

TREBALL FINAL DE GRAU

TÍTOL DEL TFG: Intelligent management and control for Wi-Fi small cells

TITULACIÓ: Grau en Enginyeria Telemàtica

AUTOR: David Sesto Castilla

DIRECTOR: Eduard Garcia Villegas

DATA: 9 de setembre del 2016

Títol: Intelligent management and control for Wi-Fi small cells

Autor: David Sesto Castilla

Director: Eduard Garcia Villegas

Data: 9 de setembre del 2016

Resum

Per tal de fer front al creixement exponencial de les transmissions de dades mòbils, des de fa
temps es treballa amb el concepte de small cells, desplegaments d’alta densitat de petites
cel·les per proporcionar una gran capacitat a un número alt d’usuaris.

El projecte SENSEFUL, sota la direcció d’un equip d’investigació de la fundació I2CAT, estudia
la utilització d’small cells amb tecnologia Wi-Fi, fent un ús compartit dels recursos entre la
xarxa d’accés i la xarxa de retorn o backhaul. La implantació d’aquest nou paradigma de
desplegament de xarxes requereix d’un estudi profund de millores en el rendiment de les
xarxes d’accés en termes de mobilitat, a la vegada que s’intenta millorar el comportament de
la xarxa backhaul mitjançant noves tècniques d’accés al medi compartit.

SENSEFUL ha rebut el finançament de l’open call WiSHFUL, iniciada per un col·lectiu
d’entitats i universitats, de les quals hem col·laborat, principalment, amb la Technische
Universität Berlin, degut a la utilització del seu testbed de proves, el TWIST.

Fent ús de tècniques i tecnologies de recent aplicació, com pot ser el paradigma del Software
Defined Networking, s’aconsegueix el desplegament d’una xarxa intel·ligent que fa una gestió
dels recursos de xarxa de forma dinàmica adaptant-se als requeriments del sistema en cada
moment. Respecte als dos principals fronts de SENSEFUL, el rendiment de la xarxa de retorn
i la mobilitat en xarxa d’accés, les tècniques aplicades són les següents:

Per a la xarxa backhaul, s’ha estudiat una proposta de mecanisme d’accés al medi compartit
completament innovadora i que encara no compta amb un estàndard per defecte, sinó que
són molts els grups d’investigació treballant en aconseguir un sistema funcional per a múltiples
escenaris. En aquesta tesi s’estudia el Hybrid TDMA, un protocol d’accés al medi ràdio Wi-Fi
que utilitza un híbrid de detecció de portadora (CSMA) i divisió temporal (TDMA) per obtenir
els avantatges de tots dos sistemes. Els principals avantatges que HTDMA pot aportar són la
millor gestió de la qualitat de servei en xarxes sense fil, a la vegada que soluciona problemes
endèmics de les xarxes Wi-Fi com poden ser el node ocult o el node exposat. Per poder
treballar en aquesta direcció cal, en primer lloc, un nivell de sincronització elevat entre els
dispositius que utilitzaran aquest mecanisme d’accés al medi; és per això pel que els
mecanismes de sincronització habituals en xarxes Wi-Fi és un altre dels punts principals dels
que es preocupa aquesta tesi.

En quant a la mobilitat en la xarxa d’accés, s’utilitza una nova tècnica, que tot i quedar fóra de
l’àmbit d’aquesta tesi, resulta igualment interessant i nova. El BigAP consisteix en la unificació
de diversos punts d’accés sota un mateix BSSID, proporcionant un traspàs imperceptible per
als clients realitzant únicament un canvi de canal de transmissió.

Treballant en diferents entorns i escenaris, aquest projecte fa un estudi dels millors
mecanismes de sincronització per aquest àmbit. A més a més, es realitza la implantació del
sistema HTDMA en un petit escenari de proves per tal de començar a analitzar el funcionament
d’aquest mecanisme híbrid i el seu rendiment sota diferent condicions, comparant-lo amb el
tradicional CSMA.

Título: Intelligent management and control for Wi-Fi small cells

Autor: David Sesto Castilla

Director: Eduard Garcia Villegas

Fecha: 9 de septiembre del 2016

Resumen

Con tal de hacer frente al crecimiento exponencial de las transmisiones de datos móviles,
desde hace tiempo se trabaja con el concepto de small cells, despliegues de alta densidad de
pequeñas celdas para proporciona una gran capacidad a un número elevado de usuarios.

El proyecto SENSEFUL, bajo la dirección de un equipo de investigación de la fundación I2CAT,
estudia el uso de small cells con tecnología Wi-Fi, haciendo un uso compartido de los recursos
entre la red de acceso y la red de retorno o backhaul. La implantación de este nuevo paradigma
de despliegue de redes requiere de un estudio profundo de mejores en el rendimiento de las
redes de acceso en términos de movilidad, a la vez que se intenta mejorar el comportamiento
de la red backhaul mediante nuevas técnicas de acceso al medio compartido.

SENSEFUL ha recibido la financiación de la open call WiSHFUL, iniciada por un colectivo de
entidades y universidades, de las cuales hemos colaborado, principalmente, con la Technische
Universität Berlin, debido a la utilización de su testbed de pruebas, el TWIST.

Haciendo uso de técnicas y tecnologías de reciente aplicación, como puede ser el paradigma
del Software Defined Networking, se despliega una red inteligente que hace una gestión de
los recursos de red de forma dinámica adaptándose a los requerimientos del sistema en cada
momento. Respecto a los dos principales frentes de SENSEFUL, el rendimiento de la red de
retorno y la movilidad en red de acceso, las técnicas aplicadas son las siguientes:

Para la red backhaul se ha estudiado una propuesta de mecanismo de acceso al medio
compartido completamente innovadora i que todavía no cuenta con un estándar por defecto,
sino que son muchos los grupos de investigación trabajando en conseguir un sistema funcional
para múltiples escenarios. En esta tesis se estudia el Hybrid TDMA, un protocolo de acceso al
medio radio Wi-Fi que utiliza un híbrido de detección de portadora (CSMA) y división temporal
(TDMA) para obtener las ventajas de los dos sistemas. Las principales ventajas que HTDMA
puede aportar son la mejor gestión de la calidad de servicio en redes inalámbricas, a la vez
que soluciona problemas endémicos de las redes Wi-Fi como pueden ser el nodo oculto o el
nodo expuesto. Para poder trabajar en esta dirección hace falta, en primer lugar, un nivel de
sincronización elevado entre los dispositivos que utilizarán este mecanismo de acceso al
medio; es por ello por lo que los mecanismos de sincronización habituales en redes Wi-Fi es
otro de los puntos principales de los que se ocupa esta tesis.

