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Abstract

In a multinomial sampling, contingency tables can be parametrized by probabilities
of each cell. These probabilities constitute the joint probability function of two or more
discrete random variables. These probability tables have been previously studied from
a compositional point of view. The compositional analysis of probability tables ensures
coherence when analysing sub-tables. The main results are: (1) given a probability table,
the closest independent probability table is the product of their geometric marginals; (2)
the probability table can be orthogonally decomposed into an independent table and an
interaction table; (3) the departure of independence can be measured using simplicial
deviance, which is the Aitchison square norm of the interaction table.

In previous works, the analysis has been performed from a frequentist point of view.
This contribution is aimed at providing a Bayesian assessment of the decomposition. The
resulting model is a log-linear one, which parameters are the centered log-ratio transfor-
mations of the geometric marginals and the interaction table. Using a Dirichlet prior
distribution of multinomial probabilities, the posterior distribution of multinomial prob-
abilities is again a Dirichlet distribution. Simulation of this posterior allows to study the
distribution of marginal and interaction parameters, checking the independence of the
observed contingency table and cell interactions.

The results corresponding to a two-way contingency table example are presented.

Keywords: interaction, independence, simplicial deviance, multinomial sampling, Aitchison
geometry of the simplex, orthogonal decomposition, R.

1. Introduction
Contingency tables have been studied for a long time. There are many examples, dating
from the beginning of the XX-th century which afforded elementary, but relevant, questions
about such kind of data (e.g. Yule 1912). Along the XX-th century many advances have been
achieved. The introduction of log-linear models (Nelder 1974) and generalized linear models
(McCullagh and Nelder 1983; Nelder and Wedderburn 1972) were important milestones in the
study of contingency tables. From the seventies up to now many extensions, improvement of
methods and generalisations have been presented, for instance, see Everitt (1977), Darroch,
Lauritzen, and Speed (1980), Chambers and Welsh (1993), or Goodman (1996). However,
challenges are still pendent for a straightforward solution, specially for the study of n-way
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contingency tables.

From the compositional point of view, the contingency tables have been studied only recently,
with the early precedent of Kenett (1983). In the workshop CoDaWork 2008 (Girona, Spain)
Egozcue, Dı́az-Barrero, and Pawlowsky-Glahn (2008) introduced a perturbation-decomposition
model for tables of multinomial parameters, thus opening new possibilities of analysis. This
contribution was followed by other compositional attempts and applications (Gallo 2015;
Fačevicová and Hron 2013). The approach proposed in Egozcue, Pawlowsky-Glahn, Templ,
and Hron (2015) is a kind of log-linear model but it has some differences with the standard
ones. The main differences are the way in which marginals are found and the definition of
interactions.

Here, the model based on the orthogonal decomposition of multinomial contingency tables is
used to carry out a Bayesian estimation of both close independent multinomial parameters
and the subsequent interactions. The present goal is to show that orthogonal decomposition
of multinomial contingency tables can be addressed using Bayesian estimation techniques.
The zero problem, typical in compositional data analysis, is here overcome by estimating
the model parameters (probabilities) underlying the contingency table, which are considered
compositional parameters. Zeros in the observations do no produce any problem as their
likelihood is well defined. This is a traditional way of dealing with zeroes in generalized
linear models as multinomial logistic regression models (Nelder 1974) or Bayesian estimation
of multinomial probabilities (e.g. Pawlowsky-Glahn, Egozcue, and Tolosana-Delgado 2015).

In Section 2, the main features of the model based on orthogonal decomposition of contingency
tables are recalled. Some definitions of the Bayesian framework are introduced in Section 3.
Examples are presented in Section 4.

