated were phenol (CAS 108-95-2, 98.5%, cod. 141322, Panreac, 

Spain), salicylic acid (CAS 69-72-7, 99.5%, Batch32347/2948, Scharlau, Spain) and paracetamol 

(CAS 103-90-2, 98%, lot L08100275, Fagron, Spain). Table 1 shows the physico-chemical 

properties of the three compounds (Bolton et al., 2008). The molecule dimensions (the close 

fitting “box” around the molecule), surface areas (grid and approximate) and volume were 

calculated using Hyperchem 8.0 (De Ridder et al., 2012). 

 

TABLE 1  

 

Phenol, salicylic acid and paracetamol stock solutions (100 and 150 mg L-1) were prepared with 

ultra-pure water from Milli-Q purification systems (Millipore academics). The samples for 

calibration and for the sorption experiments were obtained from these solutions by dilution with 

ultra-pure water (Milli-Q).  



 
 

 

2.3. Characterization of the activated carbons 

The activated carbons were characterized for their elemental analysis (content of C, H, N and S) 

using a LECO CHN-2000 and a LECO Sulphur Determination S-144-DR. Ash content was 

determined according to ISO 1171 procedure. The texture of the activated carbons was 

characterized by a N2 adsorption isotherm at -196 ºC, in a conventional volumetric apparatus 

(ASAP 2420 from Micrometics). Before each experiment, the samples were outgassed under 

vacuum (ca. 10-3 Torr)  at 120 ºC overnight to remove any adsorbed moisture and/or gases. The 

amount used in the N2 adsorption analysis is around 0.2-0.5 g. The isotherms were used to 

calculate the BET specific surface area (SBET) by using the standard method of Brunauer, Emmett 

and Teller (BET theory, Brunauer et al., 1938, 1940 and Brunauer, 1970). The p/p0 points used to 

calculate the SBET are within the BET range and in general are in p/p0 < 0.10 with a correlation 

coefficient of 0.99999. Also the N2 isotherms were used to calculate the total pore volume (VTOT) 

at a relative pressure of 0.95. The pore size distribution (PSD) was calculated on the basis of the 

density functional theory (DFT), assuming slit-shape pore geometry. 

Water-Vapour sorption isotherms of the samples were determined at 25ºC for water activity (aw) 

from 0 to 1. Water activity was evaluated by means of a Hydrosorb HS-12-HT model instrument 

(Quantachrome Instruments). The equilibrium moisture content was expressed as mmol per g of 

dry solid. 

An SEM analysis (TM 1000 Tabletop microscope, Hitachi) was carried out to evaluate surface 

texture and porosity. 

2.4. Adsorption assays 

For equilibrium adsorption studies, 50 mg of adsorbent was added to 250 mL of organic 

compound solutions in different concentrations (1-150 mg L-1). The mixtures were stirred at 25ºC 

using a multipoint agitation plate. After 24 hours, the samples were taken out and filtered through 

a cellulose acetate filter (0.45 μm pore diameter) and the remaining concentration of adsorbate 

was analyzed in a UV/Vis-visible spectrophotometer (Lambda 25 PerkingElmer) at 242 nm for 

paracetamol, 269.9 nm for phenol and 295 nm for salicylic acid. The paracetamol, phenol and 

salicylic acid uptake, q, was determined by means of the formula: 

𝑞𝑞 =
�𝐶𝐶0 − 𝐶𝐶𝑓𝑓� 𝑉𝑉

𝑚𝑚
                                          (1) 



 
 

Where, q is the amount (mmol g-1) of organic compounds adsorbed, C0 and Cf are the initial and 

final concentration (mg dm-3), respectively, V is the volume (L) of adsorbate solution and m is the 

weight (g) of activated carbon used.  

The effect of the pH upon the adsorption of the organic compounds was investigated over a pH 

range of 2-10, adjusting the pH by adding 0.1 M HCl or 0.1 M NaOH in 250 ml of 40 mg L-1 

solutions.  

2.5. Adsorption modelling 

The experimental results were fitted by the models described in Table 2. The parameter 

estimation of the different isotherms was solved using MATLAB by minimizing the objective 

function (OF) in equation (4) (Lladó et al., 2015):  

𝑂𝑂𝑂𝑂 = �� [𝑞𝑞(𝑃𝑃1, 𝑃𝑃2) − 𝑞𝑞∗]2
𝑁𝑁

𝑖𝑖=1
            (4) 

where, N is the number of measurements taken, q* is the experimental solute uptake, q (P1, P2) is 

the predicted uptake by the model, P1 and P2 are the different estimated parameters. In the case of 

Langmuir, the parameters used are qmax and KL and for Freundlich Kf and n. 

