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Abstract 

A series of low molecular weight poly(butylene succinate-co-glutarate-co-2-trimethylammonium 

chloride glutarate) terpolyester ionomers containing  35%-mol of total glutarate units but varying in the 

content of charged units were synthesized by polycondensation at mild temperatures using a 

scandium catalyst. The terpolyester ionomers started to decompose at temperatures above 175 ºC, all 

they were semicrystalline and have Tg similar to PBS. These terpolyesters were used to compatibilize 

the nanocomposites made of poly(butylene succinate)-cloisite (PBS·CL) prepared by melt extrusion. 

XRD revealed that an intercalated structure was present in these nanocomposites. The thermal 

properties of the three-component mixtures did not differ substantially from those of PBS·CL but the 

mechanical properties were significantly improved by addition of the ionomer, in particular tenacity. 

The beneficial effect afforded by the terpolyester ionomer was attributed to its ability for strengthening 

the binding between PBS and the nanoclay. 
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INTRODUCTION  

Poly(butylene succinate) (PBS) is a well-known aliphatic polyester that is synthesized 

from succinic acid (SA) and 1,4-butanediol (BD) in a variety of grades to give response to a  

wide assortment of applications. This polyester exhibits a balanced performance in thermal 

and mechanical properties, as well as a thermoplastic processability comparable to other 

common plastics [1-3]. The production of the PBS monomers from renewable resources is 

rapidly advancing so that this polyester is breaking through other polyesters of widely 

recognized sustainability such as poly(lactic acid) [4] and poly(hydroxyalkanoate)s [5]. Today 

bio-based PBS is a good candidate to be ecofriendly used in high tonnage applications such 

as packaging, non-wovens, and mulch films. On the other hand, PBS is comparable to other 

biodegradable polyesters such as poly(-caprolactone) and poly(glycolic acid) regarding its 

potential as a biomaterial for temporal applications. Nevertheless the Tg and mechanical 

behavior of PBS are far from what it would be desirable, in particular when aromatic 

polyesters are concerned, a drawback that is hampering its penetration in some fields 

traditionally occupied by fossil thermoplastics.     

Layered silicate nanocomposites have been proposed as a good option to improve 

the physical properties of aliphatic polyesters and they are emerging as the next generation 

of biodegradable materials [6-8]. Someya et al. [8] prepared nanocomposites made of PBS 

and organo-modified montmorillonites by melt intercalation and subsequent injection 

molding. These nanocomposites displayed a high degree of intercalation and showed tensile 

and flexural moduli higher than PBS but lower tensile strength. Ray et al. [9] reported on the 

same type of nanocomposites prepared by simple melt extrusion. Also a good intercalation of 

the silicate layers into the polymeric matrix was attained by this method and the 

nanocomposites also exhibited remarkably improved mechanical properties in both solid and 

melt states compared with neat PBS. Nevertheless, all PBS nanocomposites containing 

nanoclays are found to be significantly less tough than the polyester because flowing at high 

deformations becomes largely restricted, an effect that is a commonly observed in polymer 
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nanocomposites. Strikingly this effect is not observed in nanocomposites of poly(butylene 

succinate-co-adipate) made of Cloisite 30B obtained by melt-extrusion, which exhibited 

substantial increase in both stiffness and elongation at break compared to the copolyester 

[10]. It seems therefore that a high degree of intercalation is not enough to provide a general 

improvement of the mechanical behavior of PBS nanocomposites but that a deeper 

interaction polymer-silicate has to be also attained.  

The ionomer concept has been also employed to improve some aspects of the 

mechanical behavior of polymers and in particular to get better interactions with charged 

fillers in nanocomposites [11,12]. Han et al. [13,14] reported a series of poly(butylene 

succinate) ionomers containing 5-sodium sulfoisophthalate units prepared by bulk 

polycondensation. The presence of small amounts of sulfonate groups in PBS provided 

higher melt viscosity and improved significantly certain thermal and mechanical properties. 