2. Orthogonal decomposition model
Two-way contingency tables coming from a multinomial sampling are considered. They are
generated by a row-classification into I classes, and a column-classification made of J classes.
The total number, N , of classified individuals is then distributed on the I × J cells of the
contingency table (CT) according to the classification. The number of individuals pertaining
to the ij-cell is denoted nij for i = 1, 2, . . . , I, and j = 1, 2, . . . , J . The whole contingency
table containing these counts is denoted N. The table N, as an array of counting random vari-
ables, is assumed to be multinomial distributed and its corresponding probability parameters
denoted by pij i = 1, 2, . . . , I, and j = 1, 2, . . . , J . When arranged in a table, these probability
parameters are called probability table (PT). The sample space of a CT, like N, is I×J times
the non-negative integers restricted to add to N . They are not conceived as compositional
data, even when the frequencies N/N are computed. In fact, they can contain zero-counts and
only can correspond to fractions with N as denominator. Alternatively, the probability pa-
rameters P are considered compositional. This can be summarized as (a) P is in SD, D = I ·J ;
(b) perturbation and powering, denoted ⊕, � respectively, are vector space operations, and
the dimension of SD is D − 1; (c) the centered log-ratio (clr) transformation is defined and
inner product, norm and distances in SD are the ordinary Euclidean inner product, norm and
distance of the clr transformed PT’s. As well-known for SD (Pawlowsky-Glahn and Egozcue
2001), the simplex endowed with ⊕, �, and the Aitchison inner product is a D−1-dimensional
Euclidean space. More explicitly, consider two PT’s, P and Q and a real number α. The
perturbation W = P ⊕Q is a PT with entries wij = pijqij/

∑
km pkmqkm, k = 1, . . . , I and

m = 1, . . . , J . The α-powering W = α�P is a PT with entries wij = pαij/
∑

km p
α
km. The clr

of a PT is an (I × J)-array, V = clr(P) which entries are

vij = log(pij)−
1

D

I∑
k=1

J∑
m=1

log pkm .

The inverse clr-transformation is P = C exp(V), where exp operates componentwise and C is



Austrian Journal of Statistics 47

the closure operator. For any vector of D strictly positive real components,

z = (z1, z2, . . . , zD) ∈ RD+ , zi > 0 for all i = 1, 2, . . . , D ,

the closure of z to κ > 0 is defined as

C(z) =

[
κ · z1∑D
i=1 zi

,
κ · z2∑D
i=1 zi

, . . . ,
κ · zD∑D
i=1 zi

]
.

Denoting clr(P) = V and clr(Q) = W, the Aitchison inner product, 〈·, ·〉a, and distance,
da(·, ·), of PT’s is

〈P,Q〉a = 〈V,W〉 =
I∑
i=1

J∑
j=1

vijwij , d2
a(P,Q) =

I∑
i=1

J∑
j=1

(vij − wij)2 ,

where 〈·, ·〉 denotes the ordinary Euclidean inner product of arrays.

In these definitions, commonly used in compositional data analysis, there are, at least, two
key points. The first one is the interpretability of the perturbation. Perturbation of PT’s cor-
respond to apply the Bayes formula to a PT, containing prior probabilities, using a likelihood
arranged as a PT, up to the closure operation. The second point is that the subcompositional
coherence (Pawlowsky-Glahn et al. 2015; Egozcue 2009), is guaranteed. In the case of PT’s,
subcompositional coherence assures that distance between two sub-tables have Aitchison dis-
tance smaller than or equal to the distance between the parent PT’s.

The main result in Egozcue et al. (2008, 2015) is that, independent PTs constitute an (I −
1)(J − 1)-dimensional linear subspace of SD. This means that any PT can be projected
orthogonally on this subspace. The consequence is that P is decomposed in a unique way as

P = Pind ⊕Pint , Pind ⊥ Pint , (1)

where Pind is the projection of P on the independent subspace, and Pint is in the orthogonal
complement. The PT Pint is called interaction PT. The independent PT is on its turn
decomposed into two new PT’s, called marginal PT’s, which have equal rows and equal
columns respectively. The independent PT is then decomposed as

Pind = (1Ir
>)⊕ (c1>J ) , (2)

where r, c are compositions in SJ and SI respectively, and they are treated as column vectors
for matrix notation. The symbols 1I and 1J are column-vectors, with I and J components
respectively, all of them equal to 1.

Equations 1 and 2 can be transformed by taking clr, which yields

clr(P) = clr(Pind) + clr(Pint) = 1I(clr(r))> + clr(c)1>J + clr(Pint) . (3)

It should be remarked that clr(r) and clr(c) are clr transformations of compositions in SJ
and SI respectively and they are not PT’s.

The marginal row and column, r and c respectively, are obtained from P as the closed
geometric means by columns and rows of P respectively. This feature indicates that the
nearest independent PT, in the sense of Aitchison geometry in SD, is not obtained from the
traditional (arithmetic) marginals. This is an important difference from common analysis
of contingency tables. As a consequence, clr(Pind) has the property that its arithmetic and
geometric marginals are equal up to a closure; and the geometric marginals of Pint are neutral
in the simplex (i.e. all their elements are equal).

