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Abstract—This paper deals with a class of morphological (size, contrast, shape, etc.) while preserving contours. This
operators called connected operatorsThese operators filter the property makes them very attractive for a large number of

signal by merging its flat zones As a result, they do not create  5,5jications such as noise cancellation, segmentation, pattern
any new contours and are very attractive for filtering tasks recognition, etc

where the contour information has to be preserved. This paper ; .
shows that connected operators work implicitly on a structured ~ The extensive use of connected operators has motivated

representation of the image made of flat zones. Thenax-treeis some theoretical studies. For instance, the notions of connected
proposed as a suitable and efficient structure to deal with the operators and of flat zones are discussed in a formal way in
processing steps involved in antiextensive connected operators.[g]_[ll]_ Connectivity issues related to connected operators

A formal definition of the various processing steps involved . . . .
in the operator is proposed and, as a result, several lines of &€ analyzed in [12]-{14]. Finally, relations with structured

generalization are developed. First, the notion of connectivity and representations of images such as region adjacency graphs and
its definition are analyzed. Several modifications of the traditional trees are discussed in [7] and [15].
approach are presented. They lead to connected operators that  The purpose of this paper is to focus on the class of

are able to deal with texture. They also allow the definition of 5niiexiensive connected operators (and by duality, extensive
connected operators with less leakage than the classical ones.

Second, a set of simplification criteria are proposed and discussed.f:()r"w_Cted operators). Base‘?' on a formal operator definition
They lead to simplicity-, entropy-, and motion-oriented operators. involving a tree representation of the image callesnax-
The problem of using a nonincreasing criterion is analyzed. Its tree, several contributions are proposed. First, the notion
solution is formulated as an optimization problem that can be of connectivity is analyzed. Several modifications of the
very efficiently solved by a Viterbi algorithm. Finally, several y4qitional approach are presented. They lead to connected
implementation issues are discussed showing that these operators .
can be very efficiently implemented. operators that are able to deal with texture or tp connected
operators that have much less leakage than classical operators.
Second, a set of new simplification criteria are proposed and
discussed. In particular, simplicity-, entropy-, and motion-
oriented operators are defined. The problem of using a non-
increasing criterion is analyzed and its solution is formulated
. INTRODUCTION as an optimization problem that can be very efficiently solved
HE FIRST connected operatoreeported in the literature by @ Viterbi algorithm. Finally, several applications as well
are known adinary opening by reconstructidit]. These as implementation issues are discussed. Note that part of the
operators independently act on each connected componentefk reported here can be found in conference proceedings
the binary image: they eliminate the connected componef®$, [7], [13]. One of the objectives of the paper is to review
that would be totally removed by an erosion with a givethese contributions. However, some new contributions are also
structuring element and they leave the other Componeﬂ_f@sentEd here. These original contributions mainly concern
unchanged. This filtering approach offers the advantage {6 max-tree creation and processing, the use of the Viterbi
simplifying the image, because some components are remov@gorithm to deal with nonincreasing criteria, and the entropy
as well as preserving the contour information, because t&nnected operator.
components that are not removed are perfectly preserved. The organization of this paper is as follows. Section Il is
This approach has been generalized for gray-level functiofgvoted to the notion of binary and gray-level connected oper-
using the so-calledeconstruction procesi]. Beside opening ators. This presentation will highlight three major processing
by reconstruction)\-max operators, area opening [3], dynamsteps: tree creation, tree filtering, and image restitution. These
ics filters [4], and more recently, volumic [5], complexitythree steps are, respectively, discussed in Sections llI-V. Fi-
[6], motion [7], and moment-oriented [8] operators have bedidlly, Section VI is devoted to the conclusions.
proposed. These operators offer various simplification criteria

Index Terms—Connected operators, connectivity, mathemat-
ical morphology, motion criterion, optimization, sequence pro-
cessing, simplicity criterion, Viterbi algorithm, watershed.

[I. CONNECTED OPERATORS
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Original binary image Output binary image The original imageX is composed of three connected
components. It can be represented by a tree structure with four
nodes: the root nod€} represents the set of pixels belonging

; to the backgroundX®, and {C}'};<x<3 represent the three
connected components of the image. In this representation,
, removed > \ the filtering process consists in analyzing each ndde

/ connected ; . e

{ component by assessing the value of a particular criterion. Assume for
1 2 3 ' ; : example that the criterion consists in counting the number of
& G G ‘ pixels belonging to a node (area opening [3]). Then, for each

node, the criterion value is compared to a given threshold

C(l) ' and the node is removed if the criterion is lower thanin

Original tree - == Analysis - = Outpul trec the example of Fig. 1, nod€? is removed because its area
is small. As a result, its pixels are moved to the background
Fig. 1. Binary connected operator. node C} (the connected component is removed). As can be

seen, the tree links represent the pixels’ migration (toward

Definition 1—Binary Connected Operatorgk binary oper- the father) when a node is removed. All antiextensive binary
ator + is connected when for any binary imagé, the set conngcteq operators can.be_describgd by this process, the only
difference X \ 1(X) is exclusively composed of connectednodification being the criterion that is assessed.
components ofX or of its complementX°.

The extension of connected operators for gray-level fun
tions relies on the concept of partition [9], [10]. Let us reca
that a partition of the spads is a set of connected components As seen in Definition 3, the extension of connected operators
{A;} which are disjoint and the union of which is the entiréo gray-level images uses the partition of flat zones. This
space. Eachi, is called a partition class. Moreover, a partitiorextension can also be seen as a simple generalization of the
{A;} is said to befiner than another partitio B;} if any tree representation to the gray-level case.
pair of points belonging to the same clads also belongs The idea consists in creating the tree recursively by a
to a unique partition clas®;. Consider now a binary imagestudy of the thresholded versions of the image at all possible
and define itsassociated partitionas the partition made of gray levels. An example is presented in Fig. 2. The original
the connected components of the binary sets and of thgirage is composed of seven flat zones identified by a letter
complement. The definition of connected operators can bd, B, C, D, E, F, G}. The number following each letter
expressed using associated partitions as follows. defines the gray-level value of the flat zone. In our example,

Theorem 2—Binary Connected Operators via Partitioh: the gray-level values range from zero to two. In the first step,
binary operator) is connected if and only if, for any binary the threshold: is fixed to the gray-level value zero. The image
image X, the associated partition ok is finer than the is binarized: all pixels at level = 0 (pixels of regionA) are
associated partition of(X). assigned to the root node of the t€§ = { A}. Furthermore,

The concept of gray-level connected operators can be inttbe pixels of gray-level value strictly higher théan= 0 form
duced if we define a partition associated to a function. To thigo connected components that are temporarily assigned to
end, the use diat zonesvas proposed in [9] and [10]. The setwo nodesZ’C} = {G} andTC? = {B, C, D, E, F}. This
of flat zones of a gray-level functiofiis the set of the largest creates the first tree (for gray levels [0, 1]). This procedure is
connected components of the space whei® constant (a flat the same as the one used for the binary image. In a second step,
zone can be reduced to a single point). The set of flat zonegh# threshold is increased by onfe= 1. Each nodel'C¥_,

a function is a partition, called theartition of flat zonesand is processed as the original image. Consider, for instance, the
leads to the following definition. nodeTC? = {B, C, D, E, F'}; all its pixels at levelh = 1