However the ionomer structure unavoidably entails a decrease in crystallinity, an effect that 

is especially detrimental for aliphatic polyesters displaying low or moderate glass transition 

and melting temperatures, as it is the case of PBS. 

In this work, an ionomer is designed and synthesized to be used as compatibilizer in 

PBS/cloisite nanocomposites prepared by melt extrusion. The ionomer is a PBS terpolyester 

(PBSxGyG
I
z) containing minor amounts of glutarate units both unmodified and modified with a 

trimethylammonium group attached to the -backbone carbon. It is expected that this 

ionomer is able to interact strongly with the nanoclay creating an in situ organomodified 

montmorillonite with good accessibility to PBS. Several nanocomposite compositions varying 

in the ionomer content and the PBS/compatibizer or the PBS/nanoclay ratios have been 

prepared and their thermal and mechanical properties comparatively evaluated in order to 

appraise the effect of the compatibilizer on the PBS/cloisite nanocomposites. 
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EXPERIMENTAL 

Materials 

Succinic acid (SA) (99%) was purchased from Panreac. 1,4-Butanediol (99%), 

scandium (III) trifluoromethanesulfonimide (Sc(NTf2)3), potassium tert-butoxide, 

iodomethane, L-glutamic acid dimethyl ester hydrochloride and glutaric acid (GA) were 

purchased from Sigma-Aldrich. Solvents used for purification and characterization as diethyl 

ether, chloroform, hexane, or acetonitrile, and dichloroacetic and trifluoroacetic acids were 

purchased from Panreac. All they were of either technical or high-purity grade and used as 

received without further purification. Unmodified sodium montmorillonite (cloisite) was 

supplied by Southern Clay Products.  

Measurements 

Intrinsic viscosities of the copolyester dissolved in dichloroacetic acid were measured 

with and Ubbelohde viscometer thermostated at 25 ºC ± 0.1 ºC. Size exclusion 

chromatography (SEC) was performed on a Waters system equipped with a refractive index 

detector (RID-10A) using 1,1,1,3,3,3-hexafluoro-2-propanol as the mobile phase. Molecular 

weights and their distribution were calculated against poly(methyl methacrylate) standards 

using the Millenium 820 software. To prevent ionic aggregation, polymer samples were 

previously dissolved in a mixture of chloroform/trifluoroacetic acid (1/1) and precipitated with 

methanol. 

NMR spectra were recorded on a Bruker AMX-300 spectrometer operating at 300.1 

MHz for 1H and 75.5 MHz for 13C. About 10 mg for 1H or 50 mg for 13C of polymer samples 

were dissolved in 1 mL of mixture of deuterated chloroform (CDCl3) and trifluoroacetic acid 

(TFA) (7/3 v/v). 64 and 5000–10,000 scans were acquired with 32- and 64-K data points and 

1 and 2 sec of relaxation delays for 1H and 13C, respectively. The thermal behavior of the 

polyesters was examined by differential scanning calorimetry (DSC) with a PerkinElmer DSC 

Pyris 1 instrument calibrated with indium and zinc for the temperature and enthalpy. DSC 

data were obtained from 4 to 6 mg samples at heating and cooling rates of 10ºC min-1 under 
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nitrogen circulation (20 mL min-1). Tg of polyesters and nanocomposites were measured from 

amorphous samples at heating rate of 20ºC min-1. TGA measurements were performed from 

10 to 15 mg of sample under a nitrogen flow of 20 mL min-1 at a heating rate of 10 ºC min-1 

and within a temperature range of 30–600 ºC for polyesters and 30-800ºC for 

nanocomposites, using a Perkin-Elmer TGA6 thermobalance. Tensile testing was performed 

on bone shape specimens (2.7x10 mm2) which were cut from isotropic films obtained by hot 

pressing with a thickness of about 200 μm. Tensile tests were conducted at room 

temperature on a Zwick BZ2.5/TN1S universal tensile testing apparatus operating at a 

constant crosshead speed of 10 mm min-1 with a 0.5 N preload and a grip-to-grip separation 

of 20 mm. Five measurements were made for each polymer and results are reported as 

average values. X-ray diffraction patterns were recorded on the PANalytical X’Pert PRO 

MPD θ/θ diffractometer using the Cu Kα radiation of wavelength 0.1542 nm from powdered 

samples coming from synthesis. For the preparation of the nanocomposites a twin screw 

mini-extruder (Haake, Minilab) operating in counter-rotation with a speed of 75 rpm was 

used.  