The decomposition in Equation 3 implicitly defines a log-linear model which is revealed after
taking clr−1 in Equation 3. The log-linear model is then

P = C exp[clr(Pind) + clr(Pint)] = C exp[1I(clr(r))> + clr(c)1>J + clr(Pint)] , (4)
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where the parameters are the J-coefficients in clr(r), the I coefficients in clr(c) and the
D = I · J coefficients in clr(Pint). However, coefficients of any clr add to zero, and the
number of free parameters is (J − 1) + (I − 1) + (IJ − 1) = IJ + I + J − 3. The number of
clr-parameters in Equation 4 can be reduced to IJ + I + J − 3 using ilr-coordinates, but this
strategy is not used here as the clr-parameters can be interpreted directly.

In order to interpret the results when the log-linear model is fitted to a CT, some derived
parameters may be useful. When the norm ‖Pint‖a is null, Pint is the neutral element in SD
and P is an independent PT. Therefore, ‖Pint‖2a is an overall measure of dependence which
was named simplicial deviance. When considered relative to the Aitchison square norm of P,
it can be called relative simplicial deviance. The corresponding definitions are

∆2(P) = ‖Pint‖2a , R2
∆(P) =

‖Pint‖2a
‖Pind‖2a + ‖Pint‖2a

, (5)

where ‖Pind‖2a+‖Pint‖2a = ‖P‖2a due to the orthogonal decomposition (Equation 1). Remark-
ably, ∆2(P) does not depend on the marginals of P; such a property is not shared by R2

∆(P).
However R2

∆(P) has clear interpretation based on the facts of 0 ≤ R2
∆(P) ≤ 1, R2

∆(P) = 0
implies independence of P, whereas R2

∆(P) = 1 indicates that the nearest independent PT
to P is the neutral (uniform) PT, and it can be considered as a pure interaction PT.

In order to interpret the coefficients of V = clr(Pint) it should be taken into account that the
simplicial deviance is decomposed

∆2(P) = ‖Pint‖2a =
I∑
i=1

J∑
j=1

v2
ij , (6)

so that each cell contributes to the simplicial deviance with v2
ij thus deserving the name of

cell interaction. A way of presenting these cell interactions is computing their relative value
to the simplicial deviance or expressing them as percent of contribution. However, the signs
of vij are important as they indicate whether the probability in the cell pij is smaller than the
predicted probability using Pind (negative vij) or it is larger than this predicted probability
(positive vij). It has been proposed to use an interaction array reporting in each cell the
value sign(vij)(v

2
ij/∆

2(P)). Unfortunately, the values of vij cannot be interpreted separately
as they add to zero. The analyst should look for large absolute values in the interaction array
coupled by positive-negative interactions. Cells interactions are then interpreted jointly as
the sources of interaction are frequently coupled.

3. Bayesian analysis

Assume that an I × J contingency table N has been observed as the result of a multinomial
sampling. After adopting the log-linear model (Equation 4), the multinomial probabilities
pij can be expressed as functions of the clr’s of the geometric marginals clr(r) = z(r) =

(z
(r)
1 , z

(r)
2 , . . . , z

(r)
J ), clr(c) = z(c) = (z

(c)
1 , z

(c)
2 , . . . , z

(c)
I ), and the entries of V = clr(Pint)

denoted vij . Hence, the likelihood of these parameters, given the observation has the form

L(z(r), z(c),V |N) = K ·
I∏
i=1

J∏
j=1

p
nij

ij ,

where all pij are functions of z(r), z(c),V and K the normalizing constant corresponding to the
multinomial density. In order to simplify the estimation procedure, a Dirichlet distribution
(e.g. Aitchison 1986) can be chosen as initial joint distribution of the pij . If the chosen
parameters of the Dirichlet distribution are aij > 0, the final or posterior distribution of
the parameters is again a Dirichlet distribution with parameters pij + aij and, therefore, the
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posterior distribution is

f(z(r), z(c),V |N) =
Γ (
∑

k

∑
m akm)∏

k

∏
m Γ(akm)

I∏
i=1

J∏
j=1

p
nij+aij−1
ij ,

∑
k

∑
m

pij = 1 , (7)

The goals of the Bayesian procedure are, at least, three: (a) estimation of posterior distribu-
tion of parameters z(r), z(c), V and their marginal distributions; (b) checking the hypothesis
of independence of the observed CT; (c) study the distribution of the cell interactions vij and
checking whether they can be considered null or not. These three tasks are hardly carried
out using the explicit distribution (Equation 7). A way out consists of drawing independent
realisations from Equation 7, and then, studying the simulated sample of parameters thus
accomplishing goal (a).

