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for Image and Sequence Processing
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Abstract—This paper deals with a class of morphological
operators called connected operators. These operators filter the
signal by merging its flat zones. As a result, they do not create
any new contours and are very attractive for filtering tasks
where the contour information has to be preserved. This paper
shows that connected operators work implicitly on a structured
representation of the image made of flat zones. Themax-tree is
proposed as a suitable and efficient structure to deal with the
processing steps involved in antiextensive connected operators.
A formal definition of the various processing steps involved
in the operator is proposed and, as a result, several lines of
generalization are developed. First, the notion of connectivity and
its definition are analyzed. Several modifications of the traditional
approach are presented. They lead to connected operators that
are able to deal with texture. They also allow the definition of
connected operators with less leakage than the classical ones.
Second, a set of simplification criteria are proposed and discussed.
They lead to simplicity-, entropy-, and motion-oriented operators.
The problem of using a nonincreasing criterion is analyzed. Its
solution is formulated as an optimization problem that can be
very efficiently solved by a Viterbi algorithm. Finally, several
implementation issues are discussed showing that these operators
can be very efficiently implemented.

Index Terms—Connected operators, connectivity, mathemat-
ical morphology, motion criterion, optimization, sequence pro-
cessing, simplicity criterion, Viterbi algorithm, watershed.

I. INTRODUCTION

T HE FIRSTconnected operatorsreported in the literature
are known asbinary opening by reconstruction[1]. These

operators independently act on each connected component of
the binary image: they eliminate the connected components
that would be totally removed by an erosion with a given
structuring element and they leave the other components
unchanged. This filtering approach offers the advantage of
simplifying the image, because some components are removed,
as well as preserving the contour information, because the
components that are not removed are perfectly preserved.

This approach has been generalized for gray-level functions
using the so-calledreconstruction process[2]. Beside opening
by reconstruction, - operators, area opening [3], dynam-
ics filters [4], and more recently, volumic [5], complexity
[6], motion [7], and moment-oriented [8] operators have been
proposed. These operators offer various simplification criteria
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(size, contrast, shape, etc.) while preserving contours. This
property makes them very attractive for a large number of
applications such as noise cancellation, segmentation, pattern
recognition, etc.

The extensive use of connected operators has motivated
some theoretical studies. For instance, the notions of connected
operators and of flat zones are discussed in a formal way in
[9]–[11]. Connectivity issues related to connected operators
are analyzed in [12]–[14]. Finally, relations with structured
representations of images such as region adjacency graphs and
trees are discussed in [7] and [15].

The purpose of this paper is to focus on the class of
antiextensive connected operators (and by duality, extensive
connected operators). Based on a formal operator definition
involving a tree representation of the image called amax-
tree, several contributions are proposed. First, the notion
of connectivity is analyzed. Several modifications of the
traditional approach are presented. They lead to connected
operators that are able to deal with texture or to connected
operators that have much less leakage than classical operators.
Second, a set of new simplification criteria are proposed and
discussed. In particular, simplicity-, entropy-, and motion-
oriented operators are defined. The problem of using a non-
increasing criterion is analyzed and its solution is formulated
as an optimization problem that can be very efficiently solved
by a Viterbi algorithm. Finally, several applications as well
as implementation issues are discussed. Note that part of the
work reported here can be found in conference proceedings
[6], [7], [13]. One of the objectives of the paper is to review
these contributions. However, some new contributions are also
presented here. These original contributions mainly concern
the max-tree creation and processing, the use of the Viterbi
algorithm to deal with nonincreasing criteria, and the entropy
connected operator.

The organization of this paper is as follows. Section II is
devoted to the notion of binary and gray-level connected oper-
ators. This presentation will highlight three major processing
steps: tree creation, tree filtering, and image restitution. These
three steps are, respectively, discussed in Sections III–V. Fi-
nally, Section VI is devoted to the conclusions.

II. CONNECTED OPERATORS

A. Theoretical Definition

In [9], [10], the concept of binary connected operators is
formally defined as follows:
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Fig. 1. Binary connected operator.

Definition 1—Binary Connected Operators:A binary oper-
ator is connected when for any binary image, the set
difference is exclusively composed of connected
components of or of its complement .

The extension of connected operators for gray-level func-
tions relies on the concept of partition [9], [10]. Let us recall
that a partition of the space is a set of connected components

which are disjoint and the union of which is the entire
space. Each is called a partition class. Moreover, a partition

is said to befiner than another partition if any
pair of points belonging to the same class also belongs
to a unique partition class . Consider now a binary image
and define itsassociated partitionas the partition made of
the connected components of the binary sets and of their
complement. The definition of connected operators can be
expressed using associated partitions as follows.

Theorem 2—Binary Connected Operators via Partition:A
binary operator is connected if and only if, for any binary
image , the associated partition of is finer than the
associated partition of .

The concept of gray-level connected operators can be intro-
duced if we define a partition associated to a function. To this
end, the use offlat zoneswas proposed in [9] and [10]. The set
of flat zones of a gray-level function is the set of the largest
connected components of the space whereis constant (a flat
zone can be reduced to a single point). The set of flat zones of
a function is a partition, called thepartition of flat zonesand
leads to the following definition.

Definition 3—Gray-Level Connected Operators:An opera-
tor acting on gray-level functions is connected if, for any
function , the partition of flat zones of is finer than the
partition of flat zones of .

Let us see how this definition implicitly means that the
operator works on a structured representation of the image.

B. Binary Antiextensive Connected Operators

In the sequel, we restrict ourselves to the case of antiex-
tensive operators ( ). Therefore, a binary
antiextensive connected operator is an operator that can only
remove connected components of. The filtering process can
easily be explained if a tree representation of the image is used
as shown in Fig. 1.

The original image is composed of three connected
components. It can be represented by a tree structure with four
nodes: the root node represents the set of pixels belonging
to the background , and represent the three
connected components of the image. In this representation,
the filtering process consists in analyzing each node
by assessing the value of a particular criterion. Assume for
example that the criterion consists in counting the number of
pixels belonging to a node (area opening [3]). Then, for each
node, the criterion value is compared to a given threshold
and the node is removed if the criterion is lower than. In
the example of Fig. 1, node is removed because its area
is small. As a result, its pixels are moved to the background
node (the connected component is removed). As can be
seen, the tree links represent the pixels’ migration (toward
the father) when a node is removed. All antiextensive binary
connected operators can be described by this process, the only
modification being the criterion that is assessed.