 

TABLE 2 

 

3. Results and discussion 

3.1. Characterization of the activated carbons 

The chemical composition of the precursors (M and CN) and the activated carbons are 

summarized in Table 3. As can be seen, the anthracite (CN) is characterized by a high carbon 

content (90.6 %) and a low ash content (4.4 %), whereas the lignite (M) has a low carbon content 

(56.6 %) and a high ash and sulphur content (16.2 % and 5.35% respectively). 

 

TABLE 3  

 

The activated carbons, MAC and CNAC, obtained from lignite and anthracite respectively, have a 

higher carbon and lower ash content than their corresponding precursors (Table 3). It is worth 



 
 

nothing that there is a significant reduction in ash content in the activated carbons obtained, 

especially in the lignite-based activated carbon (16.20% and 6.94% for M and MAC 

respectively). During the chemical activation process new inorganic compounds are formed. 

These are soluble in hydrochloric acid and water and can mostly be eliminated in the final step by 

means of a washing process. The washing process with acid gives an acidic behaviour to MAC 

and CNAC (pH 3.9 and 4.0 respectively). On the other hand, the commercial activated carbons 

(F400 and NPK) have a basic pH due to the physical activation with steam and the presence of 

ashes (Montes-Morán et al., 2012). 

It is worth nothing the high sulphur content in MAC (6%). This fact makes this adsorbent a 

potentially suitable material for some environmental applications such as the mercury elimination 

in gas streams (Lopez Anton et al., 2015a, Lopez Anton et al., 2015b).  

If the commercial carbons are compared with MAC and CNAC, their carbon content order is 

CNAC > F400 > NPK > MAC. It was expected that MAC would have higher carbon content than 

NPK because MAC is from lignite while NPK is from peat. However, the ash content of the 

activated carbons is NPK > MAC > F400 > CNAC in inverse proportional to the coalification of 

the coal precursor. 

Fig. 1 shows the nitrogen adsorption-desorption isotherms at -196 ºC of the four activated 

carbons. The textural properties (SBET, VTOT and PSD) of the four activated carbons as determined 

from the N2 adsorption isotherms are summarized in Table 4. 

 

FIGURE 1.  

 

TABLE 4  

All the isotherms are hybrid-shaped and belong to type I-IV according to the IUPAC 

classification (Thommes et al. 2015). Although the isotherms have a similar shape, some 

differences can be appreciated. The adsorption of N2 took place fundamentally at low relative 

pressures (p/p0  <0.1), which is typical of microporous solids. The anthracite-based activated 

carbon (CNAC) shows the highest nitrogen adsorption and the peat-based activated carbon (NPK) 

the lowest (Fig. 1). The knee of the isotherms is different for the coal-based activated carbons of 

different rank. The isotherms of CNAC and F400 present a broad knee at low relative pressures 

(p/p0<0.2) which signifies the presence of wide micropores while the isotherms of MAC and NPK 

show a more pronounced knee which signifies that there is a narrower pore distribution (Fig. 1 



 
 

and Table 4). The presence of a hysteresis loop (type H4 which is associated with narrow slit-

shaped pores (Sing, 1982)) and an increase in the slope of the isotherm indicate a developed 

mesoporosity. These features are especially evident in NPK, which has the highest mesoporosity. 

Moreover, in Table 4, it can be observed that CNAC exhibits the highest total pore volume at 

p/p0=0.95 (VTOT = 0.830 cm3g-1) and specific surface area BET (SBET = 1839 m2g-1) followed by 

F400, MAC and NPK. MAC presents a BET surface value of 1100 m2g-1, slightly higher than that 

obtained by T. Depci in the chemical activation with zinc chloride from Gölbaşi lignite (Turkey) 

(Depci, 2012). 

