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* Bounded by Pyrenees main axis (peaks > 2900 ~ R e s i !lm Note: DA is taken as the reference value inside the CAP since it is the
m asl®) to the north and the Cadi mountain range % ~ .o || station with lowest nocturnal T (see next section) and closest to SL .
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Source: 6 AWS (fig 2): S e S ;o )

v 3 AWS along the main valley axis: L s ' 1 widk bt ,
v Martinet (MR): Valley end, narrower (1038 m asl). » P ;

v Das (DA): wide + flat area (1097 m asl).
v Sta. Llocaia (SL): Valley head (1320 m asl).
v1 AWS at the upper part of a tributary valley
(south-east of DA): La Molina (LM, 1704 m asl).
v 2 AWS at valley crests:
v Cadi Nord (CN): south (2143 m asl).

e Malniu (ML): north (2230 m asl).
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Fig. 3. Bivariate histogram of CAP cases as a function of CAP strength and nocturnal [left] wind speed or [right]
wind direction at DA. Nocturnal wind is the mean value obtained between 00 and 04 UTC.

* 59% of the nights with daily CAPs.

e /0% With Tpp-Tg -5 Kand 5% <- 10K

e Daily CAPs persist more than 5 h (13h in January)..

* Wind speed is low within the CAP.

- .  Wind direction i1s down-valley often perturbed with drainage flows
15 16 17 18 19 20 21 22 23 from southern tributary valleys.

Longitude (°)

Latitude (°)

Variables: Temperature (7), relative humidity (RH)
at 1.5 m height, wind speed (WS) and wind
direction (WD) at 10 m height (6 m for ML) +
Insolation (Q) at DA.

STATISTICAL DIURNAL CYCLE

Selection of stable nights. A filter is applied to DA time series to select those cases with clear skies and weak synoptic pressure gradients (Martinez et al., 2008). Indexes' thresholds
have been adapted to valley dynamics. Only days from March to October are considered to avoid snow events. The filtered dataset contains 163 days from a total of 980 (17%).
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v Statistical data show a valley regime with a diurnal cycle within the Cerdanya valley. v Nocturnal cooling rate is much larger at the valley floor.
v Large amplitudes of T at the valley floor (MR, DA), smaller at the valleys head (SL v Steady down-valley winds at DA, while the nocturnal wind turns at the valley end (MR) and
and LM) and smallest at valley crests (CN, ML). head (SL) due to other valleys' influence

v DA attains the lowest T, (1.6 K below MR) and SL measures the highest. A small v LM reflects the dynamics of down-valley at night and up-valley at the beginning of daylight.

hill between DA and MR blocks the down-valley flow, favoring a more intense cooling ~ * At high-altitudes (CN, ML), westerly wind has an in-(out-)valley component at night (day)
at this part of the valley floor (see next section). v Wind speed I1s minimum during the night-day transition regime for all stations.

MESOSCALE SIMULATION
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The simulated temperature fields at the Local spatial deviation term (3): used to illustrate the

surface and at 1.5 m are decomposed evolution of those areas with a stronger cooling. CONCLUSIONS
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Fig. 8. Evolution of the percentage of valley area T Lafore et al. (1998). The Meso-NH atmospheric simulation system. Part I: Adiabatic formulation
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