C. Gray-Level Antiextensive Connected Operators

As seen in Definition 3, the extension of connected operators
to gray-level images uses the partition of flat zones. This
extension can also be seen as a simple generalization of the
tree representation to the gray-level case.

The idea consists in creating the tree recursively by a
study of the thresholded versions of the image at all possible
gray levels. An example is presented in Fig. 2. The original
image is composed of seven flat zones identified by a letter

. The number following each letter
defines the gray-level value of the flat zone. In our example,
the gray-level values range from zero to two. In the first step,
the threshold is fixed to the gray-level value zero. The image
is binarized: all pixels at level (pixels of region ) are
assigned to the root node of the tree . Furthermore,
the pixels of gray-level value strictly higher than form
two connected components that are temporarily assigned to
two nodes: and . This
creates the first tree (for gray levels [0, 1]). This procedure is
the same as the one used for the binary image. In a second step,
the threshold is increased by one: . Each node
is processed as the original image. Consider, for instance, the
node ; all its pixels at level
remain unchanged and create the final node. However,
pixels of gray-level values strictly higher than(here )
create two different connected components and are moved to
two temporary child nodes and . The
complete tree construction is done by iterating this process
for all nodes at level and for all possible thresholds
(from zero to the highest gray-level value). The algorithm can
be summarized saying that, at each temporary node, a
“local” background is defined by keeping all pixels of gray-
level value equal to (the “local” background itself may not be
connected) and that the various connected components formed
by the pixels of gray-level value higher thancreate the child
nodes of the tree.

In this procedure, some nodes may become empty. There-
fore, at the end of the tree construction, the empty nodes
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Fig. 2. Max-tree representations.

Fig. 3. Connected operators with max-tree representations.

are removed. The final tree is called amax-treein the sense
that it is a structured representation of the image which is
oriented toward the maxima of the image (maxima are simply
the leaves of the tree) and toward the implementation of
antiextensive operators. Note that this description does not
necessarily correspond to the actual implementation of the
tree construction. For this purpose, an efficient algorithm is
proposed in the Appendix.

The filtering itself is similar to the one used for the binary
case. A criterion is assessed for each node . Based
on the value, the node is either preserved or removed.
In this last case, the node’s pixels are moved toward its
father’s node. At the end of the process, the output max-tree
is transformed into a gray-level image by assigning the gray
value to the pixels of .

D. Connected Operators and Max-Tree Representation

Based on the previous description, a general filtering scheme
is illustrated in Fig. 3. It involves a first step of max-tree cre-
ation, the goal of which is to structure the pixels in a suitable
way for the filtering process. The max-tree representation has
also the advantage of leading to very efficient implementations
of connected operators. The second step is the filtering itself,
which analyzes each node and takes a decision on which node
has to be preserved and which node has to be removed. Finally,
the last step restores the filtered image by transforming the
output max-tree into a gray-level image. The discussion of
this paper will focus on antiextensive operators and max-
trees. By the duality , the same notions can be
applied to extensive operators andmin-trees. In the following,
we describe the three steps of Fig. 3 with more details.

III. M AX-TREE CREATION

The objective of this step is to create the max-tree, that is
the set of nodes and the links between the father and child
nodes. As described in Section II-C, for each temporary node

, the set of pixels belonging to the local background is
defined and assigned to the max-tree node. This is the
binarization step. Then, the set of pixels belonging to the
complement of the local background, that is , are
analyzed and its connected components create the temporary
child nodes (which will be further analyzed). This
is theconnected components definitionstep. In the sequel, the
binarizationand theconnected components definitionsteps are
analyzed and some generalizations are proposed.

A. Binarization

The most natural way of defining the “local” background for
each node at level consists in taking all pixels of gray-level
value . Formally, the node is composed of the pixels of
level of the temporary node , that is

such that (1)

where represents the gray-level value of the pixel
.

This binarization process extracts the flat zones of the image.
This step is closely related to the definition of the basic entities
on which the filter is going to act. Equation (1) means that
the basic entities are characterized by a strictly flat gray-
level value. However, in practice, “visual” entities may not be
strictly flat because of noise or texture. To deal with such cases,
less strict binarization techniques can be used. To this end, a
useful criterion relies on the definition of a bound on the
gray-level fluctuations. The corresponding “soft” binarization
rule is the following:

such that

either

or and neighbor of

(2)

A flat zone is composed of pixels with low gray-level
fluctuations. The particular case corresponds to the
classical situation where the flat zones are strictly flat. Figs. 4
and 5 illustrate the evolution of the flat zones as a function
of . To judge intuitively this evolution, we show, on the left
side of Fig. 4, images where each flat zone has been filled by
its mean and, on the right side, the corresponding contours of
the flat zones. When , the image on the left side is the
original image and most flat zones involve one or two pixels
(right image). Fig. 5 shows the reduction of the number of
flat zones. Of course, this curve has a direct relation with the
evolution of the max-tree complexity.

The interest of this approach can be foreseen by looking
at the flat zones corresponding to the water areas. If a “strict”
binarization is used ( ), the water is represented by a very
high number of small flat zones and will not be processed as a
single entity. By contrast, if a “soft” binarization is used, these
small flat zones are grouped together to form larger entities that
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Fig. 4. Flat zones resulting from the “nonflat” binarization (2). Left:
gray-level image where each flat zone has been filled with its mean. Right:
contour of the flat zones. Upper left: Flat zones� = 0. Middle left: Flat
zones� = 4. Bottom left: Flat zones� = 8. Upper right: Contours� = 0.
Middle right: Contours� = 4. Bottom right: Contours� = 8.

Fig. 5. Evolution of the number of flat zones of the image of Fig. 4.

will be processed in a coherent way by the connected operator.
Note, however, that the pixels assigned to each node of the
max-tree do not have the same gray-level value. Therefore, the
restitution step after the filtering cannot simply assign the gray-
level to pixels belonging to the node . Let us postpone
this discussion until Section V dealing with restitution issues.
In the sequel (and until Section V), we assume that a “strict”
binarization rule ( ) is used. Let us concentrate on the
problem of connected components definition: once the “local”
background (that is ) has been defined, its complement has

to be analyzed to create the new temporary nodes at level
(that is ).