The four activated carbons are basically microporous materials, although NPK has a high degree 

of mesoporosity (≈36%). Regarding the pore volumes, the ultramicropore volume (Vultramicro = 

volume corresponding to pore with < 0.7 nm) is similar for all the activated carbons (between 

0.154 and 0.184 cm3 g-1). With respect to supermicropore volume (Vsupermicro = volume 

corresponding to pore width 0.7-2 nm), CNAC shows the highest value (0.394 cm3g-1) while NPK 

has the lowest (0.064 cm3g-1) and F400 and MAC have intermediate values (0.221 and 0.173 

cm3g-1). Finally, the mesopore volume (Vmeso = volume corresponding to pore width 2 - 50 nm) is 

similar for CNAC and NPK (0.113 and 0.120 cm3g-1) while for F400 and MAC this value is very 

low. 

To gain a better understanding of the different pore volumes of the activated carbons, their pore 

size distribution was studied (Fig. 2). The main difference is in the mesopore region where CNAC 

shows mesopores of a small size (2-4 nm) while the NPK mesopores range between 2 and 20 nm. 

 

FIGURE 2.  

 

The effect of the thermochemical process on the texture of the coal-based (lignite and anthracite) 

activated carbons of different rank, MAC and CNAC, is clearly revealed by scanning electron 

microscopy, Figure 3. 

 

FIGURE 3.  

 

MAC (Fig. 3c, 3e and 3g) has a wide pore network structure as a result of chemical activation. 

The precursor of MAC is low-evolved coal (lignite, M, Fig. 3a) with a high volatile matter and 



 
 

ash content. Its chemical activation involves the thermal decomposition of the carbonaceous 

material, the elimination of volatile matter and as consequence the generation of a macroporous 

structure with the formation of large vacuoles in the final material, as can be seen from the 

images under different magnifications (Fig. 3c, 3e and 3g). In contrast, CNAC (Fig. 3d, 3f and 

3h) has a dominant laminar structure like its precursor, which is a highly evolved coal (anthracite, 

CN, Fig. 3b),with a well-ordered structure and a low volatile matter content. Because its volatile 

matter content is low, chemical activation takes place preferably in the interlaminar areas of the 

anthracite generating thereby a macroporous structure with large cracks, as can be seen from the 

images under different magnifications (Fig. 3d, 3f, 3h). 

The water vapour adsorption isotherms serve to clarify the chemical interactions with the surface 

groups and the physical adsorption between the water molecules and the material used (Alcaliz-

Monge et al., 2002; Vartenetyan et al., 1986), Figure 4. 

 

FIGURE 4 

 

Figure 4a shows the water vapour adsorption-desorption isotherms for the four activated carbons. 

The four isotherms are of type V, which is characteristic of weak adsorbate-adsorbent 

interactions. This type of isotherm is generally observed in microporous materials and often 

reported for activated carbons (Lopez-Anton et al., 2015a; Lopez-Anton et al., 2015b). At low 

relatives pressures (p/p0< 0.3) of water vapour adsorption (Fig. 4b), the chemical interaction 

between the surface groups of the activated carbon and the water molecules are higher in MAC 

than the rest of activated carbons, which suggests the presence of hydrophilic surface mainly from 

sulphur groups (Table 3). Chemical interaction with the surface groups is lower in NPK and the 

water adsorption can be due by the presence of ashes or mineral matter. Finally, chemical 

interaction is negligible in CNAC and F400 suggesting the disappearance of surface groups due 

to maturity of the raw materials and the severe activation conditions (such as the high temperature 

and high ratio of the activating agent). As the pressure increases (Fig. 4a) physical adsorption 

(pore filling) becomes more important due to the influence of the textural development. Therefore 

the CNAC isotherm presents the highest water adsorption (approx. 40.1 mmol/g), followed by 

F400 and MAC whereas NPK showed the lowest adsorption. These results are accord with the 

order of increase adsorption of the obtained nitrogen adsorption isotherms (CNAC > F400 > 

MAC > NPK) (Fig. 1). 

 



 
 

3.2. Influence of pH 

The influence of the pH of the solution on the adsorption of the three pollutants (paracetamol, 

phenol and salicylic acid) is shown in Figure 5.  

 

FIGURE 5.  

 

As can be seen, there are no significant variations in the adsorption of paracetamol and phenol by 

the four activated carbons with respect to the pH (Fig. 5a and 5b). The molecules remain 

undissociated at a pH lower than pKa (9.99 or 9.38) and therefore the removal is constant.  

On the other hand, the adsorption of salicylic acid (Fig. 5c) shows a significant decrease with 

increasing pH. When the pH is lower than the salicylic pKa (2.97), the carboxylic groups are 

undissociated. This favours the adsorption of salicylic acid because, under acidic conditions, the 

chemical groups on the activated carbon cause a decrease in the total negative charge. 

