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Abstract

Constant conductances are often assumed when model-
ing cardiac tissue. However experimental evidences have
shown that gap junctions (GJ) actually connect adjacent
cardiac myocytes. These GJ are complex proteins of the
connexin family (Cx40; Cx43; Cx45 are the most common
in human). These GJ modify the conductances between
cardiac cell through a dynamical process. The aim of this
study is to develop a bidomain model of the cardiac tis-
sue where the dynamics of the connexins is also included.
In particular we will compare the differences associated
with the use of a monodomain versus bidomain formula-
tion in inducing intra-cellular conductance variations. We
have found that the monodomain formulation gives con-
ductance variations a factor four to five larger with respect
to the bidomain formulation.

1. Introduction

Gap junctions (GJ) are membrane channels that connect
the cytoplasm of adjacent cells and allow for cell to cell
current transfers. GJ are assembly of proteins and they are
mainly three connexin types found in mammalian cardiac
cells: Cx 40 ; Cx 43 and Cx 45 [1, 2]. In the recent years
a lot of attention has been drawn towards the role of GJ
and connexin in the possible generation of arrhythmias. In
the present work we propose to study the influence of the
GJ dynamics on the conductance variations of the cardiac
tissue. We will use two different types of cardiac tissue
formulations that are: bidomain and monodomain.

2. Models

There are two concurrent models to describe the spatial
electrical activity of the heart that are the so-called mon-
odomain and bidomain models. The latter formulation of-
fers a better description of the cardiac tissue because it in-
cludes both fundamental fields i.e. the intracellular elec-

trical potential φi and the extracellular electrical potential
φe. On the other side, the monodomain formulation com-
bines the two previous fields to write the transmembrane
potential Vm = φi − φe and the spatial description of the
electrical activity is written in term of this single trans-
membrane potential. Furthermore Vm is the quantity most
easily accessible for direct experimental measurement in
cardiac tissue. Except in the cases when one studies de-
fibrillation and/or gap junction dynamics it can be shown
that there exists an equivalent formulation of the bidomain
equations using the monodomain formulation as we will
detail in Sec. 2.2. Let us start explaining the most general
model that includes the Gap Junction dynamics.

2.1. Bidomain Model

In this section, we will detail the equations for the bido-
main model that include also the GJ dynamics. The com-
plete mathematical expressions for the model are as fol-
lows [3] :

∂s

∂t
= f(Vm, s) (1)

∂Vm
∂t

+
Im
C

= ∇ · (Di∇Vm) +∇ · (Di∇φe) (2)

∇ · ((Di +De)∇φe) = −∇ · (Di∇Vm)− Iext
χ C

(3)

where C is the membrane capacitance (≈ 1µF/cm2), χ is
the cell surface to volume ratio (≈ 1, 400 cm−1) and s is
a state vector that contains all the dynamical variables in-
volved in the local description of the ionic currents across
the membrane, where all ion transport takes place. The
mathematical description of the opening and closing of the
ion channels is described by a set of differential equations
(1). The time scales associated with these equations vary
from 0.1 ms up to 1 s and higher. Furthermore, the vector
function f(Vm, s) in Eq. (1) is highly nonlinear. Conse-
quently, the equations are stiff and are challenging to solve
from the numerical point of view. Typical values for the
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conductivities [4] areDi = 1.5 10−3 , andDe = 1.5 10−3,
all in units of cm2/ms. Equation (3) is the Poisson equation
(elliptic PDE) that relates the current in the intracellular re-
gion to the extracellular electrical potential φe. Time does
not appear explicitly in the Poisson equation and it must be
solved simultaneously with Eq. (2) at every time step. The
term Iext allows for the introduction of an external current
as it happens during an external excitation of the cardiac
tissue.

Figure 1. Schematic setup used in this study.

In the present study, we use a one dimensional geome-
try (annular ring) where the action potential wave is prop-
agating. This is a simplified model for a two dimensional
reentrant wave [5]. To solve Equations (1–3), we impose
periodic boundary conditions on the ring.