 

Synthesis 

2-(N,N,N-trimethylammonium)-glutaric acid chloride (TMAGA·Cl). 2-(N,N,N-

trimethylammonium)-glutaric acid chloride was synthesized according to the general 

procedure described in the literature for quaternization of amines [15]. Efficient 

quaternization of L-glutamic acid dimethyl ester was attained by using iodomethane in 

methanol. The reaction was carried out by stirring a mixture of 20 g of iodomethane, 4 g of 

NaHCO3 and 1 g of glutamic acid dimethyl ester in 100 mL of methanol at room temperature 

for 24 h. The residue left after evaporation to dryness of the reaction mixture was extracted 

with CHCl3 and the extract was evaporated to give a solid that was crystallized from 

chloroform-hexane solution (80/20). The obtained 2-(N,N.N-trimethylammonium) dimethyl 

glutarate iodide (TMAMG·I) was subjected to basic hydrolysis. The hydrolysis process was 
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monitored by NMR by following the decreasing of the methoxy proton signal so that the 

reaction was considered to be finished when no trace of this group was observed in the 

spectra, which took about 5 h. The aqueous basic solution was acidified with concentrated 

HCl and then evaporated to dryness at 40 ºC. The solid residue was extracted with acetone 

and TMAGA·Cl was recovered from the extract upon evaporation. 

PBSxGyG
I
z terpolyesters. Poly(butylene succinate-co-glutarate-co-2-trimethylammonium 

glutarate chloride) (PBSxGyG
I
z) terpolyesters were prepared according to the synthetic route 

depicted in Scheme I. A mixture of the three diacids (SA, GA and TMAGA·Cl), 1,4-butanediol 

and catalyst (Sc(NTf2)3) with the adjusted proportions was dissolved in acetonitrile (3 mL) in a 

three-necked cylindrical round-bottom flask equipped with a mechanical stirrer. The 

acetonitrile was used to obtain a good mixture of the monomers. A 1:1 molar ratio of BD to 

the total of diacids with 0.3%-mole of Sc(NTf2)3 respect to monomers) was used. The 

esterification reaction was left to proceed at 80 ºC under a nitrogen atmosphere for a period 

of 35-40 h, along which water and acetonitrile were continuously distilled out. Then the 

polycondensation reaction was initiated by raising the temperature up to 90 ºC and reducing 

the pressure down to 0.03 mbar. After 100 h a viscous mass was formed which was cooled 

down to room temperature and the atmospheric pressure in the flask restored with a nitrogen 

flow to prevent degradation. The final solid mass was used for characterization and 

properties evaluation without any further treatment. 

Preparation of PBS·CL·w%(PBS65G20G
I
15) nanocomposites.  Mixtures of PBS, and 

PBS65G20G
I
15 terpolyester ionomer at concentrations of 5, 10 and 20% (w/w), all they 

containing 3% (w/w) of cloisite were extruded in a miniextruder machine at a temperature 10 

°C above the melting temperature of PBS for a residence time of 20 min and with the screw 

rotating rate fixed at 75 rpm.  
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RESULTS AND DISCUSSION 

Synthesis and chemical characterization of PBSxGyG
I
z terpolyester ionomer 

The synthesis pathway leading to the PBSxGyG
I
z terpolyester ionomers is shown in 