Conversely, at high pH, salicylic acid dissociates as well as acidic functional groups in the carbon 

surface. Therefore, repulsion forces between negative charges arise between salicylates and 

carbon surface, impeding the adsorption process.  

It can also be seen in Figure 5c that between pH 4 and 8 the adsorption of salicylic acid by MAC 

is higher than in the others activated carbons. This behaviour can be explained by the presence of 

different functional groups on the surface of MAC as it can suggest the results on the chemical 

adsorption showed at low pressures in the water vapour isotherm (Fig. 4). Mui and Valix (Mui et 

al., 2010; Valix et al., 2006), suggested that depending on the acid-base nature of the carbon 

suspension, which is often affected by the elemental composition of carbon (particularly 

heteroatoms such as nitrogen, oxygen and sulphur), the adsorbent can be positively or negatively 

charged as shown below:  

(Positive surface) C=Sδ+OH + H+ → C= Sδ+ + H2O   (5) 

(Negative surface) C=Oδ-H+ → C=Oδ- + H+     (6) 

Here the salicylate can be expected to be adsorbed favourably onto the positively-charged carbon 

surface due to the presence of the high sulphur content. Therefore in the pH range of 4-8, the 

attraction of opposite charges between the surface and dissociated salicylic acid may contribute to 

the increase adsorption onto MAC.  

3.3. Adsorption isotherms and modelling 



 
 

The experimental adsorption isotherms of the three pollutants on the four activated carbons are 

shown in Figure 6. 

 

FIGURE 6 

 

According to their initial slopes and Giles’ classification (Giles et al., 1974a; Giles et al., 1974b), 

the NPK isotherm can be classified as of type L2, whereas the MAC, F400 and CNAC isotherms 

are of type H2. This suggests that the three carbons have a high affinity for paracetamol, phenol 

and salicylic. 

The experimental data were fitted to two different two parameter isotherms (Langmuir, 

Freundlich). Table 5 shows the constants obtained and the objective function (OF) values for the 

two models. According to the OF values, paracetamol adsorption is best represented by the 

Freundlich model, whereas salicylic acid is best fitted by the Langmuir model, except on MAC. 

Phenol behaviour depends on the activated carbon used (F400 and MAC by Langmuir, CNAC 

and NPK by Freundlich). If the qmax from the Langmuir model for the four activated carbons are 

compared, the adsorption capacity follows the order CNAC>F400>MAC>NPK which is the same 

order as some textural development characteristics (SBET and total pore volume VTOT). The 

highest adsorption equilibrium constant values (KL) are achieved for the adsorption of 

paracetamol onto the four activated carbons. This indicates that the four activated carbons have a 

high affinity for this compound. Moreover, KL value for salicylic on MAC is higher than the rest 

of activated carbons, indicating that the presence of sulphur on MAC can increase the affinity. On 

the other hand, KL for phenol is higher on F400 then the rest of the activated carbons. 

 

TABLE 5  

 

With respect to the Freundlich model, the parameter 1/n is a measure of adsorption intensity or 

surface heterogeneity. According to Navasivayam and Senthilkumar, (Namasivayam and 

Senthilkumar, 1998), n indicates favourable adsorption when 1<n<10. The highest n value, within 

this range, the highest adsorption intensity (Chantawong et al., 2003). In this study, the different n 

values observed are between 2 and 7. The highest n value obtained for paracetamol adsorption 

onto CNAC indicating the most favourable adsorption among all. 



 
 

As can be seen in Figure 6, the highest pollutant adsorption capacities are obtained with CNAC. 

This high performance could be due to the high BET area and the development of the micropore 

and mesopore structure. A comparison of the different pore volumes and the compound sizes, 

would lead one to expect that molecules smaller than 0.7 nm (in the case of phenol and salicylic 

acid) would be adsorbed by ultramicropores. Although MAC show a higher microporosity respect 

F400, the máximum adsorption capacity (qmax, Table 5) is achieved by F400. Therefore, the 

adsorption process must take place not only on the ultramicropores but also on the 

supermicropores. In other words, the supermicropores also have a pore filling role. Regarding the 

mesopores, CNAC and NPK show the same amount of mesoporosity but the mesopores differ in 

their diameter. Depending on the characteristics of the activated carbon, the mesopores allow the 

access of pollutants (Dabrowski et al., 2005), or they make little contribution to the capture of 

molecules depending on the mechanism of adsorption on the active sites (Cai et al., 2014; Fierro 

et al., 2008). In this study, it was found that mesopores of NPK (with a large diameter of 2-20 

nm) only make a small contribution adsorption due to the presence of surface groups (water 

vapour isotherm) and they allow the access. On the other hand, the small diameter mesopores of 

CNAC (2 - 4 nm) and the low chemical interactions with the surface groups can suggest a pore-

filling adsorption mechanism. 