En cuanto a la movilidad en la red de acceso, se utiliza una nueva técnica, que pese a quedar
fuera del ámbito de esta tesis, resulta igualmente interesante e innovadora. El BigAP consiste
en la unificación de diversos puntos de acceso bajo un mismo BSSID, proporcionando un
traspaso imperceptible para los clientes realizando únicamente un cambio en el canal de
transmisión.

Trabajando en diferentes entornos y escenarios, este proyecto hace un estudio de los mejores
mecanismos de sincronización para este ámbito. Además, se realiza la implantación del
sistema HTDMA en un pequeño escenario de pruebas con tal de empezar a analizar el
funcionamiento de este mecanismo híbrido y su rendimiento bajo diferentes condiciones,
comparándolo con el tradicional CSMA.

Title: Intelligent management and control for Wi-Fi small cells

Author: David Sesto Castilla

Director: Eduard Garcia Villegas

Date: September 9th 2016

Overview

In order to face the exponential growth of mobile data transmissions, it has been long since the
concept of small cells is in the table, which provides high density deployments of small cells so
as to provide a high capacity to a large number of users.

The SENSEFUL project, being directed by a research team in the I2CAT foundation, studies
the use of small cells with Wi-Fi technology, where both the access network and the backhaul
share the same radio resource. The deployment of this new paradigm requires a deep study
of improvements on the performance of access networks in terms of mobility while, at the same
time, trying to improve the behaviour of the backhaul network by means of new techniques to
access the shared medium.

SENSEFUL has been granted the funding of the WiSHFUL open call, started up by a collective
of entities and universities, of which we have mainly worked with the Technische Universität
Berlin, due to the use we have made of their testbed, the TWIST.

Using new techniques and technologies, such as the Software Defined Networking paradigm,
an intelligent network is deployed, which can manage the network resources dynamically
according to the requirements of the system. Regarding both of the fronts of SENSEFUL, the
performance in the backhaul network and the mobility in the access network, the techniques
that were applied are the following:

For the backhaul network, an innovative proposal of a shared medium access mechanism has
been studied. It is not yet standardized, because there are many research teams trying to
achieve a functional system that can be applied to multiple scenarios. In this thesis, the Hybrid
TDMA is studied, a Wi-Fi radio medium access protocol that uses a hybrid of carrier sense
(CSMA) and time division (TDMA) in order to benefit from both systems. The main advantages
that HTDMA brings are a better management of the quality of service in wireless networks,
while solving some of the endemic problems of Wi-Fi, such as the hidden node or the exposed
node. So as to work in this direction, first of all, a precise synchronization among the devices
that will use this medium access mechanism is required; that is why the usual synchronisation
mechanisms in Wi-Fi networks is one of the main topics that this thesis deals with.

Regarding mobility in the access network, a new technique is used, which, despite being out
of the scope of this thesis, it is indeed interesting and innovative. The BigAP unifies several
access points under a shared BSSID, providing a seamless handover for the clients by making
only a change on the transmission channel.

Working in different environments and scenarios, this project studies the best synchronisation
mechanisms for this field. Moreover, the HTDMA system is installed in a small test scenario so
as to begin with the analysis of the operation of this hybrid mechanism and its performance
under different conditions, as compared to the legacy CSMA.

Acknowledgement

The original idea of this project has to be granted to Eduard Garcia (director of
my thesis at EETAC) and Daniel Camps (member of the I2CAT team). Eduard
put me in touch with the research group at I2CAT and guided me through the

first steps of the project. After that, he has always been involved in the
development of the SENSEFUL project itself, while offering me advice

whenever a problem appeared in my part of the project and this thesis.

Moreover, I would like to thank Daniel Camps, Ferran Quer and August Betzler,
the members of the I2CAT team with which I have worked, who have been

always available to help me with the understanding of the SENSEFUL project
and their already-working platform. They were completely essential on my first
steps on SENSEFUL, speeding up my incorporation to the project and making

sure I had everything I needed to start working.

Finally, I would also like to mention the people at the TKN group in the
TUBerlin, who have provided us with some of the tools in which this thesis is

based, and have introduced us to the TWIST testbed, keeping periodical
teleconferences so as to ensure that the progression of the project kept its

expected pace.

Thank you all for this opportunity I was given.

INDEX

CHAPTER 1. INTRODUCTION .. 1

1.1. Work in progress and Open Call .. 2
1.1.1. Work in progress at I2CAT: the SENSEFUL Project .. 2
1.1.2. WiSHFUL Open Call ... 3

1.2. Document structure .. 3

CHAPTER 2. THEORETICAL BACKGROUND .. 5

2.1. Wi-Fi .. 5

2.2. Small cells .. 8

2.3. Software Defined Networking ... 9

2.4. Synchronisation on wireless networks ... 12
2.4.1. IEEE 1588 Precision Time Protocol (PTP) ... 12
2.4.2. Network Time Protocol (NTP) ... 15
2.4.3. Other synchronisation tools .. 16

2.5. TDMA on WLANs ... 17
2.5.1. TDMA nowadays .. 17
2.5.2. TDMA on wireless multi-hop networks ... 17

CHAPTER 3. TECHNOLOGIES .. 23

3.1. SENSEFUL Project and WiSHFUL platform .. 23
3.1.1. Components ... 24
3.1.2. Example scenario ... 25

3.2. Hardware and test scenarios .. 25
3.2.1. Initial small-scale testbed ... 26
3.2.2. TWIST testbed .. 28

3.3. Synchronisation tools ... 29
3.3.1. NTP implementation ... 29
3.3.2. PTP implementation ... 31

3.4. Hybrid TDMA .. 34

3.5. Other tools .. 36
3.5.1. Programming languages .. 36
3.5.2. Version control .. 37
3.5.3. Deployment tools .. 38
3.5.4. Drivers .. 40
3.5.5. SDN software.. 41
3.5.6. User space.. 42

CHAPTER 4. DEVELOPMENT AND RESULTS ... 43

4.1. Synchronisation evaluation .. 43
4.1.1. Measuring synchronisation ... 43

4.1.2. Performance evaluation .. 43
4.1.3. Conclusions .. 46

4.2. HTDMA .. 46
4.2.1. Slot times and first steps with the system .. 46
4.2.2. QoS over HTDMA ... 50

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 53

5.1. FUTURE WORK .. 53

BIBLIOGRAPHY .. 55

ABBREVIATIONS AND ACRONYMS ... 59

APPENDIX A. OTHER SYNCHRONISATION TOOLS 65
A.1. DCF77 .. 65
A.2. Synchronous Ethernet (SyncE) .. 65
A.3. Global Navigation Satellite Systems (GNSS) ... 66
A.4. Cellular network listen (CNL) .. 67
A.5. Miniature atomic frequency references .. 67
A.6. Hybrid technology options .. 67