Definition 3—Gray-Level Connected Operator&n opera- remain unchanged and create the final néfe However,
tor ¥ acting on gray-level functions is connected if, for anpixels of gray-level values strictly higher thar(here{E, C})
function £, the partition of flat zones of is finer than the create two different connected components and are moved to
partition of flat zones ofl( f). two temporary child nodesC3 = {C} andT'C$ = {E}. The

Let us see how this definition implicity means that the€omplete tree construction is done by iterating this process
operator works on a structured representation of the imagefor all nodesk at level » and for all possible thresholds
(from zero to the highest gray-level value). The algorithm can
be summarized saying that, at each temporary rbd¢, a
“local” background is defined by keeping all pixels of gray-

In the sequel, we restrict ourselves to the case of antidgvel value equal t@ (the “local” background itself may not be
tensive operators¥(X, ¢(X) C X). Therefore, a binary connected) and that the various connected components formed
antiextensive connected operator is an operator that can obnfythe pixels of gray-level value higher tharcreate the child
remove connected componentsof The filtering process can nodes of the tree.
easily be explained if a tree representation of the image is usedn this procedure, some nodes may become empty. There-
as shown in Fig. 1. fore, at the end of the tree construction, the empty nodes

ﬁ. Gray-Level Antiextensive Connected Operators

B. Binary Antiextensive Connected Operators
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Original image I1l. M AX-TREE CREATION

The objective of this step is to create the max-tree, that is
the set of node€’}* and the links between the father and child
nodes. As described in Section II-C, for each temporary node
TCF, the set of pixels belonging to the local background is
defined and assigned to the max-tree ndgife This is the
binarization step. Then, the set of pixels belonging to the
complement of the local background, thatfi€’} \ CF, are

4 N N ) analyzed and its connected components create the temporary
(G} QIC} O[E} 1Q{G} QIC) OfE} child nodesT’Cy ., (which will be further analyzed). This
is theconnected components definitistep. In the sequel, the
(G} O{BCD {BDF) (BDF) binarizationand theconnected components definitisteps are
EF) analyzed and some generalizations are proposed.
A A A L
\_ (Al J (Al J U tA) y, A. Binarization
Tree [fg’rll]evels R . Trec[(l;(’;]lcvcls -2 Final Tree The most natural way of defining the “local” background for
_ ' each node at levédl consists in taking all pixels of gray-level
Fig. 2. Max-tree representations. value h. Formally, the nodeCf is composed of the pixels of
level h of the temporary nod&'C¥, that is
Max-Tree Filteri Image C}’; = {(Lv J) € TC}’Z such thatf(Lv J) = h} (1)
— . - iltering >
creation restitution L. .
where f(i, j) represents the gray-level value of the pixel
(i, J)-
Fig. 3. Connected operators with max-tree representations. This binarization process extracts the flat zones of the image.

This step is closely related to the definition of the basic entities

are removed. The final tree is callecheax-treein the sense On which the filter is going to act. Equation (1) means that
that it is a structured representation of the image which g€ basic entities are characterized by a strictly flat gray-
oriented toward the maxima of the image (maxima are simp§Vel value. However, in practice, “visual” entities may not be
the leaves of the tree) and toward the implementation sirictly flat because of noise or texture. To deal with such cases,
antiextensive operators. Note that this description does H@$S Strict binarization techniques can be used. To this end, a
necessarily correspond to the actual implementation of tH&eful criterion relies on the definition of a boudd on the
tree construction. For this purpose, an efficient algorithm gray-level fluctuations. The corresponding “soft” binarization
proposed in the Appendix. rule is the following:

The filte'ring. itself is _similar to the one used for‘ the binary CF = {(i, j) € TC¥ such that
case. A criterionM(.) is assessed for each nod%. Based ' s o
on the M (CF) value, the node is either preserved or removed. {either f(z, j) = h

In this last case, the node’s pixels are moved toward its or 3(i/, §') € CF and neighbor of

father's node. At the end of the process, the output max-tree G, ) 1 £y 5) = FG&, )| < A} (2)

is transformed into a gray-level image by assigning the gray

value i to the pixels ofC¥, V&, h. A flat zone is composed of pixels with low gray-level

fluctuations. The particular casd = 0 corresponds to the
. classical situation where the flat zones are strictly flat. Figs. 4

D. Connected Operators and Max-Tree Representation 5.4 5 jljustrate the evolution of the flat zones as a function

Based on the previous description, a general filtering schenfeA. To judge intuitively this evolution, we show, on the left
is illustrated in Fig. 3. It involves a first step of max-tree creside of Fig. 4, images where each flat zone has been filled by
ation, the goal of which is to structure the pixels in a suitables mean and, on the right side, the corresponding contours of
way for the filtering process. The max-tree representation hae flat zones. Wherk = 0, the image on the left side is the
also the advantage of leading to very efficient implementationgginal image and most flat zones involve one or two pixels
of connected operators. The second step is the filtering its€lfght image). Fig. 5 shows the reduction of the number of
which analyzes each node and takes a decision on which ndéldé zones. Of course, this curve has a direct relation with the
has to be preserved and which node has to be removed. Finalyplution of the max-tree complexity.
the last step restores the filtered image by transforming theThe interest of this approach can be foreseen by looking
output max-tree into a gray-level image. The discussion af the flat zones corresponding to the water areas. If a “strict”
this paper will focus on antiextensive operators and makinarization is usedX = 0), the water is represented by a very
trees. By the dualityf «—— —f, the same notions can behigh number of small flat zones and will not be processed as a
applied to extensive operators amih-trees In the following, single entity. By contrast, if a “soft” binarization is used, these
we describe the three steps of Fig. 3 with more details.  small flat zones are grouped together to form larger entities that
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to be analyzed to create the new temporary nodes at level
h+ 1 (that is {T'CF_, }x).

B. Connected Components Definition

In the case of discrete images, the simplest approach consists
in selecting a connectivity (4-, 6-, or 8-connectivity) and in
labeling the set of pixels of the temporary node that does not
belong to the “local background” following this connectivity
rule. Note that, as the binarization, this step is very important
because it implicitly defines the notion of objects that will be
processed by the operator. The objective of this section is to
discuss modifications of the connectivity and their influence on
the resulting connected operator. Let us recall the connectivity
definition.

Definition 4—Connectivity ClassA connectivity clasg is
defined on the subsets of a s8twhen

1) e CandVz € E, {z} € C;

2) for each family{C;} of C, NC;j # 0 = UC; € C.

It was shown in [16] that this definition is equivalent to
the definition of a family ofconnected pointwise openings
{7, * € E}, associated to each point &. Let us recall
the following result.