Scheme I.  Acetonitrile was the solvent of choice since it afforded a homogeneous mixture of 

the initial reaction mixture. The procedure consists of two successive steps, the first one is 

an esterification reaction leading to low molecular weight oligomers, and the second one is 

the polycondensation of the oligomers formed in the previous step to render the final 

terpolyesters. The first step was carried out at 80 ºC with removal of the released water and 

acetonitrile and the second one was carried out at higher temperatures under high vacuum to 

speed up the esterification reaction and to favor the removal of water in order to unbalance 

the equilibrium towards the formation of high molecular weight polymers. Scandium (III) 

trifluoromethane sulfonimide was chosen as catalyst according to recent literature [16], since 

it has been reported to be active at relatively low temperatures. In fact, the use of low 

reaction temperatures is an essential requirement for these polycondensations to proceed 

successfully since temperatures above 100 ºC promote the thermal decomposition of 

TMAGA·Cl. All the terpolyesters were obtained in high yields (~90%) but with rather low 

molecular weights (Table 1).  The intrinsic viscosity of PBSxGyG
I
z ranged between 0.41 and 

0.44 dL g-1.  

Scheme I.  

 

The chemical structure and composition of PBSxGyG
I
z terpolyesters was ascertained by 

NMR spectroscopy assisted by COSY 2D NMR spectrum for signal assignment. The 1H and 

13C NMR spectra of PBS65G25G
I
10 are shown in Figure 1 as a representative of the series. 

The chemical composition was determined by integration of signals appearing at 2 ppm for 

the central CH2 of the glutarate unit, at 3.3 ppm for the CH3 of the trimethylammonium  

glutarate unit and at 2.7 ppm arising from the CH2 of the succinate unit. 
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Table 1 

 

Results are listed in Table 1 which shows that the content of the terpolyesters in 

trimethylammonium glutarate units was in general slightly lower than in the feed. The small 

differences must be attributed to the elimination of the trimethylammonium taking place by 

effect of heating during the polycondensation reaction.  

 

Figure 1 

XRD analysis 

The crystalline structure of the copolyesters and the dispersion degree of the 

nanocomposites was examined by X-ray diffraction. Representative XRD profiles are 

depicted in Figure 2 together with that produced by cloisite for comparison. The diffraction 

pattern of cloisite is well known to consist of a main reflection close to 1.0-1.1 nm 

corresponding to the interlayer spacing together with a series of wide-angle reflections 

arising from the aluminum silicate crystalline lattice [17].  On the other hand semicrystalline 

PBS is characterized by a diffraction pattern containing three strong reflections at 0.45, 0.40, 

and 0.39 nm produced by the monoclinic crystal structure adopted by this polyester [18]. The 

XRD profiles obtained from the nanocomposites both from PBS alone and from PBS blended 

with 20% of either the PBSG copolyester or the PBSGGI  ionomer are very similar, and all of 

them display the reflection characteristic of PBS indicating that the crystalline structure of the 

homopolyester is fully retained not only in the copolyesters but also in the mixtures with the 

clay. The presence of the intercalated structure in the nanocomposites is evidenced by the 

displacement towards smaller angle observed for the ~1.0 nm montmorillonite peak which 

appears in the mixtures around 1.25 nm. Since the intensity and position of this peak is 

practically the same for the three samples it can be concluded that a similar intercalation 

degree is attained in the three cases.  

Figure 2 
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Thermal properties 

The effect exerted by the incorporation of glutarate units on the thermal properties of 

PBS was assessed by TGA and DSC. TGA essays addressed to evaluate the thermal 

stability were conducted under a nitrogen atmosphere in a temperature range of 30-600 ºC. 

The TGA heating traces registered for PBSxGyG
I
z terpolyesters are shown in Figure 3a 

together with the trace obtained for PBS that is included for comparison. Derivative curves 

showing the maximum decomposition rates for PBS and the PBS65G20G
I
15 are compared in 

Figure 3b. The characteristic decomposition data afforded by TGA are collected in Table 2 

which reveal that the thermal stability of the terpolyesters is significantly lower than that of 

PBS with the oTd going down near to 90 ºC for the polymer containing 35% of glutarate units. 