APPENDIX B. SENSEFUL SHOWCASE SCENARIO 69

APPENDIX C. SYNCHRONISATION MEASUREMENT 71

APPENDIX D. HTDMA PERFORMANCE EVALUATION 75

FIGURES INDEX

Fig. 2. 1 Wi-Fi 2.4 GHz band available channels .. 6
Fig. 2. 2 Hidden (left) and exposed (right) node problematic 7

Fig. 2. 3 SDN architecture [9] ... 11
Fig. 2. 4 Flowchart explaining the packet processing when received at an

OpenFlow switch ... 12
Fig. 2. 5 Functioning of the IEEE 1588 protocol ... 13
Fig. 2. 6 IEEE 802.11v Timing Measurement protocol functioning ([24]) 15

Fig. 2. 7 Example of Pseudo-TDMA access operations in a chain of nodes A-E
 .. 19

Fig. 2. 8 OpenTDMF architecture ... 20

Fig. 3. 1 SENSEFUL showcase scenario ... 23
Fig. 3. 2 Initial testbed scenario .. 26
Fig. 3. 3 Raspberry Pi Model B+ timestamping options 27
Fig. 3. 4 PTP measurements topology schematics (left) and in jFed view (right)

 .. 29

Fig. 3. 5 NTP server (left) and client (right)... 30
Fig. 3. 6 Software (left) and Hardware (right) timestamping layers comparison 32

Fig. 3. 7 TWIST NUCs timestamping capabilities ... 32
Fig. 3. 8 Software timestamping synchronisation chain 33
Fig. 3. 9 ptp4l master (top) and slave (bottom) devices 33

Fig. 3. 10 Hardware timestamping synchronisation chain 34

Fig. 3. 11 Hybrid TDMA example with N=10, n=3 and t=200µs 35
Fig. 3. 12 Examples of chef role (left) and recipe (right) 38
Fig. 3. 13 jFed main screen and node configuration ... 40

Fig. 3. 14 OpenDayLight GUI ... 41

Fig. 4. 1 NTP synchronisation measurements during 6h 44

Fig. 4. 2 Measurements with values greater than 5 ms ignored 45
Fig. 4. 3 PTP synchronisation measurements during 2h (left) and only in the first

75 minutes (right) .. 45
Fig. 4. 4 Slot assignment for the “slot duration” experiments 47

Fig. 4. 5 Throughput for packets of 1400 Bytes (left) and 100 Bytes (right) 49
Fig. 4. 6 Jitter for packets of 1400 Bytes (left) and 100 Bytes (right) 49

Fig. 4. 7 Throughput and jitter with a constant proportion of open slots 50
Fig. 4. 8 Throughput measuremens in QoS environament using CSMA 51
Fig. 4. 9 Slot assignment in the HTDMA QoS experiment 51
Fig. 4. 10 Throughput measurements with 3 (left) and 5 flows (right) 52

Fig. A. 1 HRM with physical layer frequency support ([14] page 16) 68
Fig. B. 1 SENSEFUL showcase scenario ... 69
Fig. C. 1 Client script ... 71
Fig. C. 2 Server script .. 73
Fig. D. 1 Throughput measurements .. 75
Fig. D. 2 Jitter measurements .. 76

Chapter 1. Introduction 1

CHAPTER 1. INTRODUCTION

Today’s certainty that mobile traffic demand will continue the exponential
increase tendency has mobilised lots of researchers and experts in this sector
towards developing new techniques or improving some of the existent, in order
to be able to cope with the needs of the future 5G networks and users.

Dense small cell deployments seem to be the most effective and reliable way to
do so, as they manage to densify access networks by reducing their sizes and
having massive deployments. This situation is not something for what current
technologies are ready, as efficient mobility and backhauling are just a couple of
examples of the pending subjects on this area. Getting into some detail on the
backhauling problem (in which this project will be focused), the general idea is
that a wide deployment of small cells would make wired connections
economically and materially inefficient, as all the access points (APs) would have
to be reached using copper or fibre connections. That is why a wireless backhaul
network is required for an environment like the one proposed here; however, in
such case the backhaul and access networks would compete for the medium
resources, so a proper resource management of the wireless channel has to be
done.

Software Defined Networking (SDN) and the flexibility it brings to a scenario
where centralized management is required, are some of the most novel topics in
this area too. SDN tools give the possibility of having intelligent self-managed
networks with a centralized controller that can modify the behaviour of the nodes
and links according to the feedback collected from the system itself.

This thesis stems from the project SENSEFUL, which has been under
development for some time now under the hands of several I2CAT researchers.
With the new possibility of working with high-end technologies available through
an Open Call to which the project was submitted, we had the opportunity to study
and research advanced mechanisms for Wi-Fi networks management. More
details on SENSEFUL and the WiSHFUL Open Call are given in the following
chapters.

With our own tools, and the experimentation framework provided by the granters
of the Open Call, we wanted to develop and test new techniques focused on
optimizing wireless network resources in dense scenarios where these resources
are shared between the backhaul and access networks. Moreover, regarding the
environmental impact of this thesis, it must only be said that the techniques
applied in the project are aimed at optimizing network resource management in
cellular networks, which can be translated into energetic savings.

As the main objectives for this project, there are several pieces that together
converge towards the same idea: building an architecture that allows centralized
management using SDN tools and time scheduling with new techniques for a
medium access control layer that combines the best aspects of both CSMA and
TDMA. The main advantages of this system are that some endemic problems of

2 Intelligent management and control for Wi-Fi small cells

CSMA-type networks (for instance Wi-Fi) such as the hidden/exposed node are
solved, while enabling the provisioning of QoS.

In order to achieve this general goal, the following objectives were defined:

 Thorough study of synchronisation tools, as they are essential when

talking about centralization of TDMA access mechanisms.

 Familiarization with the experimentation environment provided by the

WiSHFUL platform, including the preparation of a functional Linux image

ready to deploy in TWIST that includes all the necessary modules to make

SENSEFUL work in the German testbed.

 Familiarization with the experimental SDN-driven platform provided by

I2CAT and over which the SENSEFUL project is built.

 Design and perform experiments focused on the optimization of a hybrid

CSMA/TDMA access mechanism.

 Study QoS provisioning over a hybrid CSMA/TDMA access mechanism

and compare it to legacy CSMA EDCA quality of service.

1.1. Work in progress and Open Call

For this project I was offered the possibility of working with a research group at
I2CAT Foundation [1], helping in the development of a new idea under the name
of SENSEFUL, that would be presented to an Open Call for the opportunity of
researching and studying advanced network management mechanisms using a
testbed based on the latest available Wi-Fi technologies.

1.1.1. Work in progress at I2CAT: the SENSEFUL Project

The research group with which I have collaborated had been working on a new
project called SENSEFUL, acronym for “SDN driven Joint Access Backhaul
coordination for next generation dense Wi-Fi Small Cell networks via WiSHFUL
APIs”. SENSEFUL sets its foundations on the belief that small cells will be the
most effective way of dealing with the expected exponential increase in mobile
traffic in the following years. Facing the challenges of deploying efficient access
networks in the sense of mobility and new backhaul network technologies, this
project uses SDN methodologies to research in the area of dense outdoor small
cells for future 5G networks.