Theorem 5—Connectivity Characterized by Openingke
definition of a connectivity clas€ is equivalent to the def-
inition of a family of openings{~.,, z € E} such that:

1) Vz € E, :({z}) = {z}

2) Vz,y € FandX C E, v,.(X) and~,(X) are either

equal or disjoint;

Fig. 4. Flat zones resulting from the “nonflat” binarization (2). Left: C —
gray-level image where each flat zone has been filled with its mean. Right:3) Vo€ EandX C Bz §Z X = %”(X) 0.

contour of the flat zones. Upper left: Flat zonas= 0. Middle left: Flat Intuitively, the openingy,(X) extracts the connected com-

zonesA = 4. Bottom left: Flat zones\ = 8. Upper right: Contoursy = 0. ponent of X that containsz. Based on this definition of the

Middle right: ContoursA = 4. Bottom right: Contoursi = 8. connectivity, a generalization was proposed in [16]. It relies
on the definition of a new connected pointwise opening:

(X)) =X NX, ifzeX

25 T T T T T

20 and

Number of 15
flat zones

(x 1000) 10 ve(X) =0, if ¢ X (3)

where 6 is an extensive dilation. This new operatey is
a connected pointwise opening and therefore defines a new
connectivity. This connectivity is less “strict” than the usual
0 2 4 6 & 10 12 ones in the sense that it considers that two objects that are
Threshold on the gradient A close to each other (that is they touch each other if they
Fig. 5. Evolution of the number of flat zones of the image of Fig. 4. are dilated bys) belong to the same connected component.
This generalization can lead to interesting connected filters.

. ) However, in this paper we concentrate on a different issue: in
will be processed in a coherent way by the connected operaigf, ciice, connected operators are known to present a drawback
Note, however, that the pixels assigned to each node of t9eq “leakage” that results from the connection of different
max-tree do not have the same gray-level value. Therefore, Higects. These connections are created because there exist
restitution step after the filtering cannot simply assign the gragin connected paths between large objects. A solution to this
level h to pixels belonging to the nod€};. Let us postpone problem consists in breaking the thin connections of the binary
this discussion until Section V dealing with restitution issuegonnected components and in segmenting the components into
In the sequel (and until Section V), we assume that a “stric§ set of elementary shapes to be processed separately. As a
binarization rule A = 0) is used. Let us concentrate on theesult, the connected operator can take individual decision on
problem of connected components definition: once the “locadach elementary shape. Ideally, the shapes should correspond
background (that i€’¥) has been defined, its complement hat® our perception of the main parts of the object. This approach

5

0
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can be seen as the definition of a “strict” connectivity. To our
knowledge, two attempts have been reported in the literature
to define “strict” connectivities.

e Segmentation by Openings7]: Given a family ofcon-
nected pointwise openings.,, and an opening with a
connected structuring element, a new familycohnected
pointwise openingg,, can be created as follows:

02(X) =v27(X), if x €~v(X)
and

0o(X) ={z},  ifxeX\y(X) (4)

and as usuab,.(X) =0, if z ¢ X. It can be shown that
o, is actually aconnected pointwise openiiagd therefore
defines a connectivity. Intuitively, this connectivity con-
siders that the connected components of a binary set are
made of the connected components of its openingyby
The points that are removed by the opening are considered
as isolated points, that are connected components of size
one.

Even if this solution is theoretically sound, in practice
it turns out that this way of segmenting the connected
components leads to a loss of one of the main features
of connected operators. In practice, connected operators
are used because they can simplify while preserving the
shape information of the remaining image components.
Suppose now that we use an area opening of size larger
than one with the connectivity defined by thennected
pointwise openingof (4). The filter will eliminate all
the isolated points (area equal to one) and all the small
connected components resulting from the opening. The
shape information of the remaining components will
not be preserved because most of the time, this shape
information relies on the set of isolated points. To solve
this problem, we propose the following approach.

e Segmentation by Watershed [6], [13The idea of this ap-
proach is to rely on classical morphological segmentation
tools. Morphological segmentation generally involves two
steps: marker extraction and watershed segmentation [18].
The marker extraction defines the interior of the regions
that should be segmented and the watershed precisely
defines the contours of these regions. The segmentation
procedure is illustrated by Fig. 6. The original gray-level
image can be seen in Fig. 6(a), and the set of binary
connected components resulting from a thresholding at
level 70 in Fig. 6(b) (note that different gray-level values
have been assigned to each connected component). In this
last figure, there is a very large connected component
involving the two speakers, the screen in the background
of the scene and the letters of the word “MPEG.” These
objects are processed as single entity by the operator
because there exist thin connections between them.

— Marker Extraction: In the context of connected
operators, this step defines the number of con-
nected components created by the segmentation.
A simple idea consists in using as markers the

559

connected components of the ultimate erosion
of X, denoted byc!(X). However, in practice,

a segmentation driven by the ultimate erosion
creates a very large number of connected com-
ponents. As an illustration, Fig. 6(g) shows the
ultimate erosion of the binary components of
Fig. 6(b). The number of connected components
can be reduced by computing the uniondf X )
with the erosion ofX with a structuring element
B of size ! [denoted byeg,(X)]. The set of
markers is defined by/;(X) = ¢ (X)Uep, (X).
The erosion merges some connected components
of the ultimate erosion. In particular, if= 0, the
markers are the connected componentX dfself,
Mo(X) = X (the connected components are not
broken), whereas if = oo, the set of markers is
the ultimate erosion) (X ) = €/(X). Fig. 6(d)
presents the set of markeig;( X)) resulting from

an erosion with a structuring element of sizex3

3.

Watershed Segmentatio®@nce the markers are
defined, the watershed algorithm propagates them
to precisely define the shape of the connected
components. In [6] and [13], it is proposed to use
one of the classical tools for binary segmentation
that is to rely on the opposite of the distance
function —Distx to perform the propagation.
This segmentation is geometric, since it only takes
into account the shape &f. More formally, let us
defineCB,{—Distx, M;(X)} the transformation
that assigns ta: the catchment basif the func-
tion —Distx that containse taking into account
the markersM;(X). Consider now the operator

CCL(X) =CB.{—Distx, My(X)} N X,
if reX
and

ccl(x)=0, ifz¢X (5)

This transformation reduces to the classicah-
nected pointwise opening. when! = 0. For/>0,

it only creates apseudoconnectivitylndeed, in
that case, all conditions of Theorem 5 are met
except oneﬂcﬁc is not increasing and therefore
not an opening. This is a drawback but, using the
watershed as segmentation tool, our main concern
is to segment the components &f in a small
number of regions and to keep as much as possible
the contour information oX. Moreover, in prac-
tice for small values of, this theoretical problem
does not prevent the creation of useful operators.
This segmentation is illustrated in Fig. 6(e) and
(h) for the two sets of markersi3(X) and
Mo(X). As can be seen, for a small value lof
[Fig. 6(e)] the segmentation corresponds well to
various objects of the scene. This is, however,
not the case for high values @éf In particular,
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Fig. 6. Segmentation of binary components. (a) Original. (b) Binary compondhis (€) Distance function{Dist,). (d) Marker (erosion of size 3),
(M3(X)). (e) Geometric segmentation, Markéds(X). (f) Gray-level segmentation, Marke¥/3(X). (g) Marker (ultimate erosion)(M.(X)). (h)
Geometric segmentation, Markét.(X). (i) Gray-level segmentation, Market/ (X).