B. Connected Components Definition

In the case of discrete images, the simplest approach consists
in selecting a connectivity (4-, 6-, or 8-connectivity) and in
labeling the set of pixels of the temporary node that does not
belong to the “local background” following this connectivity
rule. Note that, as the binarization, this step is very important
because it implicitly defines the notion of objects that will be
processed by the operator. The objective of this section is to
discuss modifications of the connectivity and their influence on
the resulting connected operator. Let us recall the connectivity
definition.

Definition 4—Connectivity Class:A connectivity class is
defined on the subsets of a setwhen

1) and ;
2) for each family i of i i .

It was shown in [16] that this definition is equivalent to
the definition of a family ofconnected pointwise openings

, associated to each point of. Let us recall
the following result.
Theorem 5—Connectivity Characterized by Openings:The
definition of a connectivity class is equivalent to the def-
inition of a family of openings such that:

1) ;
2) and and are either

equal or disjoint;
3) and .

Intuitively, the opening extracts the connected com-
ponent of that contains . Based on this definition of the
connectivity, a generalization was proposed in [16]. It relies
on the definition of a new connected pointwise opening:

if

and

if (3)

where is an extensive dilation. This new operator is
a connected pointwise opening and therefore defines a new
connectivity. This connectivity is less “strict” than the usual
ones in the sense that it considers that two objects that are
close to each other (that is they touch each other if they
are dilated by ) belong to the same connected component.
This generalization can lead to interesting connected filters.
However, in this paper we concentrate on a different issue: in
practice, connected operators are known to present a drawback
called “leakage” that results from the connection of different
objects. These connections are created because there exist
thin connected paths between large objects. A solution to this
problem consists in breaking the thin connections of the binary
connected components and in segmenting the components into
a set of elementary shapes to be processed separately. As a
result, the connected operator can take individual decision on
each elementary shape. Ideally, the shapes should correspond
to our perception of the main parts of the object. This approach



SALEMBIER et al.: ANTIEXTENSIVE CONNECTED OPERATORS 559

can be seen as the definition of a “strict” connectivity. To our
knowledge, two attempts have been reported in the literature
to define “strict” connectivities.

• Segmentation by Openings[17]: Given a family ofcon-
nected pointwise openings, , and an opening with a
connected structuring element, a new family ofconnected
pointwise opening, , can be created as follows:

if

and

if (4)

and as usual if . It can be shown that
is actually aconnected pointwise openingand therefore

defines a connectivity. Intuitively, this connectivity con-
siders that the connected components of a binary set are
made of the connected components of its opening by.
The points that are removed by the opening are considered
as isolated points, that are connected components of size
one.

Even if this solution is theoretically sound, in practice
it turns out that this way of segmenting the connected
components leads to a loss of one of the main features
of connected operators. In practice, connected operators
are used because they can simplify while preserving the
shape information of the remaining image components.
Suppose now that we use an area opening of size larger
than one with the connectivity defined by theconnected
pointwise openingof (4). The filter will eliminate all
the isolated points (area equal to one) and all the small
connected components resulting from the opening. The
shape information of the remaining components will
not be preserved because most of the time, this shape
information relies on the set of isolated points. To solve
this problem, we propose the following approach.

• Segmentation by Watershed [6], [13]: The idea of this ap-
proach is to rely on classical morphological segmentation
tools. Morphological segmentation generally involves two
steps: marker extraction and watershed segmentation [18].
The marker extraction defines the interior of the regions
that should be segmented and the watershed precisely
defines the contours of these regions. The segmentation
procedure is illustrated by Fig. 6. The original gray-level
image can be seen in Fig. 6(a), and the set of binary
connected components resulting from a thresholding at
level 70 in Fig. 6(b) (note that different gray-level values
have been assigned to each connected component). In this
last figure, there is a very large connected component
involving the two speakers, the screen in the background
of the scene and the letters of the word “MPEG.” These
objects are processed as single entity by the operator
because there exist thin connections between them.

— Marker Extraction: In the context of connected
operators, this step defines the number of con-
nected components created by the segmentation.
A simple idea consists in using as markers the

connected components of the ultimate erosion
of , denoted by . However, in practice,
a segmentation driven by the ultimate erosion
creates a very large number of connected com-
ponents. As an illustration, Fig. 6(g) shows the
ultimate erosion of the binary components of
Fig. 6(b). The number of connected components
can be reduced by computing the union of
with the erosion of with a structuring element

of size [denoted by ]. The set of
markers is defined by .
The erosion merges some connected components
of the ultimate erosion. In particular, if , the
markers are the connected components ofitself,

(the connected components are not
broken), whereas if , the set of markers is
the ultimate erosion, . Fig. 6(d)
presents the set of markers resulting from
an erosion with a structuring element of size 3
3.

— Watershed Segmentation:Once the markers are
defined, the watershed algorithm propagates them
to precisely define the shape of the connected
components. In [6] and [13], it is proposed to use
one of the classical tools for binary segmentation
that is to rely on the opposite of the distance
function to perform the propagation.
This segmentation is geometric, since it only takes
into account the shape of. More formally, let us
define the transformation
that assigns to the catchment basinof the func-
tion that contains taking into account
the markers . Consider now the operator

if

and

if (5)

This transformation reduces to the classicalcon-
nected pointwise opening when . For ,
it only creates apseudoconnectivity.Indeed, in
that case, all conditions of Theorem 5 are met
except one: is not increasing and therefore
not an opening. This is a drawback but, using the
watershed as segmentation tool, our main concern
is to segment the components of in a small
number of regions and to keep as much as possible
the contour information of . Moreover, in prac-
tice for small values of, this theoretical problem
does not prevent the creation of useful operators.
This segmentation is illustrated in Fig. 6(e) and
(h) for the two sets of markers and

. As can be seen, for a small value of
[Fig. 6(e)] the segmentation corresponds well to
various objects of the scene. This is, however,
not the case for high values of. In particular,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6. Segmentation of binary components. (a) Original. (b) Binary components (X): (c) Distance function (�Distx): (d) Marker (erosion of size 3),
(M3(X)): (e) Geometric segmentation, MarkerM3(X): (f) Gray-level segmentation, MarkerM3(X): (g) Marker (ultimate erosion),(M1(X)): (h)
Geometric segmentation, MarkerM1(X): (i) Gray-level segmentation, MarkerM1(X):

Fig. 6(h) shows the presence of contours that are
not related to the scene content (contours inside
the screen or the speaker on the right side).