Chapter 1. Introduction 3

1.1.2. WiSHFUL Open Call

The WiSHFUL project (Wireless Software and Hardware platforms for Flexible
and Unified radio and network controL) [2] is an idea funded by the European
Commission’s Horizon 2020 Programme that started on January 1st 2015 and
aims to ease the research and experimentation of wireless solution
developments.

The research group at I2CAT applied to the first WiSHFUL Open Call with
SENSEFUL, and the project was granted in March 2016 with the possibility of
taking advantage of WiSHFUL tools for its development for 6 months.

Apart from having access to the BigAP [3] architecture and controller developed
by a group of researches in the Telecommunication Networks Group (TKN) at the
Technische Universität Berlin, we have also been able to work with the TKN
WIreless NetworkS Testbed (TWIST) in order to experiment with our project in a
wireless indoor environment.

1.2. Document structure

This document is divided into several chapters and sections so as to explain
everything that has been done during the project in the clearest and most
thoughtful way. First of all, an introduction to the project and its main objectives
has been made. In Chapter 2, the reader can find some brief explanations about
all the theoretical basis needed to understand the project, going from the present
and future of small cells and SDN, to synchronisation tools and the state of the
art of TDMA on WLANs. Chapter 3 is devoted to specifying the tools and
scenarios that have been used during the development. Chapter 4 talks about
the real and final implementation and evaluation of the project. Finally, some
conclusions and the direction of future work can be found, alongside with the
bibliography consulted for the project and this report, some abbreviations and
acronyms and extra information in the annexes.

4 Intelligent management and control for Wi-Fi small cells

Chapter 2. Theoretical background 5

CHAPTER 2. THEORETICAL BACKGROUND

This second chapter includes the basic background knowledge required to
understand the development of the thesis. Starting from a brief review of what
Wi-Fi is and some of its endemic problems, it then leads into the basis of small
cells and Software Defined Networking. Finally, there is an explanation of some
of the most popular protocols and mechanisms for wireless networks’
synchronisation, ending with the state of the art of adding TDMA techniques to
WLAN environments.

2.1. Wi-Fi

IEEE 802.11 is a set of standards that specify MAC and PHY layers for wireless
local area networks in the bands of 900 MHz, 2.4, 3.6, 5 and 60 GHz. Up to now,
there are lots of versions and amendments that coexist in the market, as some of
them are focused in different areas or specific aspects of WLANs and wireless
communications. All this is controlled under the brand of Wi-Fi, the name that the
Wi-Fi Alliance gives to any product based on the 802.11 standards.

Getting into some details about its capabilities, the latest IEEE 802.11ac release,
which is already being supported by the most recent consumer devices, can
reach data rates over the Gigabit per second. That is thanks to the use of MIMO
technology, high bandwidth channels (in the 5 GHz band), high order modulations
and several spatial streams. In terms of signal range, some hundreds of metres
of coverage can be achieved using more reliable modulations, prioritizing bit
protection over bit rate.

Now, a brief reminder of some of the basics of Wi-Fi is done, just to understand
the importance of keeping working on this field.

2.1.1. Implementation

Each new version of the standard tries, either to focus on its existing problems,
or to improve some of the things that seem more important for the users, such as
security, data rate, interferences or access range. In fact, the increase of the data
rate is one of the things in which the standardization organisation and
manufacturers have put more effort. Both the MAC and PHY layers affect the
data rate of Wi-Fi. The main considerations in the PHY layer are the available
bandwidth, the simultaneous transmissions and the modulation:

In terms of bandwidth, Wi-Fi works in a license-free shared wireless medium,
which means that any user can make use of any of the available channels, with
the risk of suffering interference that fact brings. In the 2.4 GHz band, the
standard defines up to 14 available channels (depending on the regulation
domain), with 20 MHz of bandwidth (up to 40 MHz when talking about some of
the latest releases, such as IEEE 802.11n) and spaced 5 MHz, as shown in Fig.
2. 1. That means that, for reducing interferences, only 3 or 4 non-overlapping

6 Intelligent management and control for Wi-Fi small cells

channels can be used in the same range: 1-6-11 (2-7-12 or 3-8-13 alternatively)
or 1-5-9-13. However, channel 13 is not allowed in all regulatory domains and its
possible removal has been studied.

Fig. 2. 1 Wi-Fi 2.4 GHz band available channels

The 5GHz band has less problems in terms of bandwidth, as there are more
available channels, with bandwidths that go from 20 to 160 MHz (as per IEEE
802.11ac).

In the MAC layer, the CSMA/CA protocol is generally applied. Putting it simple, it
is a medium access protocol that waits for the channel to be sensed as idle before
transmitting. It randomizes transmissions by assigning variable back-off waiting
times to each device every time it senses the channel as occupied. Other QoS-
oriented MAC techniques such as PCF (Point Coordination Function) have been
added to the 802.11 protocol, and despite having a precise management over
differentiated services, it has not been successful, and it would not work in multi-
hop environments. In PCF, the AP behaves as a point coordinator, polling the
connected devices according to their preferences in terms of Quality of Service.
In order to ensure that the access to the shared medium is granted to the AP
(which will then poll the terminals), it waits for a PIFS (PCF Interframe Space), an
interframe space shorter than the DIFS but longer than the SIFS.

In the physical layer, the MIMO (Multiple-Input Multiple-Output) techniques allow
transmitting several signals by using multiple antennas in transmission and
reception. In the latest amendments, MIMO is also used to enable simultaneous
transmission of multiple stations (MU-MIMO)

Last but not least, modulation plays an important role in Wi-Fi too. There have
been different modulation techniques that were implemented across the versions
and amendments to the standard, here a brief summary of the most relevant
ones:

 DSSS: the signal is spread in spectrum and modulated with a pseudo-

noise bit sequence (11 bits in the Barker sequence) so that it looks just

like noise for all receivers except for the one that must process the signal.

 OFDM: the data is split into multiple subcarriers to transmit it on parallel

channels. Each subcarrier is modulated with conventional methods such

as QAM or PSK, achieving high data rates at a low symbol rate. Some of

Chapter 2. Theoretical background 7

the newest amendments currently under development (IEEE 802.11ax)

will use OFDM to add a new multi-user layer through OFDMA.

2.1.2. Problems

Wi-Fi networks present some issues that are always identified as the main cause
for these networks not to be even more widely spread. Some of these problems
are now briefly explained, and this project aims to, as explained in the introduction
chapter, to solve or reduce the effects of some of them:

 Performance anomaly: the presence of both fast (usually near to AP) and

slow (far to AP) stations in a BSS extremely reduces the overall throughput

because slow stations monopolize the medium due to the strict fairness

policy CSMA/CA establishes.