Checking independence of the observed CT is performed through a predictive p-value (Bayarri
and Berger 2000; Meng 1994) as proposed in goal (a). Assume that for each possible set of

posterior parameters, z
(r)
0 , z

(c)
0 , V0, a likelihood ratio test is carried out on the hypothesis

H0 : z(r) = z
(r)
0 , z(c) = z

(c)
0 , V = 0 , (8)

using the statistic

Λ = −2 log

(
L(z

(r)
0 , z

(c)
0 ,V = 0 |N)

L(ẑ(r), ẑ(c), V̂ |N)

)
, (9)

where ẑ(r), ẑ(c), V̂ denote the maximum likelihood estimators based on the sample CT.
Asymptotically with N , the statistic Λ has distribution χ2 with degrees of freedom IJ +
I + J − 3. This corresponds to the number of estimated parameters, compared with no free

parameter in H0. For each set of values z
(r)
0 , z

(c)
0 , V0, one p-value αp0 is obtained. The p-value

αp0, as a function of the observed CT, has uniform distribution under asymptotic conditions
(Robins, van der Vaart, and Ventura 2000). A predictive p-value, α, with asymptotic uniform
distribution, is obtained using

α = Φ

(
1

m

m∑
k=1

Φ−1
(
α

(k)
p0

))
, (10)

where the sum goes through the set of p-values corresponding to the m-simulated sample of

parameters z
(r)
0 , z

(c)
0 ; and Φ denotes the standard normal distribution function (Ortego 2015).

Small values of α suggest rejection of the independence H0.

The assessment of the hypothesis that a single cell interaction vij is null is performed using
Bayesian discrepancy p-values (Gelman, Meng, and Stern 1996), that is, computing the pos-
terior probability of vij ≤ 0 across the simulated sample. When this p-value is small (near to
zero), or large (near to 1), rejection of vij is suggested. This accomplishes goal (c).

4. A simple example

4.1. Marks in a subject

The marks obtained by N = 104 students in a exam of a college-level statistics subject are
considered. Theoretical and practical (mostly problems) questions in the exams are marked
separately. In this context, we want to know if the performance in theoretical questions can
be considered independent from the performance in practical questions.

The results of the exam may be classified into four groups: A,B,C,D, corresponding to the
numeric interval of Spanish marks over 10 points. The results corresponding to this group of
students have been organized in a two-way table T (Table 1). We assume that these marks
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Table 1: Two-way contingency table containing the marks of the May examination of 104 students. Mark of
the theoretical part of the exam (rows) vs. mark of the practical part (columns). The equivalence between
marks A, B, C, D and traditional Spanish scores is indicated in the first column.

mark (theory)\ mark (prob) A [8.5,10] B [7,8.5) C [5,7) D [0,5)

A [8.5,10] 1 0 4 4
B [7,8.5) 2 4 6 13
C [5,7) 0 3 11 25
D [0,5) 1 1 5 24

have been observed as a result of a multinomial sampling with probabilities pij . A Bayesian
framewok is chosen for the estimation of the table parameters pij . For simplicity, a joint
Dirichlet distribution has been assumed for these probabilities.

A Dirichlet prior has been set for the multinomial probabilities. Then, the posterior distribu-
tion of these parameters corresponds again to a Dirichlet distribution (Equation 7). A large
sample of the posterior distribution has been drawn. This sample is used to describe the
uncertainty of parameter estimates and other quantities of interest derived from them. For
this data set, a sample of the posterior of length 10,000 has been obtained (e.g. Table 2).