2.2. Monodomain Model

The monodomain formulation can be obtained from the
bidomain equations by setting φe ≡ 0. By doing this we
avoid solving the costly Poisson equation (3). In order to
get the same wave speed for the action potential propaga-
tion it can be readily shown [3] that we need to rescale the
conductivity as follows:

Dmono. =
DiDe

Di +De
. (4)

Therefore, in the comparison between monodomain and
bidomain we will use here a nominal value for Dmono. =
0.75 10−3 cm2/ms.

2.3. Gap Junctions Dynamics

The purposes of this work are twofold. First, is to build
a full bidomain formulation that includes the GJ dynamics
and then, in a second stage, compare the simulations on the
annular ring obtained with the monodomain and bidomain
models to evaluate the amplitude of changes due to each
formulation. The dynamics of the gap junctions is mod-
eled following the works of Lin et al. [1] and Desplantez et
al. [2]. When we discretize space, the index number j cor-
responds to the cell number j. The gap junction between

cell number j − 1 and cell number j has index number j
(following our convention) and its temporal dynamics is
governed by the following differential equation:

dgj
dt

=
gj,ss(∆φi)− gj

τg(∆φi)
, (5)

where ∆φi = φi(j)− φi(j − 1) is the difference in intra-
cellular electrical potential between the two adjacent cells
of the gj . The steady state value in Eq.(5) depends on the
local instantaneous ∆φi following this equation:

gj,ss =
gj,max − gj,min

1 + exp[A(∆φi − V1/2)]
+ gj,min , (6)

and the time scale in Eq.(5) is given by τg =
Aτ exp[−Bτ |∆φi|]. Once the gap junction values are
computed, we use them in Eqs.(2, 3) through the relation:

Di(xj , t) = D̄i gj(t) , (7)

where D̄i is the constant nominal value for the intra-
cellular conductivity D̄i = 1.5 10−3 cm2/ms. The param-
eter values entering Eqs.(5, 6) are taken from the works of
Lin and Desplantez [1,2] and they are gathered in Table (1)
for completion. We also have the following relations for
the parameters: A = z/26.714 (mV)−1; Aτ = 109, 900
(ms); Bτ = 1/11.8 (mV)−1; gj,max(∆φi = 0) = 1. The
dependance of gj,ss as a function of ∆φi is displayed in
Fig. 2.

Table 1. Values for the Gap Junction dynamics. Here
below, the parameter values are for (∆φi < 0 / ∆φi ≥ 0 )

Connexin type V1/2 (mV) gj,min z
Cx43 43 −60.8 / 62.9 0.26 / 0.25 −3.4 / 2.9
Cx43 45 −11.7 / 134.4 0.05 / 0.05 −2.1 / 0.6
Cx45 43 134.4 / −11.7 0.05 / 0.05 0.6 / −2.1

2.4. Membrane Models

From a dynamical point of view, the heart is an excitable
medium. This means that a perturbation that overcomes a
certain threshold produces an action potential (nonlinear
response) that propagates as an electric wave throughout
the entire domain with a characteristic shape (measured by
the action potential duration APD and the diastolic interval
DI) and the wave speed.

Since the 1960s, many differential-equations-based
models to describe the kinetics of the cell membrane have
been developed. In some cases, models have evolved to
become quite complex by representing cellular processes
in detail. Other models, e.g. the three-variable Fenton and
Karma model [6], represent quite faithfully the propaga-
tion of the action potential without the numerical burden
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Figure 2. Steady state values of the gap junction gj,ss as a
function of ∆φi.

associated with the large numbers of variables in the more
complex models. In 2010, Cantalapiedra et al. [7, 8] de-
veloped a five-variable model containing a specific formu-
lation for the transient outward K+ current, which is im-
portant in describing action potentials associated with the
Brugada syndrome. In this work, we use the Cantalapiedra
et al. model [7, 8] with the model parameter fitted to de-
scribe human ventricular myocytes.

2.5. Computation

To solve Eqs. (1–3) numerically, it is necessary to dis-
cretize space and time. For the spatial discretization, the
finite-volume method is used [3]. This method is preferred
because it conserves exactly the charges moving from a
reference volume to the next. The time discretization uses
a simple forward-Euler method. The most costly part of
the computation comes from the Poisson equation Eq. (3),
which we solve using the PETSc package [9]. The spatial
discretization of the equation leads to a system of the form
Ax = b, where A is a large sparse positive semi-definite
matrix and the vector x contains the unknowns φe. Due to
the fact that we deal with GJ dynamics this equation has
a matrix A that is time dependent. This means that we
need to redefine the matrix A for the PETSc solver at each
time step and this leads to double the CPU time with re-
spect to the constant A matrix case. Here we have choosen
∆x = 0.01 cm and δt = 0.01 ms, which leads to a very
good accuracy. Note also that the monodomain calcula-
tions are one order of magnitude faster than the bidomain.