 Hidden node: this effect is produced when two nodes that cannot see each

other (A and C in Fig. 2. 2) want to transmit to a common neighbour (B),

perform the transmission at the same time. In that case, a collision is

produced and the information is lost. The RTS/CTS mechanism can be

applied to solve it, but it introduces additional overhead.

 Exposed node: this effect is produced when two nodes that can see each

other (B and C in Fig. 2. 2) want to transmit to two different stations out of

reach of one another (A and D, respectively). Although a simultaneous

transmission could be harmlessly carried out, because there would not be

a collision, one of the two first stations will sense the medium as occupied

and will not transmit.

Fig. 2. 2 Hidden (left) and exposed (right) node problematic

8 Intelligent management and control for Wi-Fi small cells

2.2. Small cells

The deployment of the so called small cells seem to be the architecture towards
which wireless access network providers will have to be moving in order to
accommodate the eightfold global mobile data traffic increased expected
between 2015 and 2020 (according to the most recent Cisco study [5]).

The Small Cell Forum [6] is the organization in charge of supporting the wide-
scale adoption of small cells, by means of defining standards and promoting their
use in several scenarios. The standard definition for a small cell says that it “is an
umbrella term for operator-controlled, low-powered radio access nodes, including
those that operate in licensed spectrum and unlicensed carrier-grade Wi-Fi”. In
fact, the concept of small cell is simply used to talk about all the possible
implementations of femtocells, trying to eradicate the idea of femtocells being
only used in residential spaces.

There are different types of smalls cells, depending on their size (they usually
have a range from tens to hundreds of meters) and their use cases. According to
sizes, in increasing order, we can find femtocells, picocells and microcells, which
are all based on the “femtocells technology”, although the pico and micro versions
may not implement some self-management capabilities. According to the use
cases in backhaul scenarios [7], we can also differentiate cells in four groups, the
first two of which are capacity-aimed while the others are intended for coverage:

 Targeted capacity hotspot: a hotspot is deployed in order to increase the

capacity of a certain network and fill possible spectrum gaps. Some

example use cases may be dense urban deployments (e.g.: Times

Square, Oxford Street) or Wi-Fi complements for small businesses

(McDonalds, Starbucks).

 Non-targeted capacity: enhance user perceived experience related to

service availability instead of capacity. Example: macrocells where

peripheral coverage requires QoS.

 Indoor coverage: improvement of indoor public spaces coverage in

environments of low mobility and occasional peaks. Examples: dense

urban indoor venues (stadiums, convention centres, shopping malls…),

dense suburban residences, distributed suburban facilities (individual

houses, shops or offices with low interferences) and mobile small cells

(indoor coverage in public transport).

 Outdoor coverage: provide coverage simultaneously with existing

macrocells. Examples: rural area (isolated areas with no macrocell

coverage), distributed suburban environment (terrain or building

shadowing) and disaster recovery support (provide fast mobilisation of

mobile services when natural disasters happen).

Chapter 2. Theoretical background 9

Most mobile operators consider backhaul networks the most challenging part of
their infrastructures, and the exponential increase of traffic makes them use other
techniques such as improving their networks to 4G technology or Wi-Fi offloading
(using complementary networks to distribute data alongside with cellular
networks). The Small Cell Forum aims to make them understand that backhaul
is not the feared barrier to the growth of small cells it is thought to be. In fact, their
studies show that the use of small cells can improve capacity by up to 1600x and
macro network performance (if placing several small cells inside a macrocell) by
315%. However, there is not a single solution that can fit all scenarios, and
depending on the use cases commented previously, the deployment will change.

In fact, LTE and the future 5G networks are designed to work with self-organizing
cells, i.e. femtocells. Moreover, innovations in the area of radio interfaces makes
it possible for a base station to work with any current or legacy technology, thanks
to the implantation of SDR antennas than can tune their functioning via software.

Bringing the concept of small cells closer to the scope of this project, it must be
said that operator-run Wi-Fi small cells are not as popular as other licensed
spectrum technologies such as GSM, WiMax or LTE. That is because the use of
unlicensed spectrum by Wi-Fi devices makes it more complex to make an
efficient and effective use of the medium. However, with the introduction of novel
techniques such as the ones that will be presented later in this report, small cells
can also turn into a reality in WLAN environments.

2.3. Software Defined Networking

Software Defined Networking, known in short as SDN, is one of the greatest
advances in network management in the latest years. SDN takes the network
management and application services to centralized platforms that, by means of
software programming, can change the configuration of the whole infrastructure
by provisioning new architectures or reconfiguring the existing ones. This way,
topologies for new services or applications can be deployed within minutes, a
huge improvement in comparison to the several days that would require in the
past, when physical human work was involved in the modification of the
architecture. SDN is a key point in the development of future networks because
the evolution of the services and their users are asking for things that this
technology provides. The change in traffic patterns, the increase in traffic volume
and the popularity rise of cloud services are just some of the trends with which
Software Defined Networking can help.

SDN achieves this adaptability and dynamicity by decoupling the control plane
(where decisions about traffic forwarding are made) and the data plane (elements
where the traffic forwarding actually takes place), and abstracting the underlying
infrastructure. The organization in charge of promoting SDN through the
development of open standards is the ONF (Open Network Foundation). In fact,
as they define it, there are some key points in understanding SDN [8]:

 Direct programmability: the decoupling of the control and data planes
makes the network directly programmable.

10 Intelligent management and control for Wi-Fi small cells

 Agility: the abstraction of control from forwarding makes it possible to
adjust traffic dynamically all over the network according to the needs at
each moment.

 Central management: the network intelligence is set in logically centralized
controllers that keep a global view and understanding of the network.

 Programmatical configuration: there are open-source automated SDN
programs that let SDN network managers configure the network
dynamically.

 Open standards and vendor neutrality: SDN simplifies everything related
to the network operation because the instructions across the network are
provided by neutral SDN controllers, not by vendor-specific tools.

2.3.1. SDN Architecture

The SDN architecture, as Fig. 2. 3 shows, relies on three main stacks:

 SDN Applications: programs that communicate with the SDN controller via
APIs. These applications send the network requirements to the controller,
and can even have a global view of the network so as to make decisions
about the situation of the network. Examples of these applications can be
network analytics or network management programs that process the data
collected from the controller to configure new policies.

 SDN Controller: logical entity that interconnects the decisions made by the
applications with the physical devices that build the network. The controller
receives information from the network and provides it to the upper
applications in the shape of statistics and events. On the meantime, the
previously mentioned applications process all that data and send orders
to the controller, which “programs” the network devices.
There are several available SDN controllers, some of which are proprietary
and some others open source: NOX, POX, Beacon… However, one of the
most popular ones is OpenDayLight (ODL), a Java-based Apache platform
that uses OSGi framework and bidirectional RESTful APIs as NBI
(Northbound Interface) and OpenFlow as SBI (Southbound Interface).