In [13], a modification of this approach was
proposed to increase the robustness in the case of
large values of . The idea was to compute the
distance function not on but on the result of a
closing by reconstruction of . In the following,
we propose an alternative approach that consists
in using the gray-level information on the support
of and not its shape. To this end, one can
simply replace the distance function used in
by the gradient of the image defined on the support
of : , where
denotes the gradient of the original function.
The set of markers is the same as previously,
but the segmentation is gray-level oriented (in the
sequel, this approach is calledgray-level segmen-
tation). The result obtained with this approach are
illustrated on Fig. 6(f) and (i) As can be seen,

differences are minor for low values ofbut quite
significant for larger values.

As mentioned in Section II, once the max-tree has been
created by recursive use of binarization and connected com-
ponents definition steps, a criterion is assessed for each node.
If the criterion value is below a given threshold the node is
removed and its pixels are moved toward the father node.
Fig. 7 illustrates examples of area filtering [3] with three no-
tions of connectivity. The area criterion consists in measuring
the number of pixels of each connected component. The filter
is an area open-close, that is, an area opening followed by an
area closing.1 The classical area open-close (4-connectivity)
can be seen in Fig. 7(b). This example illustrates a typical
leakage problem of connected operators. Small objects like
the letters of the “MPEG4” word should have been removed.
This is however not the case for example for the “G” and the
“4” because there are thin connections between these letters

1If 
area(f) denotes the area opening, its dual is a closing defined by
'area(f ) = �
area(�f).
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(a) (b)

(c) (d) (e)

Fig. 7. Area open-close (size� = 100) for various strict connectivities. (a) Original. (b) Area open-close with 4-connectivity. (c) Connectivity by opening
(3 � 3) [17]. (d) Pseudoconnectivity by geometric seg.(t = 3): (e) Pseudoconnectivity by gray level seg.(t = 3):

(a) (b) (c)

Fig. 8. Area open-close (size� = 100) for connectivities defined by segmentation. (a) Connectivity by opening (20� 20). (b) Pseudoconnectivity by
geometric seg.(l = 20). (c) Pseudoconnectivity by gray level seg.(l = 20):

and the shirt of the man. Using the classical connectivity, the
operator processes the shirt and the “G” and “4” as a single
object and the connected operator reconstructs “too much.”
Fig. 7(c) gives the result obtained by the “segmentation by
opening” with a structuring element of size 3 3. As men-
tioned previously, this approach does not preserve the contour
information. Finally, Fig. 7(d) and (e) present similar results
but with the “geometric” and the “gray-level segmentation by
watershed” ( ). For low values of , both approaches lead
to very similar results. In both cases, the leakage problem
has disappeared. Thin connections between components are
broken and the final result corresponds more to a “natural”
size-oriented simplification.

The examples of Fig. 8 illustrate the difference between
the various segmentation approaches for high values of the
parameters. The segmentation by opening (2020) shown
in Fig. 8(a) is useless. Comparison between the geometric
[Fig. 8(b)] and the gray level [Fig. 8(c)] segmentation reveals
that the gray-level approach is more robust and introduces
fewer “false” contours.

In this section, we have shown how to create
(pseudo)connectivities that are more strict than classical

ones. This approach allows the reduction of the leakage
problem while preserving the main feature of the connected
operators. However, in practice, this approach has to be used
with care because it is, in some sense, in contradiction with
the basic principle of connected operators, since it introduces
new contours in the image. From our experience, this is not a
drawback in practice if small values ofare used, that is if
only thin connections are split. In this case, new contours are
indeed introduced in the image, but at very specific locations
corresponding generally to transitions between two different
objects. Note finally that in this case, gray-level and geometric
segmentation results are almost equivalent.

IV. FILTERING

Once the max-tree has been created, the filtering step
analyzes each node by measuring a specific criterion and takes
a decision on the elimination or preservation of the node.

A. Classical Criteria

As examples, let us briefly recall some classical criteria
used for theopening by reconstruction, the area opening,
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and the - operator. In this section, we assume that the

node is analyzed and we denote by the set of pixels
belonging to and all its descendant nodes (in Section II,
this notion has been used to explain the max-tree creation
and the corresponding set of pixels was stored in a temporary
node called ).

• Opening by Reconstruction [1]: This filter preserves a
node if the binary erosion of the set of pixels

included in by a structuring element of size is
not the empty set. This operator has a size-oriented
simplification effect: it removes the bright components
smaller than the structuring element. By duality, a closing
by reconstruction can be defined. Its simplification effect
is similar to that of the opening but on dark components.

• Gray-Level Area Opening [3]: This filter has been used
in Section III. It is similar to the previous one except that

it preserves the if the number of pixels of is larger
than a limit . It has also a size-oriented simplification
effect, but the notion of size is different from the one
used in theopening by reconstruction. By duality anarea
closing can be defined.

• - Operator: The idea is to preserve if this node
has at least one nonempty descendant node at level

( such that ). The simplification effect
of this operator is contrast-oriented in the sense that it
eliminates image components with a contrast lower than

. The - is an operator and not a morphological
filter because it is not idempotent. By duality, the-
operator can be defined.

All these operators are extensively used in practice. A large
set of examples can be found in particular in [2], [3], [10],
[18]–[20], and in the references they contain.

B. Nonincreasing Criteria

The classical criteria and the resulting operators are increas-
ing. In the lattice framework, an operator is said to be
increasing if it does not modify the order between any pair of
elements of the lattice . In the context
of connected operators, this property is directly related to the
criterion assessed for each node. Assume that the node

is a child node of (that is ). Because of
the tree structure, we have the following relations:

and . If the criterion is increasing, we have
also .