Fig. 6(h) shows the presence of contours that are differences are minor for low values bbut quite
not related to the scene content (contours inside significant for larger values.

the screen or the speaker on the right side). . . .

In [13], a modification of this approach was As mentioned in Section II,_ once _the max-tree has been
proposed to increase the robustness in the casecﬁ?ated by recursive use of F"”"?‘“Z".*“O” and connected com-
large values of. The idea was to compute theponents.defml'uon steps, a crltenon is assessed for each nqde.
distance function not o’ but on the result of a If the criterion 'valu'e is below a given threshold the node is
closing by reconstruction ak. In the following, rgmovgd and its pixels are moved_ toyvard the_ father node.
we propose an alternative approach that consiﬁég' ! |Ilustrates. gxamples of area f|_|ter|ng [3.] W'.t h three no-
in using the gray-level information on the suppor ions of connectivity. The area criterion consists in measuring
of X and not its shape. To this end, one ca e number of pixels of each connected component. The filter
simply replace the distance function useci, IS an area open-close, that is, an area opening followed by an

by the gradient of the image defined on the suppoarl{ea closing. The classical area open-close (4-connectivity)

P PR can be seen in Fig. 7(b). This example illustrates a typical
gl;i%tgf’;ézf (r; d]i)e(r:’t])cffxt’hg/[léfi()iilé\llv?l?r:gtivgfﬁ leakage problem of connected operators. Small objects like
The set of n?arkers is the sarr?e as revio.uslthe letters of the “MPEG4” word should have been removed.

P )f"his is however not the case for example for the “G” and the

but the segmentatlon '.S gray-level oriented (in th,, because there are thin connections between these letters
sequel, this approach is callgday-level segmen-

t[ation)' The resqlt obtained Wi_th this approach are 1y ~2rea(f) denotes the area opening, its dual is a closing defined by
illustrated on Fig. 6(f) and (i) As can be seenyarea(f) = —y2re2(—f).
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(© (d)

Fig. 7. Area open-close (size = 100) for various strict connectivities. (a) Original. (b) Area open-close with 4-connectivity. (¢) Connectivity by opening
(3 x 3) [17]. (d) Pseudoconnectivity by geometric ség.= 3). (e) Pseudoconnectivity by gray level s€g.= 3).

@ (b) ©

Fig. 8. Area open-close (size = 100) for connectivities defined by segmentation. (a) Connectivity by openingx(220). (b) Pseudoconnectivity by
geometric seg(! = 20). (c) Pseudoconnectivity by gray level sed. = 20).

and the shirt of the man. Using the classical connectivity, tlemes. This approach allows the reduction of the leakage
operator processes the shirt and the “G” and “4” as a singleoblem while preserving the main feature of the connected
object and the connected operator reconstructs “too muchperators. However, in practice, this approach has to be used
Fig. 7(c) gives the result obtained by the “segmentation hyith care because it is, in some sense, in contradiction with
opening” with a structuring element of sizex3 3. As men- the basic principle of connected operators, since it introduces
tioned previously, this approach does not preserve the contoew contours in the image. From our experience, this is not a
information. Finally, Fig. 7(d) and (e) present similar resultdrawback in practice if small values oéfare used, that is if
but with the “geometric” and the “gray-level segmentation bgnly thin connections are split. In this case, new contours are
watershed” { = 3). For low values of, both approaches leadindeed introduced in the image, but at very specific locations
to very similar results. In both cases, the leakage problernrresponding generally to transitions between two different
has disappeared. Thin connections between components ahjects. Note finally that in this case, gray-level and geometric
broken and the final result corresponds more to a “naturgegmentation results are almost equivalent.
size-oriented simplification.

The examples of Fig. 8 illustrate the difference between IV. FILTERING
the various segmentation approaches for high values of the
parameters. The segmentation by opening ¥2@0) shown
in Fig. 8(a) is useless. Comparison between the geome
[Fig. 8(b)] and the gray level [Fig. 8(c)] segmentation revea
that the gray-level approach is more robust and introduces ) o
fewer “false” contours. A. Classical Criteria

In this section, we have shown how to create As examples, let us briefly recall some classical criteria
(pseudo)connectivities that are more strict than classiasded for theopening by reconstructionthe area opening

Once the max-tree has been created, the filtering step
1'?.f&alyzes each node by measuring a specific criterion and takes
%decision on the elimination or preservation of the node.
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and theA-max operator. In this section, we assume that the

nodeC} is analyzed and we denote I6y the set of pixels
belonging toC} and all its descendant nodes (in Section II,
this notion has been used to explain the max-tree creation
and the corresponding set of pixels was stored in a temporary
node called?’CF).
¢ Opening by Reconstruction [1]This filter preserves a
node CF if /tt\we binary erosion of the set of pixels

included in C,’j by a structuring element of siz& is

not the empty set. This operator has a size-oriented
simplification effect: it removes the bright components
smaller than the structuring element. By duality, a closing

Max-Tree Criterion sequence

Criterion

S

nodes to
remove

node to
preserve

Fig. 9. Max-tree andriterion sequencéor each local maximum.

by reconstruction can be defined. Its simplification effect itself is decreasing because the nodes are scanned starting

is similar to that of the opening but on dark componentfor the maximum and going down to the root. If the criterion
« Gray-Level Area Opening [3] This filter has been usedis increasing, thecriterion sequencas itself increasing and

in Section lll. It is similar to the previous one except thathere is no problem defining the levelwhere the criterion

it preserves the€} if the number of pixels of”¥ is larger is higher than a given limit\. In this case, all nodes such

than a limit \. It has also a size-oriented simplificatiorthat M(C})<\ are removed and the corresponding pixels are

effect, but the notion of size is different from the onénoved to the first ancestor node such that{C}) > A.

used in theopening by reconstructioBy duality anarea If the criterion is nonincreasing, theriterion sequence
closing can be defined. M(h) may fluctuate around the value and the definition

+ A-max Operator The idea is to preserv@} if this node of the set of nodes to remove is less straightforward. Three
has at least one nonempty descendant node atheyel rules have been reported in the literature [9], [10], [21] to deal

@K such thatC}, , NCF # 0). The simplification effect
of this operator is contrast-oriented in the sense that it1)
eliminates image components with a contrast lower than
A. The A-max is an operator and not a morphological
filter because it is not idempotent. By duality, thenin
operator can be defined.

All these operators are extensively used in practice. A large
set of examples can be found in particular in [2], [3], [10],
[18]-[20], and in the references they contain.

B. Nonincreasing Criteria

The classical criteria and the resulting operators are increas-
ing. In the lattice framework, an operatgr is said to be
increasing if it does not modify the order between any pair of
elements of the lattic¥ z < y, 1(z) < ¥(y). In the context
of connected operators, this property is directly related to the
criterion assessed for each node. Assume that the Gtjde

is a child node ofC}* (that is C}* N C}2 # 0)). Because of
the tree structure, we have the following relatiohs: > ho
andC}yt C Cp2. If the criterion M(.) is increasing, we have
also M(C}1) < M(C}2).