Table 2: Example of a sample PT drawn from the posterior Dirichlet distribution

t\p A B C D

A 0.01 0.00 0.06 0.08
B 0.01 0.03 0.04 0.17
C 0.00 0.04 0.10 0.24
D 0.02 0.02 0.02 0.16

The tables sampled PT’s from the posterior Dirichlet distribution should be properly treated,
due to their compositional character. The clr coordinates of the cells for each table have been
computed (e.g. Table 3). The row and column geometric marginals of the clr coordinates
have also been obtained for each of the tables of the posterior sample. Also, each of these
tables has been decomposed in its independent (e.g. Table 4) and interaction table (e.g.
Table 5) following Equation 1. That is, a sample of independent and interaction tables has
been obtained from the sample of posterior tables. This allows to describe the uncertainty of
quantities of interest derived from them, such as deviance, ∆2(P), relative deviance, R2

∆(P),
among others.

Table 3: Example of clr-coordinates of a sample PT drawn from the posterior Dirichlet distribution. Row and
column geometric marginals.

t\p A B C D rmarg

A -1.36 -5.39 1.02 1.30 -1.105
B -0.57 0.35 0.68 2.06 0.631
C -4.19 0.52 1.48 2.38 0.048
D -0.26 0.05 -0.08 2.00 0.426

cmarg -1.594 -1.117 0.776 1.936

The departure from independence for the two sets of marks of interest may be measured
observing the simplicial deviance (squared Aitchison norm) of the interaction component of
drawn posterior tables (Equation 5). Figure 1 shows the histogram of simplicial deviances
corresponding to the obtained sample of interaction tables. As the deviance is a measure of
dependence, 0 ≤ ∆2(P) < +∞, a visual comparison with the zero value (red line) is included.
For the marks in the example, although the median value (blue line) is low, the amount of
variability in the deviance values points to lack of independence between the theoretical and
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Table 4: Example of clr-coordinates of the independent component of a sample PT drawn from the posterior
Dirichlet distribution

t\p A B C D

A -2.70 -2.22 -0.33 0.83
B -0.96 -0.49 1.41 2.57
C -1.55 -1.07 0.82 1.98
D -1.17 -0.69 1.20 2.36

Table 5: Example of clr-coordinates of the interaction component of a sample PT drawn from the posterior
Dirichlet distribution

t\p A B C D

A 1.34 -3.17 1.35 0.47
B 0.39 0.83 -0.72 -0.50
C -2.64 1.59 0.65 0.40
D 0.90 0.74 -1.28 -0.36

practical marks.

 

Dev. of clr−interact.

F
re

qu
en

cy

0 10 20 30 40 50 60

0
10

00
20

00
30

00
40

00

Figure 1: Histogram of posterior simplicial deviance (square norm of the clr-interaction) for final marks. Red
line (solid): null value. Blue line (dashed): median.

The relative simplicial deviance R2
M(P) may seem easier to interpret than the deviance, as

0 ≤ R2
M(P) ≤ 1, but this interpretation should be taken with caution as this parameter is

not marginal invariant. Figure 2 shows the histogram corresponding to the relative simplicial
deviance of the posterior sample. A zero-line is also included for a visual comparison. In this
case, the majority of the relative deviance values are around 0.3, being near to its median
value, reassuring the interpretation of lack of independence.

The simplicial deviance is an overall measure of dependence, but often more detail is needed.
The cell values of the interaction table (e.g. Table 6) provide this detail, but the direct
interpretation of the values may be confusing due to its compositional character. In order to
obtain a detailed description of interaction using the appropriate scale, the clr-coordinates of
interaction PT in the posterior sample have been computed. Figure 3 shows the histograms
of the cell interactions as a summary of the obtained results. For visual comparison, a zero
line has been added to each histogram. Visually, a zero line near the median of the histogram
indicates no interaction added by that cell (e.g. histogram corresponding to cell 4). If the
zero line is far from the center of the histogram (e.g. histogram corresponding to cell 1), that
cell may be adding interaction to the deviance (Equation 6), and should be studied.