Let us analyze the effect of having an increasing or a
nonincreasing criterion on the max-tree representation and
on the decision process. Consider a maximum of the image,
that is a leaf node of the max-tree, and the sequence of
all its ancestor nodes going down to the root node. In the
example of Fig. 9, if we start by the maximum corresponding
to , the sequence is . Consider now
the sequence of the criterion values obtained by
scanning successively all the ancestors of a maximum. In the
example of Fig. 9, thecriterion sequencestarting from is

and is represented as a
curve (function of ) on the right side. Note that the parameter

Fig. 9. Max-tree andcriterion sequencefor each local maximum.

itself is decreasing because the nodes are scanned starting
for the maximum and going down to the root. If the criterion
is increasing, thecriterion sequenceis itself increasing and
there is no problem defining the level where the criterion
is higher than a given limit . In this case, all nodes such
that are removed and the corresponding pixels are
moved to the first ancestor node such that .

If the criterion is nonincreasing, thecriterion sequence
may fluctuate around the value and the definition

of the set of nodes to remove is less straightforward. Three
rules have been reported in the literature [9], [10], [21] to deal
with the nonincreasing case, as follows:

1) “Direct” Decision : This is the most straightforward
approach that consists in considering that a node
is preserved if and only if . The content
of the nodes that are removed are merged with their
nearest preserved ancestors. This solution is illustrated in
Fig. 10(b). In this figure, we show on the upper level, a
simple gray-level function (input) and the corresponding
output function. Components with a criterion value
higher than are shown in dotted line on the output
function. Components with a criterion value lower than

are not shown. On the lower level of the figure, we
show the evolution of thecriterion sequenceand the
corresponding nodes (and therefore components) to be
preserved.

The “direct” approach has the advantage of being
simple; however, in practice it is not robust because the
decisions are local and do not depend on the decision of
neighboring nodes (in the case of an increasing criterion,
the decision is also local but, because of the increasing
property, the relation between the decisions on various
levels is known).

2) “Min” Decision: A node is preserved if
and if all its ancestors are also preserved. This rule

preserves less nodes than the first one. It is illustrated
in Fig. 10(a).

3) “Max” Decision: The last rule is the dual of the previ-
ous one: a node is removed if and if all its
descendant nodes are also removed [see Fig. 10(c)].

From our practical experience, the min and max rules are
generally more robust and lead to more coherent decisions.
The direct decision is the less robust approach and gives noisy
results (presence of isolated small connected components that
should “intuitively” be removed but are not). However, this
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(a) (b) (c)

Fig. 10. Illustration of various decision rules in the case of nonincreasing criterion. (a) “Min” decision. (b) “Direct” decision. (c) “Max” decision.

Fig. 11. Trellis construction for the decision in the case of a single branch
tree.

conclusion is highly influenced by the type of criterion and
its “degree of nonincreasingness.” In [7], an improvement of
the decision robustness is proposed. It consists in filtering the
decision sequence, for example, with a median filter. This
solution actually provides more robustness, however, in the
following, a different solution is proposed. It turns out to be
much more robust than any of the previous ones. It relies
on a formulation of the decision process as an optimization
problem.

For each node , a binary decision, preserve or remove,
has to be taken. Assume that a decision cost is assigned to each
possible decision and to each node. In this case, the decision
problem can naturally be seen as finding the set of lowest cost
paths that go from the leaves of the tree down to the root
node. Let us describe this approach in detail with a simple
tree involving a single branch as shown in Fig. 11.

First, assign to each node of the max-tree two states,
and , describing the two possible decisions, “preserve” or
“remove.” Second, a trellis is constructed, as shown in Fig. 11,
by creating transitions linking the possible decisions of one

node and of its father. Between and , there are four
possible transitions: , , ,
and . Furthermore, a cost is assigned to each
transition. The same cost is assigned to the two transitions
going to a preserve state. This cost should reflect the reliability
of the preserve decision for that node. This reliability can be
measured for example by the difference between the decision
threshold and the criterion value (if the reliability
is very high, the cost is very low). In the case of a transition
emanating from a remove state and going to a remove state,
the situation is similar and the value can be
assigned as transition cost. This is, however, not the case for
the transition emanating from a preserve state and coming to
a remove state. Indeed, these transitions should be avoided
because we want to define a levelabove which all nodes are
removed and below which all nodes are preserved. We choose
this strategy to get back to the situation where the criterion
is indeed increasing. These transitions can be eliminated if an
infinite cost is assigned to them. Now, the decision consists in
finding in this trellis, the path of lowest cost that starts from
the maximum and ends in the preserve state of the root node
(at least, the root node should be preserved). The cost of a
path is defined as the sum of the costs of its transitions.

This formulation is a classical dynamic programming prob-
lem that can be very efficiently solved by the Viterbi algorithm
[22]. Let us briefly describe this algorithm: assume that the two
optimum (lowest cost) paths starting from the maximum and
ending at and are known. Let us call Path and
Path these two optimum paths. The definition of the two
optimum paths ending at and can be easily defined
by a local decision. For example, the optimum path ending in

, that is Path , is defined by the following rule:

If Cost Path Cost

Cost Path Cost

then Path Path

else Path Path (6)
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Fig. 12. Trellis construction for the decision in the case of a multiple
branches tree.

This rule simply states that the optimum path ending at state
has to go through either state or state and that

the best path is the one leading to the lowest additive cost. A
similar decision rule can be defined for the best path ending at
state . This process is iterated until the root node is
reached and the optimum path is progressively constructed on
the basis of local decisions. Finally, once the optimum path
is found, the states it goes through define the decisions for
each node.

This rather simple procedure has to be extended to deal
with trees with various branches. The extension is described
in Fig. 12 in the case of the junction of two branches, but the
procedure is general and can deal with an arbitrary number of
branches. Let us analyze the case of the state: There is
not one but two optimum paths ending at this state. One path
comes from branch 1 whereas another one comes from branch
2. They are independent from each other. As a result, we have
to define independently these two paths. In Fig. 12, two sets
of transitions, identified by solid and doted lines, can be seen.
The decision defined by (6) is used on both sets of transitions.
Once these two optimum paths have been defined, their union
is considered as “the optimum path” ending at state and
its cost is equal to the sum of the costs of two paths.

In the following section, the interest in this decision algo-
rithm will be illustrated. At this stage, let us mention that this
algorithm is very robust. In practice, the robustness means that
similar input images lead to similar output results. From our
practical experience, the decision using the Viterbi algorithm
is drastically superior to the other approaches. This advantage
is obtained because the decision is global and not local as
for the direct, min, or max decisions. The robustness of the
Viterbi approach is also reflected by the fact that the decisions
do not strongly depend on the cost assigned to each transition.
For example, in practice, similar results are obtained if the
costs proposed previously are replaced by their sign: either
or . Finally, when the criterion is increasing, all restitution
techniques are equivalent.