Although a decreasing in molecular weight will be in part responsible for the loss of thermal 

stability observed for the terpolyesters, it is unquestionable that decomposition temperatures, 

both the onset and the maximum rate, decrease steadily with the content in G ad GI units. 

Furthermore, the insertion of glutarate units makes that decomposition proceeds through two 

stages with maximum decomposition rates at around 355 and 400 ºC, respectively, whereas 

PBS decomposes in one single step at 408 ºC. It is concluded therefore that the insertion of 

G and GI units in PBS not only decreases its thermal stability but also makes more complex 

the decomposition mechanism.  

Figure 3. 
 

 

For the determination of the thermal stability of the nanocomposites, TGA 

measurements were carried out under an oxidative atmosphere over a temperature range of 

30-800 ºC. The TGA traces recorded from nanocomposites made from PBS containing 

Cloisite with and without compatibilizer are shown in Figure 4, and the decomposition data 

afforded by this analysis are compared in Table 2. The results reveal that the addition of 3% 

of Cloisite slightly modifies the thermal stability of PBS but has a significant beneficial effect 

on the thermal behavior of the ionomer terpolymers. In fact the onset decomposition 
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temperature of PBS·CL containing 3% of nanoclay is 7 ºC higher than that of PBS whereas 

the maximum decomposition rate temperature is essentially the same. Such slightly 

beneficial effect of the clay on the thermal stability of PBS has been previously reported [19]. 

When the PBS65G20G
I
15 terpolyester is added to the PBS·CL mixture, the resulting 

nanocomposites show a single decomposition process practically undistinguishable from that 

observed for PBS·CL (Figure 4b). Furthermore the maxTd observed for these three component 

nanocomposites hardly change with the content in ionomer. What is particularly relevant is 

the behavior observed for the onset temperature which was found to be about 40 ºC higher 

than those of the isolate terpolyester ionomers. The fact that the TGA traces of the three-

components nanocomposites do not show any sign characteristic of their ionomeric 

counterpart, leads to concluded that the interaction of the PBS with the terpolyester in the 

presence of Cloisite must be highly efficient.  

Figure 4 
 

 The DSC data obtained for the PBSxGyG
I
z series studied in this work are collected in 

Table 2. Tg values of PBSxGyG
I
z terpolyesters increased from -45 to -38 with the content in 

trimethylammonium glutarate units and Tg values of PBS·CL·w%PBS65G20G
I
15 showed an 

almost imperceptible decrease with the increase of ionomer content. The DSC traces 

obtained from the terpolyester series upon heating the molten samples are comparatively 

depicted in Figure 5. All PBSxGyG
I
z are semicrystalline with melting temperatures and 

enthalpies increasing slightly with the content in trimethylammonium groups but always 

significantly lower than the values measured for PBS. On the other hand, the crystallizability 

of the terpolyesters, estimated on the basis of the crystallization temperature and enthalpy, 

was found to be also considerably lower than that of PBS. Furthermore, it is worthy to note 

the depression appearing on the second heating trace of PBSxG25G
I
10 at around 15 ºC due 

the occurrence of cold crystallization. As it is seen in Table 2, the crystallization enthalpy of 

this polyester is considerably low and therefore a large amount of uncrystallized material 

remained after cooling. No sign of cold crystallization was detected for any other polyester. 
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Interestingly the DSC behavior of the three-components nanocomposites regarding both 

melting and crystallization, did not differ substantially from that of PBS neither in the 

presence nor the absence of compatibilizer. What can be inferred from these results is that 

the nucleating effect exerted by the nanoclay is determinant of the crystallization process of 

PBS either in the presence or absence of ionomer.  

Figure 5. 

 

Stress-strain mechanical behavior  

The mechanical parameters of the terpolyesters and nanocomposites are listed in 

Table 2 and the stress-strain curves of the latter are depicted in Figure 6 together with that of  

PBS. It is apparent that the mechanical behavior of the ionomer terpolyesters is largely 

poorer than that of PBS, which is undoubtedly consequence of their low molecular weight. 