3. Results

The main objective of this study is to compare the ef-
fect of the gap junction dynamics (GJ) in the bidomain and
monodomain formulation. We start the simulations with a
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Figure 3. Time evolution of the membrane potential Vm
and the extracellular potential (φe) measured at a specific
location on the ring L/4. The evolution of the GJ is also
shown for the Cx 45 43 connexin in a model of mon-
odomain and bidomain. Here, the system size is L = 8.5
cm. Note that the scale for the GJ is on the RHS of the
graph and the scale for Vm and φe is located on the LHS
of the graph and are given in dimensional units (mV).

single wave propagating along the one dimensional ring as
schematically shown in Fig. 1. After the system has es-
tablished to a steady state (for large system size L > 9.6
cm) or that some transient has elapsed (for small system
size L ≤ 9.6 cm) we make measurements on the wave
speed; the APD; the DI; and the gap junction dynamics.
After the measurements are performed (on 20 revolutions
of the wave on the ring), we reduce the system size (cir-
cumference) and repeat the process. We observe that for
all connexin types that we have studied and for both for-
mulations (i.e. monodomain and bidomain), there are few
differences on the wave characteristics (speed, APD and
DI).

Typical temporal dynamics of Vm, φe and gj measured
at a specific location on the ring (L/4) are shown in Fig.
3. In this case the system size is L = 8.5 cm and the
dynamics on the ring corresponds to discordant alternans
waves. One observes that the GJ dynamics is mostly af-
fected during the depolarization phase of the action poten-
tial as expected. Furthermore we observe that the scale of
variation of the GJ dynamics is about a factor four to five
greater when considering a monodomain rather than bido-
main formulation. This can be readily explained by the fact
that the φi variation from cell to cell (used in the the bido-
main formulation) is much smaller than the Vm variation
form cell to cell used in the monodomain variation.

In Fig. 4 we have displayed the wave speed as a func-
tion of the ring size (circumference) for the different type
of connexins and also for the case without connexins (con-
stant conductivity). Fig. 4 has been drawn using the mon-
odomain formulation, the wave speed is very similar (in-
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distinguishable) when using the bidomain formulation (not
shown in Fig. 4). One clearly sees in the inset of Fig. 4
the transition to a discordant-alternans dynamics when the
system size is reduced below L < 9.6 cm.
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Figure 4. Variation of the wave speed as function of the
ring size (circumference). The inset shows the discordant-
alternans region.

Figure 5 shows the spatial average of the gap junction
< gj > as a function of the system size. The upper
(lower) plot corresponds to the bidomain (monodomain)
formulation, respectively. The LHS scale corresponds to
connexin types Cx 43 45 and Cx 45 43 while the right
scale corresponds to the Cx 43 43 connexin (here we re-
port 1− < gj > because of the relative small variations
induced by this connexin).
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Figure 5. < gj > for different connexin types as a func-
tion of the system size. For connexin Cx 43 43, 1− <
gj > are reported on the right y− axes. Upper (lower) plot
correspond to bidomain (monodomain) formulation.

4. Conclusions

We have compared the influence of the connexin types
(Cx 43 43; Cx 43 45 and Cx 45 43) in modifying the
conductivity of the system when considering either the
monodomain or bidomain formulation. In normal con-
ditions, the influence is very small and comparable to
the case without GJ. The variations induced in the mon-
odomain formulation appear to be four to five times larger
than in a bidomain formulation while still very close to
one. The next step in our study is to artificially induce
”pathological“ conditions in the tissue by lowering the GJ
conductances and modifying the parameters associated to
the GJ dynamics to see the extend of the effect on the char-
acteristics of the wave propagation (wave speed; APD and
DI). We expect that these modifications will induce larger
variations in the wave characteristics that may lead to im-
portant pro-arrhythmic effects.
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