 SDN Network Devices: they control the forwarding and data plane of the
network, processing the data path.

The connection between these three stacks is done with two types of interfaces:

 Northbound (NBI): connect the applications to the controller.

 Southbound (SBI): connect the controller and the network devices.

Chapter 2. Theoretical background 11

Fig. 2. 3 SDN architecture [9]

2.3.2. OpenFlow: the southbound interface

The OpenFlow protocol [10] is currently one of the key elements of SDN. It is the
reference of the open-source southbound interfaces, i.e. a protocol able to
program the functioning of network devices according to the rules imposed by the
SDN controller.

OpenFlow switches have only the implementation of the data layer, while the
control layer is taken care of by an external controller. Each switch has a flow
table full of entries that include a set of fields to match (some of them are ingress
port, VLAN id, MPLS labelling, IP and MAC addresses, transmission protocol
ports, etc.), a counter updated for every matching packet and an action to
perform. When packets arrive that match all the fields on an entry, the
corresponding action is done (which could be, for instance, drop the packet, send
to a certain interface, modify a field and resend, or just send the packet first to
another flow table [Fig. 2. 4]). If a packet that matches no entry is received at a
switch, it forwards it to the controller, which then makes the decision of how to
deal with it. Generally there are two options, either drop the packet or create a
new flow table entry with the actions to perform to packets like that one. Each
flow table entry has a couple of timers too, setting the time after which a rule must
be removed, under several conditions.

The name given to the southbound interface that connects each OpenFlow switch
to a controller is OpenFlow Channel. The messages sent through that interface
are formatted according to the standard in the OpenFlow protocol, and a secure
transmission based on TLS over TCP through port 6633 is used. The protocol
supports three kinds of messages:

 Controller-to-switch: initiated by the controller, its main use is to manage
and inspect the state of the switch, asking, for instance, for switching
capabilities, configuration parameters, statistics collection, etc.

12 Intelligent management and control for Wi-Fi small cells

 Asynchronous: initiated by the switch and destined to the controller, used
to notify of packet arrival (Packet-in), switch state changes (Port-status),
flow removal after timeout (Flow-Removed) or errors (Error).

 Symmetric: unsolicited messages sent in either direction. They can be
Hello messages, Echo request/reply to measure latency/bandwidth/state
or Experimenter for trying new OpenFlow features.

Fig. 2. 4 Flowchart explaining the packet processing when received at an
OpenFlow switch

Software Defined Networking seems to be the future of network management.
However, an OpenFlow-based implementation of SDN is generally designed for
wired networks (for instance Ethernet). When trying to be adapted into wireless
networks, some of their typical challenges (such as interference, radio channel
variations, etc.) have to be taken into account, and, hence an adaptation is
required so as to make the most of all of the potential SDN can bring to a network.

2.4. Synchronisation on wireless networks

As stated in [11], there are many available technologies used to synchronise
devices and networks in frequency, phase and/or time; some of which have been
studied for the development of this project, and even tested in a real environment.
The project in which this thesis is built, relies on a decent synchronisation
between devices, as the addition of TDMA techniques in WLAN environments
requires that all the devices involved in the procedure share a good timing.

2.4.1. IEEE 1588 Precision Time Protocol (PTP)

PTP provides accurate distribution of time and frequency over a packet network,
using several timestamped messages between master and slave devices through
which slaves can estimate their offset from the master.

Chapter 2. Theoretical background 13

The main messages used by this protocol are: SYNC (message sent periodically
from master to slaves, containing its transmission timestamp), FOLLOW_UP
(transmitted after every SYNC message, it contains a more precise timestamp
which is obtained by measuring the exact time of transmission; only two-step
clocks or systems with security protocols need FOLLOW_UP messages, as one-
step clocks can perform on-the-fly modification of the timestamp in the SYNC
message and therefore the FOLLOW_UP is not needed), DELAY_REQ (slave
requests its master to inform the precise time of arrival of the message at the
master), DELAY_RESP (response from the master to the previous type of
message, containing detailed information of arrival of a DELAY_REQ message;
this both last type of messages are used to calculate RTT in the master-slave
route).

The use of this four messages provides a collection of 4 timestamps (t1, t2, t3,
t4, as in Fig. 2. 5), which can then be used to estimate the time offset.

Fig. 2. 5 Functioning of the IEEE 1588 protocol

𝑅𝑜𝑢𝑛𝑑 𝑡𝑟𝑖𝑝 𝑑𝑒𝑙𝑎𝑦 = (𝑡2 − 𝑡1) + (𝑡4 − 𝑡3) (2.1)

𝑂𝑛𝑒 𝑤𝑎𝑦 𝑑𝑒𝑙𝑎𝑦 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =
𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑖𝑝 𝑑𝑒𝑙𝑎𝑦

2
=

(𝑡2−𝑡1)+(𝑡4−𝑡3)

2
 (2.2)

𝑆𝑙𝑎𝑣𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓𝑓𝑠𝑒𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 𝑡2 − (𝑡1 + 𝑜𝑛𝑒 𝑤𝑎𝑦 𝑑𝑒𝑙𝑎𝑦) =
(𝑡2−𝑡1)−(𝑡4−𝑡3)

2
 (2.3)

In (2.2), an estimation of equality in forward and backward one-way delays is
assumed.

14 Intelligent management and control for Wi-Fi small cells

PTP systems can still suffer from noise that can lead to time and frequency
synchronisation error. The sources of noise can be: jitter and wander,
timestamping errors at the master or slave, noise at the slave’s oscillator,
asymmetrical delays, etc. Even though timestamping errors can be solved by
using hardware timestamping (which reduces the delays introduced by the
software stack that would be in charge of this process) and high precision
oscillators, other problems such as PDV (Packet Delay Variation) in the network
require additional filtering algorithms in order to achieve an accuracy in the sub-
microsecond margin.

So as to reduce the PDV errors, the IEEE 1588-2008 standard defines three ways
of providing on-path support:

 Boundary clocks: they recover the clock from the PTP flow and regenerate

the flow.

 End-to-end transparent clocks: they forward all messages in the PTP flow

transparently while calculating a residence time (time the packet has been

inside the device) that is later added in a correction field as the packet

leaves the device.

 Peer-to-peer transparent clocks: as well as considering residence time,

delay in network links is also counted by exchanging peer delay messages

(Pdelay_req and Pdelay_resp).

The relevance of PTP as a network synchronisation protocol is stated as soon as
we learn that IEEE added 1588 into 802.1AS, the Timing and Synchronisation
standard that ensures that synchronisation requirements in time-sensitive
applications are fulfilled.