Let us analyze the effect of having an increasing or a2
nonincreasing criterion on the max-tree representation and
on the decision process. Consider a maximum of the image,
that is a leaf node of the max-tree, and the sequence of
all its ancestor nodes going down to the root node. In the3)
example of Fig. 9, if we start by the maximum corresponding
to C3, the sequence i€5 — C{ — C}. Consider now
the sequence of the criterion valuest(C¥) obtained by

with the nonincreasing case, as follows:

“Direct” Decision: This is the most straightforward
approach that consists in considering that a néde

is preserved if and only ifM(CF) > A. The content

of the nodes that are removed are merged with their
nearest preserved ancestors. This solution is illustrated in
Fig. 10(b). In this figure, we show on the upper level, a
simple gray-level function (input) and the corresponding
output function. Components with a criterion value
higher thanA are shown in dotted line on the output
function. Components with a criterion value lower than
A are not shown. On the lower level of the figure, we
show the evolution of theriterion sequenceand the
corresponding nodes (and therefore components) to be
preserved.

The “direct” approach has the advantage of being
simple; however, in practice it is not robust because the
decisions are local and do not depend on the decision of
neighboring nodes (in the case of an increasing criterion,
the decision is also local but, because of the increasing
property, the relation between the decisions on various
levels is known).

“Min” Decision: A nodeC} is preserved itM(CK) >

A and if all its ancestors are also preserved. This rule
preserves less nodes than the first one. It is illustrated
in Fig. 10(a).

“Max” Decision: The last rule is the dual of the previ-
ous one: a node is removedA#(CF)<\ and if all its
descendant nodes are also removed [see Fig. 10(c)].

From our practical experience, the min and max rules are

scanning successively all the ancestors of a maximum. In thenerally more robust and lead to more coherent decisions.

example of Fig. 9, theriterion sequencstarting fromC3 is

The direct decision is the less robust approach and gives noisy

M(h) = [M(C3), M(CH), M(C})] and is represented as aresults (presence of isolated small connected components that
curve (function ofh) on the right side. Note that the parameteshould “intuitively” be removed but are not). However, this
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Criterion

nodes to preserve nodes to preserve

nodes to preserve

@) (b) (©

Fig. 10. lllustration of various decision rules in the case of nonincreasing criterion. (a) “Min” decision. (b) “Direct” decision. (c) “Max” mlecisio

N node and of its father. Betwee®: andC¥_,, there are four
L o possible transitionsR;, — Ry_1, Ry, — Pr_1, Pr — Ri_1,
P and P, — P,_1. Furthermore, a cost is assigned to each
"preserve” transition. The same cost is assigned to the two transitions
[ -4—— cost going to a preserve state. This cost should reflect the reliability
of the preserve decision for that node. This reliability can be
measured for example by the difference between the decision
threshold and the criterion value— M(C},) (if the reliability
is very high, the cost is very low). In the case of a transition
emanating from a remove state and going to a remove state,
the situation is similar and the valugt(C;) — A can be
assigned as transition cost. This is, however, not the case for
the transition emanating from a preserve state and coming to
Max-Tree Trellis a remove state. Indeed, these transitions should be avoided
Fig. 11. Trellis construction for the decision in the case of a single branaﬁcause we want to define a levehbove which all nodes are
tree. removed and below which all nodes are preserved. We choose
this strategy to get back to the situation where the criterion
ic§ indeed increasing. These transitions can be eliminated if an

nclusion is highly influen h f criterion and,. . . . . s
co “C usion is highly influe ced b?f the type ore terion a ||?f|n|te cost is assigned to them. Now, the decision consists in
its “degree of nonincreasingness.” In [7], an improvement %

. . R inding in this trellis, the path of lowest cost that starts from
the decision robustness is proposed. It consists in filtering the ) .

. . . . hé maximum and ends in the preserve state of the root node
decision sequence, for example, with a median filter. Thé

@]
-0
I

: ; '3t least, the root node should be preserved). The cost of a
solution actually provides more robustness, however, in t

) . e 8th is defined as the sum of the costs of its transitions.
following, a different solution is proposed. It turns out to b This formulation is a classical dynamic programming prob-

much more robust than any of the previous ones. It religgy, that can be very efficiently solved by the Viterbi algorithm
on a formulation of the decision process as an optimizaligsy] | et us briefly describe this algorithm: assume that the two

problem. y _ o optimum (lowest cost) paths starting from the maximum and
For each node’;,, a binary decision, preserve or removegnging atP;,;; andRy,4, are known. Let us call Pafh, and

has to be taken. Assume that a decision cost is assigned to i it
possible decision and to each node. In this case, the decis@gﬁirﬁu}nth;;isw\g];ﬁgm;pr: gr?;h;hT::ndsgnggﬂyoijg}ﬁlégo
problem can naturally be seen as finding the set of lowest cg§ta |ocal decision. For example, the optimum path ending in
paths that go from the leaves of the tree down to the rogt, that is Patff, is defined by the following rule:
node. Let us describe this approach in detail with a simple
tree involving a single branch as shown in Fig. 11. If Cost (paﬂﬁl) + Cos(Py 11 — Ry)

First, assign to each node, of the max-tree two state®),
andR;,, describing the two possible decisions, “preserve” or = COS(PatHSH) + CostRut1 — Ra),
“remove.” Second, a trellis is constructed, as shown in Fig. 11, then (Patify) = (Pattf,,) U {Pni1 — R},
by creating transitions linking the possible decisions of one else (Pattft) = (Patiff,) U{Rn+1 — Ru}. (6)
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examples are described and illustrated. We have selected
one purely geometrical criteriotthe simplicity one criterion
purely dealing with the gray-level distributiothe entropy

and finally, one devoted to image sequeneestion None of
these criteria is increasing and the decision technique using the
Viterbi algorithm is assumed to be used in all cases (except
if stated differently).

C. Example of Geometrical Criterion: Simplicity

In [6], a connected operator dealing with the complexity of
objects in a context of segmentation-based coding is proposed.
The idea is to define an operator that removes complex
connected components. To this end, simplification criteria
Fig. 12. Trellis construction for the decision in the case of a multiplgelylng on the ratio between the are& and the perimeter
branches tree. P can be used:

Complexity(Cf) = P(C})/ACE)

Max-Tree Trellis

This rule simply states that the optimum path ending at st4gqd
‘R, has to go through either sta#,; or stateP;; and that
the best path is the one leading to the lowest additive cost. A