 

Figure 6 
 

Nevertheless, the Young’s modulus (E), elongation at break () and maximum tensile stress 

(max) of terpolyesters tend to increase steadily with the content in GI units bringing into 

evidence the positive effect of the presence of charges on mechanical properties, an effect 

that has been repeatedly reported for other related systems [13].  On the other hand, the 

nanocomposite prepared by extruding PBS with 3% of cloisite shows enhanced Young’s 

modulus and maximum tensile stress but a largely reduced deformation at break. This is a 

result commonly found for those nanocomposites that are unable to attain the exfoliated 

state [20, 21]. The addition of the ionomer PBS65G20G
I
15 as compatibilizer was shown to 

clearly improve the mechanical parameters of the PBS nanocomposite. Not only the modulus 

and yield increased but in particular the ductility was greatly enhanced. In fact, the 

nanocomposite containing 20% of ionomer could be stretched about ten times more than the 

nanocomposite without compatibilizer. Comparison with the nanocomposites containing the 
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copolyester PBS65G35,  i.e.  containing the same amount of glutarate units but without 

ammonium groups, was very enlightening. The presence of such copolyester in PBS·CL 

produced a moderate increment of  but also an impoverishing of E and max, a result  that 

can be partially explained by taking into account the possible lowering effect that the 

relatively more flexible poly(butylene succinate-co-glutarate) has on Tg. What it is concluded 

is that the ionomer is able to produce a positive effect on mechanical properties of the 

nanocomposites of PBS with cloisite. This result although preliminary is of great relevance 

since it brings out the suitability of using PBS copolyester ionomers to optimize the 

preparation of PBS nanocomposites, an approach that offers a wide assortment of technical 

possibilities.  

 

CONCLUSIONS  

PBSxGyG
I
z terpolyesters, all they containing 35% of total glutarate and 

trimethylammonium glutarate units but varying in the ratio in which these two units are 

present, were synthesized by polymerization in solution using a scandium catalyst. All these 

terpolyesters were fairly stable to heat and were semicrystalline. Their Tg was close to that of 

PBS but they showed much poorer mechanical properties, a behavior that is the logical 

consequence of their low molecular weights. The use of these terpolyesters as 

compatibilizers in the preparation of nanocomposites made of PBS and cloisite gave 

outstanding results. Their presence in the nanocomposites in minor amounts gave rise to a 

significant increase in the Young modulus and the stress to yield and in particular to a large 

increment in the elongation to break. The capacity of such terpolyester ionomers to enhance 

the mechanical properties of PBS·CL nanocomposites must be attributed to their unique  

binding effect based on a combination of their good compatibility with PBS and their strong 

ionic interaction with the cationically charged layer surfaces of cloisite. 
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Scheme I. Polymerization reactions leading to PBSxGyG
I
z terpolyesters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. 13C NMR (top) and 1H NMR (bottom) of PBS65GT25G
I
10 terpolyester. (*) CH2OH end groups.  
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Figure 2. Powder XRD profiles recorded from nanocomposites and cloisite. 

 

 

 

 

 

 

 

 

Figure 3. TGA traces of PBS and PBSxGyG
I
z terpolyesters (a). Derivative curves of PBS and PBS65G20G

I
15. 

 
 

 

 

 

 

 

 

Figure 4. TGA traces of PBS and PBS·CL·w%PBSxGyG
I
z nanocomposites (a). Derivative curves of PBS and 

PBS·CL·20%PBS65G20G
I
15 nanocomposite. 
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Figure 5. DSC thermograms (second heating) PBSxGyG
I
z terpolyesters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Stress-strain traces of nanocomposites. The curve obtained from PBS is also included for comparison.  
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Table 1. Composition and molecular weights of PBS and PBSxGyG
I
z 

terpolyesters. 
 Composition  Molecular weight 

Copolyester S/G/GIa  S/G/GIb  [η]c Mw
d Ðd 

        