Regarding the effect of the nature of the adsorbate, the single component isotherms (Figure 5) and 

the modelling results (Table 5) show that the highest adsorption capacity corresponded to 

salicylic acid followed by phenol and paracetamol. This order cannot be explained on the basis of 

the size of the compounds (Table 1) because the salicylic acid is larger than the phenol and 

smaller than the paracetamol. Galhetas (Galhetas et al., 2014) studied the adsorption of 

paracetamol on different activated carbons and concluded that paracetamol might form dimmers 

and its adsorption occurred on wider and some of the narrow micropores. By this sense, the 

paracetamol might be adsorbed less due to higher dimensions of the dimmer. Another aspect to be 

considered is solubility. Moreno-Castilla (Moreno-Castilla et al., 1995) observed that their 

adsorption capacity increased with the decreasing water solubility of phenolic compounds. In our 

study, this parameter seems to be of secondary importance since paracetamol was less easily 

adsorbed than phenol.  

Hydrophobicity (high logKow) might also explain the order of adsorption capacity of the 

different pollutants. According to Mohammed (Mohammed et al., 2011), activated carbons are 

mainly hydrophobic and display a strong affinity for organic molecules with a limited solubility 

in water. Hydrophobic compounds tend to be attracted to the adsorbent surface and hence they are 

more easily adsorbed than hydrophilic compounds. In this study, salicylic acid is the most 

hydrophobic pollutant followed by phenol and paracetamol. 



 
 

4. Conclusions 

Activated carbons obtained from anthracite (CNAC) and lignite (MAC) were successfully used as 

adsorbents for paracetamol, phenol and salicylic acid pollutant removal in aqueous phase.  

-  A high decrease in the ash content was observed in the activation of the lignite (from 

16.2% in M to 6.94% in MAC). On the other hand, CNAC had very low ash content 

making this activated carbon suitable for water treatment. 

- At low relative pressures in the water vapour isotherms, MAC showed a higher vapour 

uptake than the rest of activated carbons due to the presence of sulphur functionalities 

(6% Sulphur content on MAC).  

- The adsorption of salicylic acid showed a strong dependence with the variations in the pH 

solutions. Maximum salicylic acid adsorption was observed at pH = 2 onto the different 

activated carbons. At the pH range 4-8, the adsorption of anion salicylates was favoured 

onto MAC suggesting that the presence of sulphur functionalities of the activated carbon 

favours the ionic interactions.   

-  The highest adsorption capacity of the three pharmaceutical pollutants was achieved by 

CNAC followed by F400, MAC and NPK. This order coincides with their BET surface, 

the total micropore volume and the total pore volume  

- A study of pollutant adsorption on the different activated carbons showed that 

hydrophobicity (higher log Kow) was the main reason for the higher adsorption capacity 

of salicylic acid. Moreover, the adsorption of salicylic acid onto MAC can also governed 

by ionic interactions  
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FIGURE CAPTIONS 

Figure 1. N2 adsorption isotherms at -196ºC for CNAC, F400, MAC and NPK. 

Figure 2. Pore size distribution (DFT) of the activated carbons 

Figure 3. Scanning electron microscope (SEM) of the materials: a) “Mequinenza” lignite (M) at 

1000x; b) “Coto Minero Narcea” anthracite (CN) at 1000x; c) lignite based activated carbon at 

400x; d) anthracite based activated carbon at 400x; e,g) lignite based activated carbon at 5000x; 

f,h) anthracite based activated carbon at 5000x. 

Figure 4. a) Water vapour adsorption-desorption (at 25ºC) of the materials b) water vapour 

adsorption at low pressures (0-0.4) 

Figure 5.  pH effect on the adsorption equilibrium a) phenol, b) paracetamol and c) salicylic acid 

Figure 6. Pharmaceutical compounds adsorption onto the coal-based activated carbons: 

a) CNAC, b) F400, c) MAC and d) NPK 
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