I S
similar decision rule can be defined for the best path ending at Simplicity(Cy;) = A(C};)/P(CR). @)
state’P;,. This process is iterated until the root nokle= 0 is In the following, we will use the simplicity criterion be-

reached and the optimum path is progressively constructed @se it is easier to combine with the optimization procedure
the basis of local decisions. Finally, once the optimum paffzscribed in the previous section. This criterion is not the
is found, the states it goes through define the decisions t&mpactness criterion [23] defined as the ratio between the
each node. area and the square of the perimeter. The compactness criterion
This rather simple procedure has to be extended to deglsize independent, whereas the simplicity criterion is size
with trees with various branches. The extension is describgépendent. Of course, the selection of a particular criterion
in Fig. 12 in the case of the junction of two branches, but thfainly depends on the application. Interest in the simplicity
procedure is general and can deal with an arbitrary numbergfterion can be seen in segmentation-based coding applica-
branches. Let us analyze the case of the sije There is tions (for which it was designed). Indeed, in segmentation-
not one but two optimum paths ending at this state. One paghsed coding, one has often to decide if a specific area of the
comes from branch 1 whereas another one comes from braigiAge has to be segmented or not. In the first case, the contours
2. They are independent from each other. As a result, we haghe region are sent to the receiver, and part of the coding cost
to define independently these two paths. In Fig. 12, two seésproportional to the length of the contour to code, that is the
of transitions, identified by solid and doted lines, can be segjsrimeter. In the second case, the area is considered as texture
The decision defined by (6) is used on both sets of transitiongtormation, and its coding cost is generally proportional to
Once these two optimum paths have been defined, their unignarea. As can be seen, the simplicity operator allows the
is considered as “the optimum path” ending at stRigand classification of the objects following a contour/texture cost
its cost is equal to the sum of the costs of two paths. criterion and may simplify the coding decision problem. The
In the following section, the interest in this decision algonamessimplicity and complexitywere assigned to the criteria
rithm will be illustrated. At this stage, let us mention that thigf (7) because intuitively, it can be seen that if a connected
algorithm is very robust. In practice, the robustness means te@amponent has a small area but a very long perimeter, it
similar input images lead to similar output results. From oworresponds to a complex object.
practical experience, the decision using the Viterbi algorithm The simplicity operator removes complex and bright objects
is drastically superior to the other approaches. This advantdgsm the original image. As usual, a dual operator dealing
is obtained because the decision is global and not local wgh dark objects can be defined. An example of processing
for the direct, min, or max decisions. The robustness of than be seen in Fig. 13. The original image is composed of
Viterbi approach is also reflected by the fact that the decisionarious objects with different complexity. In particular the
do not strongly depend on the cost assigned to each transitigxt and the texture of the fish can be considered as being
For example, in practice, similar results are obtained if tr@mplex by comparison with the shape of the fish and the
costs proposed previously are replaced by their sign: eithebooks on the lower right corner. Fig. 13(b) shows the output
or —1. Finally, when the criterion is increasing, all restitutiorof the simplicity operator. On this result, the dual operator is
techniques are equivalent. applied [Fig. 13(c)]. The global processing can be considered
The decision algorithm proposed in this section allows us & an alternated operator. As illustrated on this example,
deal in a robust way with a very large number of criteria. Forthe simplicity operators efficiently remove complex image
given application, one has simply to characterize by a measgmmponents (text and texture of fish) while preserving the
the flat zones of interests. In the following sections, severantours of the objects that have not been eliminated. In both
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Fig. 13. Example of processing with the simplicity connected operator. (a) Original image. (b) Simplicity operator. (c) Dual operator.

(b)

Fig. 14. Comparison between the Viterbi and direct decisions with the @ (b)

simplicity operator. (a) Decision with Viterbi algorithm. (b) “Direct” decision.

cases, the simplicity threshold has been set to one. Note tt
the simplification effect is not size-oriented, because the filtel
have removed large objects (the “MPEG” word) as well a: —
small objects (the texture of the fish). The simplificationisno ™=
contrast-oriented as can be seen by the difference in contri ' =
between “Welcome to” and “MPEG” which have been jointly ke -
removed.

The simplicity criterion is not increasing. Fig. 14 makes a (© (d)
comparison between the decision using the Viterbi algorithay. 15. Example of processing with the entropy connected operator. The
and the “direct” decision. The lack of robustness of thentropy operator has removed all components with entropy lower than 5 b.
direct decision can be noticed in the lower right part of thiét‘) d%gﬁ'”a" (b) Entropy operatof dual. (c) Original. () Entropy operator
fish where one bright component that has no specific visual
importance appears. This component has not been remO\é(ce)(rjnputed, the probability of each gray-level value can be

because its simplicity is just above the threshold. Howev%rétimated. Letpe (1) denote the probability of occurrence

all the components that are just above and below it have th level! timated on the hist m of pixel
simplicity below the threshold and are removed. In the sequ8, € gray levell as estimated on the histogram of pixels

the approach using the Viterbi algorithm is assumed to be ugeglonging to the componeqt;. The entropy measured in bits
when the criterion is not increasing. is defined as

EntropyCE) = =3 pey () omslpey D1 (8)
l§

D. Example of Gray-Level Criterion: Entropy

The complexity and simplicity criteria of the previous The entropy of an area of constant value is equal to
section involve a purely geometrical characterization of tteero, whereas the entropy is maximum for a random texture
connected components. An opposite approach consists in age-uniform probability density function. As the simplicity
lecting the components only on the basis of the gray-leveliterion, the entropy criterion is not increasing. Two examples
distribution of the pixels inside their support. For each corare shown on Fig. 15. For each example, the original image
nected component, the histogram of the gray-level values camd the result of applying the entropy connected operator
be computed and a specific characteristic can be assessefbtbowed by its dual are presented. The entropy operator has
the histogram in order to decide if this connected componearimoved all components with entropy lower than 5 b. The
has to be preserved or removed. In the following, we illustratgerator output has been normalized for a better visualization.
an example that consists in measuring the entropy of ths can be seen, the operator has removed most of the texture
gray-level distribution. The entropy measures from a statistidaformation and most of the smooth gray-level variation. In
viewpoint the amount of information given by each connectexhch case, it has preserved the boat while producing a simple
component. Let us recall its definition. Once the histograimage made of flat zones. These images can be used as
of the pixels belonging to a connected component has bdaput to a simple segmentation algorithm in order to get a
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representation of the scene with a reduced number of objects.A
The entropy operator can also be used for coding applications,
since it provides a classification of the image content as i »~
function of its entropy. ¢

t
N

The last example of criterion deals with the motion informa- -
tionin |‘mage §equences. DenOteﬁYL’ j) animage S,equence Fig. 16. Motion criterion. Left: criterion for one motion parameter. Right:
where ¢ and j represent the coordinates of the pixels @nd criterion for a range of motion.
the time instant. Our objective now is to define a connected
operator able to eliminate the image components that do naot ) _
undergo a given motion. The first step is therefore to define fibframes is necessary, then the system should rely heavily on

motion model giving, for example, the displacement field &f€ recursive part(< a < 1). .

each position{ A;(i, 1), A;(4, j)}. The field can be constant The motion criterion described by (9) and (10) deals with

{A;, A} if one wants f[o extract all objects following a®n€ set of motion parameters. Objects that do not follow the
(3 ¥l .

translation, but in general the displacement can depend YHeN motion are removed. For some applications, it may
the spatial positior(i, j) to deal with more complex motion be useful to preserve objects that are within a given range
models such as affine or quadratic models. of motion (notion of “motion bandwidth”). To this end, the