Another interesting state-of-the-art technique is the “Fine Time Measurement”
(FTM) [12] that is included in IEEE 802.11mc (set of amendments that includes
the 802.11-aa, ac, ad, ae and af versions). FTM is nothing but a revision of the
already existent Time Measurement (TM) mechanism, but with a finest timestamp
resolution and some other minor changes, granting backwards compatibility with
TM and IEEE1588. The timestamp resolution with FTM goes down to 0.1ns, and
only some minor changes from what is seen in TM are required.

2.4.1.1. IEEE 802.11v

The IEEE 802.11 working group added PTP to their standard on the 802.11v
amendment ([23]). Under the name of “Timing Measurement”, this MAC layer
synchronisation option uses the measurement data obtained with higher layer
algorithms to synchronise clocks between end devices or synchronize any
MAC802.11 system to a common clock.

As can be seen in [24], the Timing Measurement capability uses the same basis
as the IEEE 1588 to establish synchronisation between devices. Even the

Chapter 2. Theoretical background 15

diagrams provided to explain the time references and protocol frame have certain
resemblance to what was studied earlier in this section.

Fig. 2. 6 IEEE 802.11v Timing Measurement protocol functioning ([24])

2.4.2. Network Time Protocol (NTP)

NTP is a client-server protocol typically used to synchronise computer hosts. NTP
working strategy is based on a classical clock hierarchy with stratums, where
stratum 0 clock is a device such as a GNSS (explained later in section 2.4.3) that
provides time information to the stratum below (stratum 1 server). Stratums
represent the “topological distance” to the atomic clock where the time reference
comes from, and go from 0 to 15 (having a mark of Stratum16 in a server means
that it is not synchronised to any time source). The protocol also supports the
definition of NTP peers that can automatically define the hierarchy depending on
the stratum information that is carried by the protocol.

The client-server mode of this protocol relies on a single request/response
message exchange (via UDP on port 123), initiated by the client, which ends up
reporting four timestamps (transmission and reception in both the client and the
server) that can be used, similarly to what is done in PTP, to calculate the time
error from the server. As seen in PTP, the estimation is only accurate for a
symmetrical delay in both paths.

While NTP version 3 uses a timestamp of 64 bits (2 fields of 32 bits, which
represent the number of seconds since January 1st, 1900; and fractions of a
second, respectively), the newest version of the protocol, NTP version 4, works
with an extended 128 bit timestamp.
The algorithm NTP uses in order to choose the most reliable server to which
synchronise, consists in polling all available servers (the poll period can be
modified, and moves between 24 and 217 seconds). Then, the last eight samples
of each server are ordered in increasing round trip delay (given the fact that the
smaller the round trip delay the lower the jitter), the dispersion is calculated
(dispersion is defined as the maximum error due to both frequency tolerance and
time since the last update) and time and frequency offsets are calculated too. All
results from all available servers are compared and the best one is chosen to
synchronise the local device clock.

16 Intelligent management and control for Wi-Fi small cells

Even though NTP was thought for time synchronisation, it achieves it by aligning
clock frequencies between clients and servers. This way, when client clocks are
brought to certain margins of ppb from the server clock, the poll period increases
and viceversa. NTP can achieve better accuracy than that client clocks have
inherently, although its performance in the beginning of the process is its main
weakness.

2.4.3. Other synchronisation tools

Below, there is a list of alternative synchronisation tools that can be used in a
network. Some of them have been considered for our project, although later
discarded, while some others are just unfeasible in our case. In Appendix A a
more detailed explanation of each of these techniques can be found.

 DCF77 is a long-wave time signal broadcast from Germany. Its signal is

usually used to synchronise clocks, appliances, industrial equipment, etc.

It is modulated on amplitude, and coded with pulse-width at 1 bps and is

said to have a coverage range over 2000 km from the transmitter, although

some factors can make that distance change.

 SyncE is built over legacy Ethernet standards and it tries to make it easier

to transport clock signals over the physical layer, transmitting the clock

directly and continuously over the physical layer on full-duplex scenarios.

 GNSS systems used in telecommunication environments (such as GPS,

GLONASS or Galileo), were designed to provide accurate time and

location references (or only time in bad GNSS-signal conditions at the

expense of position being manually supplied) in any point on the planet

Earth. The main problem that these systems have is the requirement of

direct sky visibility, which reduces its functionality in some scenarios.

 Cellular Network Listen (CNL) bases its functioning on the same idea

with which User Equipment obtain synchronisation, i.e. listening to

surrounding cellular base stations of any technology. It is a good idea for

the deployment of small cells in highly populated areas, however, the

environment has to be studied so as to avoid loops of cells trusting in each

other’s reference when in fact they all work with CNL.

 Miniature atomic clocks, which can meet synchronisation accuracy

requirements (from 0.1ppb to 1ppb) without the need of an external

reference, are only suitable for Stratum0 clocks or other important base

stations, due to their high costs.

 Hybrid solutions are also a trend nowadays, so as to get the most out of

different available technologies. In Appendix A, some proposals about

hybrid technologies can be found.

Chapter 2. Theoretical background 17

2.5. TDMA on WLANs

One of the main goals of this project is to study and put into practice the use of
TDMA techniques on Wireless LANs, something that is still being under study
and development, as there is no standard although it is seen to be of great
advantage in many different environments, one of them being the one this project
deals with: multi-hop wireless backhaul networks where a guaranteed QoS has
to be provided.

2.5.1. TDMA nowadays

Time Division Multiple Access is a channel access method used in networks that
share a common transmission medium, and it offers the possibility for different
users to work on the same medium and frequency channel, by dividing time into
smaller time slots so that each user transmits on its pre-assigned slot without
overlapping transmissions.

Nowadays, TDMA is mainly used in 2G cellular networks such as GSM, satellite
systems or even the upstream transmissions (end users to operator) over PON
networks (downstream PON transmissions are usually broadcast).

The main advantage that TDMA access method provides is that it is quite simple
to implement, as it only requires a temporal division and allocation of users. For
the duration of the assigned time slot, the radio interface in the user terminal can
transmit information, while for the rest of the time it can remain inactive or perform
channel measurements in order to achieve a better performance. On the other
hand, the TDMA definition itself limits the bandwidth capacity per user of the
medium, as only a fraction of the time is available for each user. Moreover, this

fraction is usually smaller than
1

𝑛
 (being n the number of slots into which the signal

was divided), as an optional guard interval is reserved at the beginning and/or
end of each time slot so as to avoid overlapping with adjacent slots. These guard
periods are especially necessary in scenarios with inaccurate synchronisation,
since an error in the determination of the beginning and end of time slots between
different machines can lead to an undesired overlapping and its consequent loss
of information.