The decision algorithm proposed in this section allows us to
deal in a robust way with a very large number of criteria. For a
given application, one has simply to characterize by a measure
the flat zones of interests. In the following sections, several

examples are described and illustrated. We have selected
one purely geometrical criterion:the simplicity, one criterion
purely dealing with the gray-level distribution:the entropy,
and finally, one devoted to image sequences:motion. None of
these criteria is increasing and the decision technique using the
Viterbi algorithm is assumed to be used in all cases (except
if stated differently).

C. Example of Geometrical Criterion: Simplicity

In [6], a connected operator dealing with the complexity of
objects in a context of segmentation-based coding is proposed.
The idea is to define an operator that removes complex
connected components. To this end, simplification criteria
relying on the ratio between the area and the perimeter

can be used:

Complexity

and

Simplicity (7)

In the following, we will use the simplicity criterion be-
cause it is easier to combine with the optimization procedure
described in the previous section. This criterion is not the
compactness criterion [23] defined as the ratio between the
area and the square of the perimeter. The compactness criterion
is size independent, whereas the simplicity criterion is size
dependent. Of course, the selection of a particular criterion
mainly depends on the application. Interest in the simplicity
criterion can be seen in segmentation-based coding applica-
tions (for which it was designed). Indeed, in segmentation-
based coding, one has often to decide if a specific area of the
image has to be segmented or not. In the first case, the contours
of the region are sent to the receiver, and part of the coding cost
is proportional to the length of the contour to code, that is the
perimeter. In the second case, the area is considered as texture
information, and its coding cost is generally proportional to
its area. As can be seen, the simplicity operator allows the
classification of the objects following a contour/texture cost
criterion and may simplify the coding decision problem. The
namessimplicity and complexitywere assigned to the criteria
of (7) because intuitively, it can be seen that if a connected
component has a small area but a very long perimeter, it
corresponds to a complex object.

The simplicity operator removes complex and bright objects
from the original image. As usual, a dual operator dealing
with dark objects can be defined. An example of processing
can be seen in Fig. 13. The original image is composed of
various objects with different complexity. In particular the
text and the texture of the fish can be considered as being
complex by comparison with the shape of the fish and the
books on the lower right corner. Fig. 13(b) shows the output
of the simplicity operator. On this result, the dual operator is
applied [Fig. 13(c)]. The global processing can be considered
as an alternated operator. As illustrated on this example,
the simplicity operators efficiently remove complex image
components (text and texture of fish) while preserving the
contours of the objects that have not been eliminated. In both
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(a) (b) (c)

Fig. 13. Example of processing with the simplicity connected operator. (a) Original image. (b) Simplicity operator. (c) Dual operator.

(a) (b)

Fig. 14. Comparison between the Viterbi and direct decisions with the
simplicity operator. (a) Decision with Viterbi algorithm. (b) “Direct” decision.

cases, the simplicity threshold has been set to one. Note that
the simplification effect is not size-oriented, because the filters
have removed large objects (the “MPEG” word) as well as
small objects (the texture of the fish). The simplification is not
contrast-oriented as can be seen by the difference in contrast
between “Welcome to” and “MPEG” which have been jointly
removed.

The simplicity criterion is not increasing. Fig. 14 makes a
comparison between the decision using the Viterbi algorithm
and the “direct” decision. The lack of robustness of the
direct decision can be noticed in the lower right part of the
fish where one bright component that has no specific visual
importance appears. This component has not been removed
because its simplicity is just above the threshold. However,
all the components that are just above and below it have a
simplicity below the threshold and are removed. In the sequel,
the approach using the Viterbi algorithm is assumed to be used
when the criterion is not increasing.

D. Example of Gray-Level Criterion: Entropy

The complexity and simplicity criteria of the previous
section involve a purely geometrical characterization of the
connected components. An opposite approach consists in se-
lecting the components only on the basis of the gray-level
distribution of the pixels inside their support. For each con-
nected component, the histogram of the gray-level values can
be computed and a specific characteristic can be assessed on
the histogram in order to decide if this connected component
has to be preserved or removed. In the following, we illustrate
an example that consists in measuring the entropy of the
gray-level distribution. The entropy measures from a statistical
viewpoint the amount of information given by each connected
component. Let us recall its definition. Once the histogram
of the pixels belonging to a connected component has been

(a) (b)

(c) (d)

Fig. 15. Example of processing with the entropy connected operator. The
entropy operator has removed all components with entropy lower than 5 b.
(a) Original. (b) Entropy operator+ dual. (c) Original. (c) Entropy operator
+ dual.

computed, the probability of each gray-level value can be
estimated. Let denote the probability of occurrence
of the gray level as estimated on the histogram of pixels

belonging to the component . The entropy measured in bits
is defined as

Entropy (8)

The entropy of an area of constant value is equal to
zero, whereas the entropy is maximum for a random texture
of uniform probability density function. As the simplicity
criterion, the entropy criterion is not increasing. Two examples
are shown on Fig. 15. For each example, the original image
and the result of applying the entropy connected operator
followed by its dual are presented. The entropy operator has
removed all components with entropy lower than 5 b. The
operator output has been normalized for a better visualization.
As can be seen, the operator has removed most of the texture
information and most of the smooth gray-level variation. In
each case, it has preserved the boat while producing a simple
image made of flat zones. These images can be used as
input to a simple segmentation algorithm in order to get a
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representation of the scene with a reduced number of objects.
The entropy operator can also be used for coding applications,
since it provides a classification of the image content as a
function of its entropy.

E. Example of Sequence Criterion: Motion

The last example of criterion deals with the motion informa-
tion in image sequences. Denote by an image sequence
where and represent the coordinates of the pixels and
the time instant. Our objective now is to define a connected
operator able to eliminate the image components that do not
undergo a given motion. The first step is therefore to define the
motion model giving, for example, the displacement field at
each position . The field can be constant

if one wants to extract all objects following a
translation, but in general the displacement can depend on
the spatial position to deal with more complex motion
models such as affine or quadratic models.