The sequence processing is performed as follows: edgiferion of (9) can be modified by introducing an erosion
frame is transformed into its corresponding max-tree repre-2nd @ dilationé of the previous frame. The difference
sentation and each nod# is analyzed. To check whether orlfe = fi—1| in the DFD (D) is replaced at each poirt, )
not the pixels contained in a given nodé are moving in SIther bY fo = 6(fe—1) if fi > 6(fi-1), or by e(fe—1) - fi
accordance to the motion fiel\(i, j), A;(4, j)}, a simple 1 ft < €(fe-1), or by zero ife(fi_1) < fi < &(fi-1). This

solution consists in considering the region created by the pix@RProach is illustrated in Fig. 16. As can be seen, the erosion
of a and to compute the opposite of the mean displacéand the dilation off;_; create a “tube” in which the function
h i i i i i
frame difference (DFD)®) of this region with the previous ﬁ can remain W'IthOUt contrléagtmgr;] tOdFlhe. DFD.dThhe Siz€ (_)f
frame. Note that, the opposite of the mean DFD is used toe. structuring (_aement used in the dilation and the erosion
) ’ égﬂnes the motion “bandwidth.”

that the criterion value for a region that has to be preserv A first motion filtering example is shown in Fig. 17. The

is higher than the corresponding value when the region has ta . ; . .
o objective of the operator is to remove all moving objects.
be removed. The criterion can be expressed [7] as

The motion model is defined b§A;, A;) = (0, 0). In this

——
\

€rror f :
t-

Gray
Gray level

E. Example of Sequence Criterion: Motion

_ Z \foliy 5) = fomr(i— Dg, G — A)) sequence, all objects are still except the l:_)allerlna _behmd 'Fhe
= two speakers, and the speaker on the left side who is speaking.
th—l(c}k) __BiCC ) The application of the connected operatgtf) described
fe ' Z 1 previously removes all bright moving objects [Fig. 17(b)].

i o The application of the dual operat@*(f) removes all dark
S moving objects [Fig. 17(c)]. The residue (that is the difference

©) with the original image) presented in Fig. 17(d) shows what
In practice, however, it is not very reliable to state on thiéas been removed by the operator. As can be seen, the operator

motion of part of the image on the basis of only two frame_glas very precisely extracted the ballerina and the (moving)
The criterion should have a reasonable memory of the p TT\IIS of thelsp_(lalakers ;a_ce.F_ 18 sh d .

decisions. This idea can be easily introduced in the criterio € example | ustratg N Hg. Shows a ecompogpon
by adding a recursive term. Two mean DFD’s are measuré%?: the original image into three sequences. The original
one between the current franfeand the previous framg_, Seduence shows two boats on a river. The camera is following
and a second one between the current frame and the previg]fs black boat in the center. Therefore, the river and the

filtered frame ¥(f;_1) (¥ denotes the connected operator}?ackground have an apparent m_otion_ (ca_lled the dominant
The motion criterion is finally defined as: motion), whereas the black boat is still. First the dominant

translation is estimated giving the following motion model
Motion(CF) = ap}‘z—l(C;f)Jr(l —a)Di(ﬁ_l)(C}’f) (10) (Ai, Aj) = (2,0). Objects following this translation are
obtained by application of the motion operator followed by
where0 < a < 1. If « is equal to one, the criterion isits dual. As can be sen in Fig. 18(b), the background and
memoryless, whereas low valuescobllow the introduction of the river regions are obtained. Then, the difference between
an important recursive component in the decision process. lthe original frame and the filtered frame is computed. This
way similar to all recursive filtering schemes, the selection difference involves only the two boats. On this difference also
a proper value foty depends on the application: if one wantgalled residue, still objectéA;, A;) = (0, 0) are extracted.
to detect very rapidly any changes in motion, the criterioAs shown on Fig. 18(c), the black boat has been extracted.
should be mainly memorylessy(~ 1), whereas if a more Finally, the remaining components are shown in Fig. 18(d).
reliable decision involving the observation of a larger numbdthis is a decomposition in the sense that the sum of the
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Fig. 17. Example of mot_ion connected operator preserving fixed objects. (. 19. Comparison between “flat” and “nonflat” area opening. (a) Original.
Original frame f. (b) Motion connected operataf(f). (c) Dual operator (b) “Flat” area opening. (c) Decision map. (d) Nonflat area opening.
U*(¥(f)). (d) Residuef — T*(T(f)).

Fig. 20. Examples of “flat” and “nonflat” area filtering. (a) Flat area
open-close. (b) Nonflat area open-close.

structures of the image. By using motion connected operators,
we can “inverse” the classical approach to motion and, for

example, analyze simplified sequences where objects are fol-
lowing a known motion. The application of theses operators

to motion-oriented segmentation of sequences as well as to
motion estimation seems to be a very interesting field of

research.

© (d)

Fig. 18. Example of motion-oriented decomposition£AB + C + D). (a)

Original frame. (b) Objects with translation (2,0). (c) Objects with translation V. IMAGE RESTITUTION

(0.0). (d) Remaining objects. After the max-tree creation, the criterion assessment and
the decision, the last step of the filtering process consists in

three sequences restores the original sequence. As can be sesmsforming the output max-tree into an output image. In all

the filtering has separated the background and the two botis previous examples, it has been assumed that the following

moving in two different directions. procedure was used: assign to pixél, 7) the gray-level value

The motion connected operator can potentially be used forof the nodeC¥ it belongs to. This is one of the simplest

a large set of applications. It opens the door in particular tales, but it can be modified for specific applications.

different ways of handling the motion information. Indeed, Indeed, in the previous section, it has been seen that the

generally, motion information is measured without knowingecision classifies the nodes, and their corresponding pixels,

anything about the image structure. Connected operators take two classes: nodes to be removed and nodes to be

a different viewpoint by making decisions on the basis gfreserved. A different restitution technique can therefore be

the analysis of all possible flat zones, that is, of all possibéssigned to each class. This approach can be seen as a “toggle
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(a) (b)

Fig. 21. (a) Original image. Example of restitution (b) without compensation and (c) with motion compensation in the case of motion conneciesd operato

mapping” problem [24]. It is quite natural to assume that, if aones of the background. However, since we are processing a
node has to be preserved, its content should not be modiftede sequence, information of what is behind this person can
by the connected operator. As a result, the gray-level valuas extracted from previous frames. This idea can be seen as
of the original image are assigned to the pixels of preservedoggle mapping defined by the following rule: following the
nodes. By contrast, nodes to be removed correspond to areakations of Section IV-E, if a pixel, ;) belongs to a node to
that should disappear from the image. One approach consksgspreserved, the output gray-level valéi, j) at timet is

in estimating the gray-level values that would be seen if th#mply equal to the input gray-level valug(i, j) = fi(3, j).