However, for an easier understanding of the importance of each cell, the interaction array of
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Figure 2: Histogram of relative simplicial deviance (square norm of clr-interac / total) corresponding to the
posterior sample. Final marks. Red line (solid): null value. Blue line (dashed): median.

the cells has also been computed (e.g. Table 6), measuring the percentage of interaction added
to the deviance by each cell, and including the sign of this interaction. The histogram of the
signed interaction array of the posterior sample is shown in Figure 4. Visually, cells with
interaction arrays clearly different from zero should be studied, as they are the influential
ones. It seems that the most influential cells for the departure of independence are cells
number 1, namely ’A in theory’ vs ’A in practical’ marks and number 3, ’A in theory’ vs
’C in practical’ marks, with more or less the same weight and opposite signs (see Figure
4, first row). The positive sign of the interaction array for cell number 1 means that the
predicted probability for the cell is larger than the predicted by the independent table, while
the predicted probabilities for cell 3 (negative sign) are lower than the probabilities predicted
by the independent table. Other cells, as cell 5, are also influential, but with a lower weight.
The hypothesis of null interaction has also been assessed by means of a Bayesian p-value based
on a discrepancy (posterior probability of vij ≤ 0 across the sample) (Table 7). If the zero
value is central in the sample, i.e. the proportion of vij ≤ 0 is near 0.5, the hypothesis is not
rejected. Otherwise, small or large proportions, lead to the rejection of the null interaction
hypothesis. For instance, for cell number 3, the Bayesian p-value is 0.956, and therefore the
null hypothesis is clearly rejected. For cell number 1, the p-value is 0.101 and, although the
value is low, the decision of rejection of null cell interaction is not so straightforward.

Table 6: Example of interaction array from the sample

t\p A B C D

A 6.27 0.54 -24.25 2.84
B -34.89 2.42 8.79 1.92
C 6.37 -1.82 1.49 -5.74
D 0.77 -0.89 0.55 -0.46

Table 7: Assessment of null interaction hypothesis. Bayesian p-value based on discrepancy (posterior proba-
bility of vij ≤ 0 across the sample)

t\p A B C D

A 0.101 0.297 0.956 0.455
B 0.773 0.131 0.223 0.697
C 0.261 0.873 0.175 0.746
D 0.880 0.914 0.115 0.052
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Figure 3: Histograms of clr-cell interactions for the posterior sample. Red lines (solid): null interaction

4.2. An independence test

Simplicial deviance, relative deviance and the interaction array are useful quantities to study
dependence in a contingency table. However, it is usual to discuss independence in contingency
tables by means of a test (e.g. Equation 8). In our example, are the marks for theory
and practice in the exam independent? In the established theoretical context, that can be
rephrased as, does the contingency table of marks, T , belong to the subspace of independent
tables?

H0 : T = Pind ∈ SDind ; H1 : T = P /∈ SDind

The selected likelihood ratio test statistic (Equation 9), is based on the sample of estimates
of the independent component Pind, P̂ind. For each table of the sample of the posterior
distribution, its decomposition into independent and interaction component has been obtained
in section 4.1. The proposed test statistic and its corresponding predictive p-value have been
computed for each of these decompositions. This sample of p-values can be used to measure
the uncertainty of the decision of the independence test. Figure 5 shows the histogram of
these predictive p-values for the posterior sample of tables. It can be observed that there is
variability in the sample of p-values, with a majority of small values, leading to the rejection
of the independence hypothesis. However, the lack of uniformity of p-values and their relative
scale are problematic for their interpretation (Robins et al. 2000). Therefore, the predictive
p-values of the sample have been suitably transformed and combined, in order to obtain
a summary p-value, α, with asymptotic uniform distribution. In this case, α is nearly 0,
and the independence hypothesis has been rejected, as already pointed out by the deviance
values. That is, it cannot be considered that the theory and practical marks of this exam are
independent.
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Figure 4: Histogram of the interaction array for each cell. Red line (solid): null value. Blue line (dashed):
median

5. Conclusions

Contingency tables have been broadly studied, although only recently they have been treated
from the compositional point of view. The orthogonal decomposition of multinomial con-
tingency tables has been presented. Also, a Bayesian framework for the estimation of the
parameters of contingency tables has been introduced as a novelty in the compositional treat-
ment of these tables.

A two-way contingency table containing marks from an exam of a college-level statistics course
has been studied as an example. Results show that theory and practical exam marks cannot
be considered as independent as suggested by the table decomposition and their summary
statistics. The Bayesian point of view allows considering uncertainty of estimators and sum-
mary statistics. Moreover, the Bayesian approach deals with small or null counts in the
original table very efficiently. The multinomial probabilities of the table are assumed compo-
sitional. Contrarily, counts in the original contingency table are not reduced to frequencies
thus avoiding zero replacements or imputations. This latter fact makes Bayesian estimation
very useful in the context of compositional analysis of probability parameters.
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