The sequence processing is performed as follows: each
frame is transformed into its corresponding max-tree repre-
sentation and each node is analyzed. To check whether or
not the pixels contained in a given node are moving in
accordance to the motion field , a simple
solution consists in considering the region created by the pixels

of and to compute the opposite of the mean displaced
frame difference (DFD) ( ) of this region with the previous
frame. Note that, the opposite of the mean DFD is used so
that the criterion value for a region that has to be preserved
is higher than the corresponding value when the region has to
be removed. The criterion can be expressed [7] as

(9)

In practice, however, it is not very reliable to state on the
motion of part of the image on the basis of only two frames.
The criterion should have a reasonable memory of the past
decisions. This idea can be easily introduced in the criterion
by adding a recursive term. Two mean DFD’s are measured:
one between the current frameand the previous frame
and a second one between the current frame and the previous
filtered frame ( denotes the connected operator).
The motion criterion is finally defined as:

Motion (10)

where . If is equal to one, the criterion is
memoryless, whereas low values ofallow the introduction of
an important recursive component in the decision process. In a
way similar to all recursive filtering schemes, the selection of
a proper value for depends on the application: if one wants
to detect very rapidly any changes in motion, the criterion
should be mainly memoryless ( ), whereas if a more
reliable decision involving the observation of a larger number

Fig. 16. Motion criterion. Left: criterion for one motion parameter. Right:
criterion for a range of motion.

of frames is necessary, then the system should rely heavily on
the recursive part ( ).

The motion criterion described by (9) and (10) deals with
one set of motion parameters. Objects that do not follow the
given motion are removed. For some applications, it may
be useful to preserve objects that are within a given range
of motion (notion of “motion bandwidth”). To this end, the
criterion of (9) can be modified by introducing an erosion

and a dilation of the previous frame. The difference
in the DFD ( ) is replaced at each point

either by if , or by
if , or by zero if . This
approach is illustrated in Fig. 16. As can be seen, the erosion
and the dilation of create a “tube” in which the function

can remain without contributing to the DFD. The size of
the structuring element used in the dilation and the erosion
defines the motion “bandwidth.”

A first motion filtering example is shown in Fig. 17. The
objective of the operator is to remove all moving objects.
The motion model is defined by . In this
sequence, all objects are still except the ballerina behind the
two speakers, and the speaker on the left side who is speaking.
The application of the connected operator described
previously removes all bright moving objects [Fig. 17(b)].
The application of the dual operator removes all dark
moving objects [Fig. 17(c)]. The residue (that is the difference
with the original image) presented in Fig. 17(d) shows what
has been removed by the operator. As can be seen, the operator
has very precisely extracted the ballerina and the (moving)
details of the speaker’s face.

The example illustrated in Fig. 18 shows a decomposition
of the original image into three sequences. The original
sequence shows two boats on a river. The camera is following
the black boat in the center. Therefore, the river and the
background have an apparent motion (called the dominant
motion), whereas the black boat is still. First the dominant
translation is estimated giving the following motion model

. Objects following this translation are
obtained by application of the motion operator followed by
its dual. As can be sen in Fig. 18(b), the background and
the river regions are obtained. Then, the difference between
the original frame and the filtered frame is computed. This
difference involves only the two boats. On this difference also
called residue, still objects are extracted.
As shown on Fig. 18(c), the black boat has been extracted.
Finally, the remaining components are shown in Fig. 18(d).
This is a decomposition in the sense that the sum of the
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(a) (b)

(c) (d)

Fig. 17. Example of motion connected operator preserving fixed objects. (a)
Original framef . (b) Motion connected operator	(f): (c) Dual operator
	�(	(f)): (d) Residuef � 	�(	(f)):

(a) (b)

(c) (d)

Fig. 18. Example of motion-oriented decomposition (A= B + C + D). (a)
Original frame. (b) Objects with translation (2,0). (c) Objects with translation
(0,0). (d) Remaining objects.

three sequences restores the original sequence. As can be seen,
the filtering has separated the background and the two boats
moving in two different directions.

The motion connected operator can potentially be used for
a large set of applications. It opens the door in particular to
different ways of handling the motion information. Indeed,
generally, motion information is measured without knowing
anything about the image structure. Connected operators take
a different viewpoint by making decisions on the basis of
the analysis of all possible flat zones, that is, of all possible

(a) (b)

(c) (d)

Fig. 19. Comparison between “flat” and “nonflat” area opening. (a) Original.
(b) “Flat” area opening. (c) Decision map. (d) Nonflat area opening.

(a) (b)

Fig. 20. Examples of “flat” and “nonflat” area filtering. (a) Flat area
open-close. (b) Nonflat area open-close.

structures of the image. By using motion connected operators,
we can “inverse” the classical approach to motion and, for
example, analyze simplified sequences where objects are fol-
lowing a known motion. The application of theses operators
to motion-oriented segmentation of sequences as well as to
motion estimation seems to be a very interesting field of
research.

V. IMAGE RESTITUTION

After the max-tree creation, the criterion assessment and
the decision, the last step of the filtering process consists in
transforming the output max-tree into an output image. In all
the previous examples, it has been assumed that the following
procedure was used: assign to pixel the gray-level value

of the node it belongs to. This is one of the simplest
rules, but it can be modified for specific applications.

Indeed, in the previous section, it has been seen that the
decision classifies the nodes, and their corresponding pixels,
into two classes: nodes to be removed and nodes to be
preserved. A different restitution technique can therefore be
assigned to each class. This approach can be seen as a “toggle
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(a) (b) (c)

Fig. 21. (a) Original image. Example of restitution (b) without compensation and (c) with motion compensation in the case of motion connected operators.

mapping” problem [24]. It is quite natural to assume that, if a
node has to be preserved, its content should not be modified
by the connected operator. As a result, the gray-level values
of the original image are assigned to the pixels of preserved
nodes. By contrast, nodes to be removed correspond to areas
that should disappear from the image. One approach consists
in estimating the gray-level values that would be seen if this
area was actually not present in the image. In the sequel,
two examples are described. The first one involves area filters
where the flat zones are defined by (2), that is, where flat zones
are not strictly flat. The second example involves a motion
operator.