PBS 100/0/0  100/0/0  1.33 112,000 2.2 

PBS65G32G
I
3 65/32/3  66.4/31/2.6  0.43 10,300 2.1 

PBS65G30G
I
5 65/30/5  64.3/29.7/5.9  0.44 10,600 2.2 

PBS65G27.5G
I
7.5 65/27.5/7.5  65.6/27.8/6.6  0.42 10,400 2.3 

PBS65G25G
I
10 65/25/10  67/24.8/8.2  0.41 10,200 2.5 

PBS65G20G
I
15 65/20/15  67.8/19.9/12.3  0.41 9,500 2.5 

a Molar ratio of monomers in the feed.  
b Molar composition of the terpolyester determined by 1H NMR. 
c Intrinsic viscosity (dL·g-1) measured in dichloroacetic acid at 25 ºC.  
d Weight-average molecular weight (Mw) (g·mol-1) and dispersity (Ð) determined by GPC. 
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Table 2. Thermal and mechanical properties of PBS homopolymer and PBSxGy G
I
z terpolyesters. 

TGA DSC  Stress-strain parameters 

 oTd
a maxTd

b RWc  Tg
d Tm

e ΔHm
e  Tc

f ΔHc
f  Eg σmax

h εmax
i 

Terpolyester (ºC) (ºC) (%)  (ºC) (ºC) (Jg-1)  (ºC) (Jg-1)  (Mpa) (Mpa) (%) 

PBS 363 408 1  -37 115 (114) 70 (74)  75 66  440±5 35±1 282±10 

PBS65G32G
I
3 342 408 2.1  -45 71 (75) 51 (39)  26 39  149±2 2.23±0.3 0.30±0.1 

PBS65G30G
I
5 310 352/400 2.3  -41 74 (78) 51 (34)  30 37  152±3 2.66±0.5 0.42±0.3 

PBS65G27.5G
I
7.5 309 357/395 3.2  -40 76 (78) 52 (34)  31 36  165±5 3.12±0.3 0.76±0.2 

PBS65G25G
I
10 291 356/395 3.4  -38 82 (82) 54 (44)  25 44  174±6 3.34±0.2 0.87±0.4 

PBS65G20G
I
15 276 350/398 2.8  -38 82 (83) 55 (38)  35 38  266±3 5.05±0.3 1.46±0.4 

Nanocomposite               

PBS·CL 370 406 2  -38 114 (113) 61 (48)  90 60  607±7 41±4 16±0.5 

PBS·CL·5(PBS65G20G
I
15) 356 400 2.7  -38 114 (113) 61 (60)  88 58  713±15 50±2 25±3 

PBS·CL·10(PBS65G20G
I
15) 353 401 4.8  -40 114 (113) 60 (57)  85  59  747±15 49±3 109±20 

PBS·CL·20(PBS65G20G
I
15) 345 404 4.9  -40 115 (113) 60 (57)  85 59  731±10 48±5 144±15 

PBS·CL·10(PBS65G35) 350 403 2.7  -39 114 (113) 55(54)  80 56  550±10 39±1 40±5 

PBS·CL·20(PBS65G35) 349 401 2.9  -39 114(113) 53(52)  78 52  560±15 44±1 60±5 
 

aDegradation temperature at which a 10% weight loss was observed in TGA traces at 10  ºC·min-1. 
bTemperature of maximum degradation rate (in bold main degradation temperature). 
cRemaining weight at 600 ºC for the terpolyester.   Remaining weight at 800 ºC for the nanocomposites.   
dGlass transition  temperature taken as the inflection point of the heating DSC traces of melt-quenched samples recorded at 20 ºC·min-1. 
eMelting temperatures and enthalpies were registered at a heating rate of 10  ºC·min-1. In parenthesis, values recorded in the second heating. 
fCrystallization temperatures and enthalpies were registered  at cooling from 200  ºC at 10 ºC·min-1. 
gYoung’s modulus measured at room temperature on a Zwick BZ2.5/TN1S. 
hMaximum tensile stress. 
iMaximum elongation at break. 