area was actually not present in the image. In the sequélthe pixel belongs to a node to be removed, the output gray-
two examples are described. The first one involves area filtég¥el value can be defined by motion compensation of the
where the flat zones are defined by (2), that is, where flat zorgvious filtered framey (i, j) = g:—1(i — A, 7 — A;). As

are not strictly flat. The second example involves a motidin be seen in the example of Fig. 21(c), the compensation has

operator. successfully estimated the image content behind the person.
The first example is illustrated by Figs. 19 and 20. Fig. 19(a)
and (b), respectively, show an original image and the result VI. CONCLUSION

of a classical area opening [binarization defined by (1)] with Thi has f q hologicah q
area parametek = 1000. Now, a max-tree is created using Is paper has focused on morphologicahnected opera-

the nonflat binarization approach of (2) (with= 8). An area tors. These operators interact with the signal by merdiag

opening is applied on the max-tree and a decision is taken 3 esAs a result, they do not create any new contours and are

each node. The resulting decision map is shown in Fig. 19(V Y gtrt)a;t;i;(;rr\l‘llletgrlng tasks where the contour information

Dark (bright) areas represent nodes to be preserved (removed)., . .
: . : . his paper has shown that connected operators work im-
Finally, Fig. 19(d) shows the final result where pixels to be,. . ; .
licitly on a structured representation of the image made

preserved are equal to their original values apd pixels ?ﬂat zones. The max-tree was proposed as a suitable and
be removed are set to the values they have using the ﬂ%ﬁ‘ficient structure to deal with the processing steps involved in

approgch. In this e_xample, the_deC|S|on map simply make iextensive connected operators. The processing steps have
selection between images of Fig. 19(a) and (b). The resultts) en analyzed in details:

the flat approach is used as an estimate of the image gray-1everpq fist step is the max-tree creation. It relies on an iterative

values “behind” the areas to be removed. A simple techniqye, .equre involving a binarization step and a definition of the
would have been to compute the mean of the pixels of th§nnected components. The binarization step can be modified
areas to be removed. However, in practice, this approach giyg$yrder to deal with flat zones that are not strictly flat. This
results where the transitions between removed and preserygfl oach leads to connected operators that can deal differently
nodes are very visible. Finally, flat and nonflat area open-clogin textured areas. It was also shown how the connected
results are compared in Fig. 20. The interest in the nonfl@mponents definition step can be viewed as a segmentation
can be seen in this example: in both cases, the area opgshlem allowing a severe reduction of the leakage problem
close has eliminated objects of size smaller than 1000 pixed§.classical connected operators.
However, in the nonflat case, the texture of large areas (waterThe second step consists of measuring a criterion and of
background) has been preserved. taking a binary decision (remove or preserve) for each con-
The second example is shown in Fig. 21. It is an example @écted component. The issue of nonincreasing criteria has been
sequence filtering with a motion-oriented connected operatektensively discussed. After presenting the classical solutions,
The objective is to preserve all image components that do rgf optimization formulation of the problem has been proposed
move. This sequence involves a fixed scene of a corridor wiidy the decision step. The optimization problem can be very
a person walking. The image of Fig. 21(b) presents the resegfficiently solved by the Viterbi algorithm. As examples,
obtained by using in cascade the motion operator followed bimplicity-, entropy-, and motion-oriented connected operators
its dual. The classical restitution where each removed nodehisve been defined and illustrated.
merged with its first nonremoved ancestor has been used. AFhe last step, called restitution, creates the output image
can be seen, the person has been removed and replaced byrfiat the filtered max-tree. Depending on the application,
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flood(h) /* Flood gray level h */
/* First step: propagation */
while not hqueue-empty(h)
P < hqueue-first(h)

STATUS(p) < number-nodes(h) /* Process p */
for every meighbor q of p /* 4 or 8 connectivity */
if STATUS(q) == ‘‘Not-analyzed’’

hqueue-add(ORI(q), q)
STATUS(q) ¢« ‘In-the-queue’’
node-at-level (ORI(p)) < true

if (ORI(q) > ORI(p)) /* We have found a child at level q */
m = ORI(q)
repeat /* Flood the child */

m < flood(m)
until m = h
number-nodes (k) ¢ number—nodes(h) + 1
/* Second step: define the father */

m<< h -1

while m > 0 and node-at-level(m) = false /* Look for the father */
méé< m-1

ifm>0 /* Assign the father */

i ¢ number-nodes(h) - 1

j <+ number-nodes(m)

father of C. < node CJ,
else

Cﬁ has no father (Ci is root node)
node-at-level(h) ¢ false

return m

Fig. 22. Flooding procedure for the max-tree creation.

this step can be seen as a toggle mapping allowing seveaed initialized to zero at the beginning of the tree construction.
restitution strategies. Finally, in the Appendix, several impl&?RI(p) denotes the original gray-level value of pixeland
mentation issues are discussed. It is shown in particular thBTATUS(p) stores the information of the pixel status: the pixel
using the max-tree representation, connected operators camdnebe “not-analyzed,” “in-the-queue,” or assigned to the node
efficiently implemented and, as a result, can be very intensivéhof level k. In this last case, STATU$) = k. As can be seen,
used in practice. pixel p belongs to the nodé(sﬁgﬁgs(‘)) (at least in the case
of strictly flat zones).

The max-tree creation relies on a simple recursive flooding
procedure. The STATUS is initialized to “not-analyzed” and
one of the pixel of lowest gray-level valug,,;, is put in the

The objective of this section is to describe an example of fﬂﬁieue. The tree is created by calling flobgl;, ). The flooding
implementation of the max-tree creation. This implementati(b}ocedure flooth) is precisely described in Fig. 22. It has two
is valid for the classical case where the connected componegggic steps: the first one actually performs the propagation and
are defined by 4- or 8-connectivity (it is not valid for thepe ypdating of the STATUS, whereas the second step defines
segmentation approach proposed in Section 111-B). The implge father/child relationships. The execution time is typically
mentation relies on the use of a hierarchical first-in-first-oylss than 1 s on a Sun-Sparc 10 for 26@56 images of 256
(FIFO) queue, queues where each individual queue is assig@%ly levels.
to a particular gray-level valug. These queues are used 10 The computation time devoted to the analysis of the max-
define an appropriate scanning and processing order of {ig (criterion assessment and decision) is a function of the
pixels. In order to create the max-tree, the following thregiterion complexity. In general, this amount of time remains

APPENDIX
FAST IMPLEMENTATION OF THE MAX-TREE CREATION

queue functions are necessary. small if the criterion can be computed recursively, that is, if
* hqueue-add(h,p) Add the pixelp (of gray levelh) in it is possible to take into account the evaluation done for the
the queue of priorityh. child nodes while computing the criterion of the current node.
* hqueue-first(h): Extract the first available pixel of queueThis is, in particular, the case for the simplicity, entropy, and
of priority A. motion-connected operators discussed in this paper. In all these
* hqueue-empty(h) Return “TRUE” if queue of priority cases, the amount of time devoted to the criterion computation
h is empty. and the decision using the Viterbi algorithm is of the order of

We will also make use of the following notationsumber- one second for max-trees resulting from 2%6256 images.
nodes(h)defines the number of nodé§ at levelh. Its values Finally, the time devoted to the restitution can be neglected. In
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conclusions, if a fast implementation of the max-tree creatigzo]
(as the one proposed in Fig. 22) is used and if the criterion
can be computed recursively, the computation time devoted 59]
the whole filtering process is of the order of a few seconds on
a Sun-Sparc 10 (25& 256 images). [22]
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