The first example is illustrated by Figs. 19 and 20. Fig. 19(a)
and (b), respectively, show an original image and the result
of a classical area opening [binarization defined by (1)] with
area parameter . Now, a max-tree is created using
the nonflat binarization approach of (2) (with ). An area
opening is applied on the max-tree and a decision is taken for
each node. The resulting decision map is shown in Fig. 19(c).
Dark (bright) areas represent nodes to be preserved (removed).
Finally, Fig. 19(d) shows the final result where pixels to be
preserved are equal to their original values and pixels to
be removed are set to the values they have using the “flat”
approach. In this example, the decision map simply makes a
selection between images of Fig. 19(a) and (b). The result of
the flat approach is used as an estimate of the image gray-level
values “behind” the areas to be removed. A simple technique
would have been to compute the mean of the pixels of the
areas to be removed. However, in practice, this approach gives
results where the transitions between removed and preserved
nodes are very visible. Finally, flat and nonflat area open-close
results are compared in Fig. 20. The interest in the nonflat
can be seen in this example: in both cases, the area open-
close has eliminated objects of size smaller than 1000 pixels.
However, in the nonflat case, the texture of large areas (water,
background) has been preserved.

The second example is shown in Fig. 21. It is an example of
sequence filtering with a motion-oriented connected operator.
The objective is to preserve all image components that do not
move. This sequence involves a fixed scene of a corridor with
a person walking. The image of Fig. 21(b) presents the result
obtained by using in cascade the motion operator followed by
its dual. The classical restitution where each removed node is
merged with its first nonremoved ancestor has been used. As
can be seen, the person has been removed and replaced by flat

zones of the background. However, since we are processing a
time sequence, information of what is behind this person can
be extracted from previous frames. This idea can be seen as
a toggle mapping defined by the following rule: following the
notations of Section IV-E, if a pixel belongs to a node to
be preserved, the output gray-level value at time is
simply equal to the input gray-level value .
If the pixel belongs to a node to be removed, the output gray-
level value can be defined by motion compensation of the
previous filtered frame . As
can be seen in the example of Fig. 21(c), the compensation has
successfully estimated the image content behind the person.

VI. CONCLUSION

This paper has focused on morphologicalconnected opera-
tors. These operators interact with the signal by mergingflat
zones. As a result, they do not create any new contours and are
very attractive for filtering tasks where the contour information
has to be preserved.

This paper has shown that connected operators work im-
plicitly on a structured representation of the image made
of flat zones. The max-tree was proposed as a suitable and
efficient structure to deal with the processing steps involved in
antiextensive connected operators. The processing steps have
been analyzed in details:

The first step is the max-tree creation. It relies on an iterative
procedure involving a binarization step and a definition of the
connected components. The binarization step can be modified
in order to deal with flat zones that are not strictly flat. This
approach leads to connected operators that can deal differently
with textured areas. It was also shown how the connected
components definition step can be viewed as a segmentation
problem allowing a severe reduction of the leakage problem
of classical connected operators.

The second step consists of measuring a criterion and of
taking a binary decision (remove or preserve) for each con-
nected component. The issue of nonincreasing criteria has been
extensively discussed. After presenting the classical solutions,
an optimization formulation of the problem has been proposed
for the decision step. The optimization problem can be very
efficiently solved by the Viterbi algorithm. As examples,
simplicity-, entropy-, and motion-oriented connected operators
have been defined and illustrated.

The last step, called restitution, creates the output image
from the filtered max-tree. Depending on the application,
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Fig. 22. Flooding procedure for the max-tree creation.

this step can be seen as a toggle mapping allowing several
restitution strategies. Finally, in the Appendix, several imple-
mentation issues are discussed. It is shown in particular that,
using the max-tree representation, connected operators can be
efficiently implemented and, as a result, can be very intensively
used in practice.

APPENDIX

FAST IMPLEMENTATION OF THE MAX-TREE CREATION

The objective of this section is to describe an example of fast
implementation of the max-tree creation. This implementation
is valid for the classical case where the connected components
are defined by 4- or 8-connectivity (it is not valid for the
segmentation approach proposed in Section III-B). The imple-
mentation relies on the use of a hierarchical first-in-first-out
(FIFO) queue, queues where each individual queue is assigned
to a particular gray-level value. These queues are used to
define an appropriate scanning and processing order of the
pixels. In order to create the max-tree, the following three
queue functions are necessary.

• hqueue-add(h,p): Add the pixel (of gray level ) in
the queue of priority .

• hqueue-first(h): Extract the first available pixel of queue
of priority .

• hqueue-empty(h): Return “TRUE” if queue of priority
is empty.

We will also make use of the following notations:number-
nodes(h)defines the number of nodes at level . Its values

are initialized to zero at the beginning of the tree construction.
denotes the original gray-level value of pixeland

STATUS stores the information of the pixel status: the pixel
can be “not-analyzed,” “in-the-queue,” or assigned to the node

of level . In this last case, STATUS . As can be seen,
pixel belongs to the node (at least in the case
of strictly flat zones).

The max-tree creation relies on a simple recursive flooding
procedure. The STATUS is initialized to “not-analyzed” and
one of the pixel of lowest gray-level value is put in the
queue. The tree is created by calling flood . The flooding
procedure flood is precisely described in Fig. 22. It has two
basic steps: the first one actually performs the propagation and
the updating of the STATUS, whereas the second step defines
the father/child relationships. The execution time is typically
less than 1 s on a Sun-Sparc 10 for 256256 images of 256
gray levels.

The computation time devoted to the analysis of the max-
tree (criterion assessment and decision) is a function of the
criterion complexity. In general, this amount of time remains
small if the criterion can be computed recursively, that is, if
it is possible to take into account the evaluation done for the
child nodes while computing the criterion of the current node.
This is, in particular, the case for the simplicity, entropy, and
motion-connected operators discussed in this paper. In all these
cases, the amount of time devoted to the criterion computation
and the decision using the Viterbi algorithm is of the order of
one second for max-trees resulting from 256256 images.
Finally, the time devoted to the restitution can be neglected. In
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conclusions, if a fast implementation of the max-tree creation
(as the one proposed in Fig. 22) is used and if the criterion
can be computed recursively, the computation time devoted to
the whole filtering process is of the order of a few seconds on
a Sun-Sparc 10 (256 256 images).
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Politécnica de Catalunya (UPC), Barcelona, Spain.
He is currently pursuing the Ph.D. degree at the
Image Processing Group, UPC, dealing with video
sequence segmentation. His current areas of interest
are graph-based segmentation, morphological
filtering, and computer vision.