2.5.2. TDMA on wireless multi-hop networks

Up to now, 802.11 networks use random contention algorithms such as
CSMA/CA to provide medium access control in wireless environments, and
although some other protocols such as PCF have been designed, they have not
been a great success. New technologies and adaptations from others are being
studied nowadays in order to have a more deterministic access distribution in
these scenarios.

The aim of this section of the project is to present the state of the art of TDMA
over WLANs, its main advantages and disadvantages, and some existing

18 Intelligent management and control for Wi-Fi small cells

projects and developments that contribute with good ideas, theories and
discoveries to the research in this area.

 Introducing TDMA in IEEE 802.11 networks

The increasing interest of introducing TDMA in IEEE 802.11-based networks has
provided some new ideas on how to adapt this protocol for existing wireless
technologies, and there are several papers that illustrate the results of the
research.

Pseudo-TDMA in MWN [15]

This paper studies the benefits of incorporating a pseudo-TDMA scheme in
wireless mesh networks, where CSMA is not enough when it comes to dealing
with typical problems such as hidden nodes. Making use of some newer
functionalities such as MCCA (Multi-user Controlled Channel Access), which lets
nodes in an 802.11 network reserve channel access intervals in advance, or
WMP (Wireless MAC Processor), a programmable node architecture, the
researches build an unsynchronised multi-hop network that does not require
signalling overheads to function.

For the experiments, a new medium access control protocol is built using the
WMP hardware functionalities abstraction (i.e. defining an API of hardware
actions available at each node) and some simple logic that connects events,
actions and conditions. This MAC program can then be transported over the
network so that all nodes work with the same set of rules.

Then the MCCA mechanism is added so as to avoid the recurrent “hidden node”
problem. It basically tries to distribute channel holding times among groups of
nodes in a way that simultaneous transmissions and potential collisions with
hidden nodes are avoided. However, it requires a proper node synchronisation
and extra signalling over the network, which increases the complexity of the
network and reduces its efficiency in terms of bandwidth. That is where the
research group goes in and perform some modifications so that the limitations in
term of signalling and synchronisation can be avoided.

As defined by its developers, Pseudo-TDMA is a scheme that “limits the channel
access rate at each node, and supports the allocation of different channel holding
times to groups of non-interfering stations without explicit negotiation among
adjacent nodes”.

Its operation is in fact quite simple. In short, it performs a first random access
CSMA/CA transmission that, if considered successful (i.e. each node received
the acknowledgements corresponding to their transmissions) is then repeated
every pseudo-frame time. An example is given in Fig. 2. 7, where unidirectional
flows from each node to its following neighbour are first set randomly. A and C
transmit simultaneously, and only D receives the packet with no interference, so
then C receives D’s ACK. Then C stops the random access policy and waits for
its next pseudo-slot, allocated at a distance of a pseudo-frame as indicated in the

Chapter 2. Theoretical background 19

figure. When all the rest of the nodes have their first successful transmission, the
final scheduling is repeated periodically.

Fig. 2. 7 Example of Pseudo-TDMA access operations in a chain of nodes A-E

The pseudo-slots can still suffer collisions before establishing the definitive
pseudo-frame, which is why the carrier sense is still used before each
transmission. That way, each node only needs to know when it has to transmit,
not what the neighbours do, and therefore no extra signalling or overheads have
to be transmitted over the network.

Several simulations and real experiments show that, although legacy DCF can,
under some conditions, achieve a better aggregated throughput, the proposed
Pseudo-TDMA scheme obtains a greater fairness rate, which is to be considered
one of the most important parameters in this kind of topologies.

Self-organizing TDMA MAC protocol [16]

The SO-TDMA algorithm aims to enable QoS provisioning in delay-sensitive
applications by taking the best of both CSMA and TDMA algorithms. Its main idea
is the same as the one in [15], with a CSMA start that then converges to TDMA
with an adaptive pseudo-frame, which changes depending on the channel state
obtained by each node of the network. SO-TDMA relies on a distributed
mechanism to improve QoS while keeping robustness and scalability untouched.

The group of researches that developed this paper, refer to technologies such as
the one in [15] as PTDMA (Pseudo-TDMA), and have studied QoS-aware metrics
like the effective capacity to prove that, despite achieving better statistics in
saturated traffic scenarios, PTDMA techniques perform poorly under unsaturated
conditions. From this, it derives that PTDMA does not adapt properly to changing
scenarios.

The SO-TDMA proposal begins just like PTDMA with a first round of CSMA
access control that switches to periodic transmissions as soon as all nodes have

20 Intelligent management and control for Wi-Fi small cells

an assigned pseudo-slot. Nevertheless, this protocol then trusts on locally
available statistics to adapt each node’s transmission length. This way, channel
utilization is maximized while providing QoS and improving effective capacity in
comparison to pure CSMA or PTDMA environments.

TDMA for today’s WLANs [17]

While [15] and [16] propose distributed mechanisms, other systems based on
centralized radio resource management have been proposed, as the success of
centralized TDMA in cellular networks is a good point to follow. They generally
provide a more precise and controlled management, although in these cases, a
very good synchronisation between nodes is needed in order to perform a
successful scheduling.

In this paper, the OpenTDMF solution is explained, an architecture (Fig. 2. 8) that
aims to provide TDMA to commodity WLAN devices, mainly in the RAN access
network although its main concepts can be applied to our multi-hop backhaul
environment. OpenTDMF’s basis is similar to SDN in the sense that it has a
decoupled control plane. An OpenTDMF controller manages flow-level access
and programmable APs, which can manage packet-level access in both
downstream and upstream communications so that all traffic in the network is
deterministic.

Fig. 2. 8 OpenTDMF architecture

The OpenTDMF controller takes QoS requirements per flow and channels
information to calculate actions for each flow on the network, letting the
programmable APs coordinate its associated devices without worrying about
interference with neighbour APs and clients.

However, as commented before, the first challenge for this idea is the need of a
precise synchronisation among APs, because otherwise the scheduling would
not be successful. The challenge was solved with the use of existing protocols
already explained in this project, such as PTP, and small modifications made to
improve its accuracy (reaching the µs level). Secondly, the uplink
communications between clients and access points was something to think about
too, as it is usually assumed that the clients determine their own medium access,
which directly confronts to the concept of centralized time scheduling. This was
solved by enabling AP-triggered uplink transmissions.

Chapter 2. Theoretical background 21

Through several examples and experiments, the team behind OpenTDMF have
proved its benefits in different scenarios with hidden and exposed nodes, QoS
requirements, etc.

All in all, the OpenTDMF project has some things in common to the project we
are developing, although they are focused in the access network (with APs
interconnected via Ethernet) while, in our case, a complex backhaul multi-hop
topology is considered.

meSDN: Mobile Extension of SDN [18]

Some of the researchers that wrote this paper want to deal with the problem of
providing QoS on WLANs, where the last hop is a shared medium accessed with
the CSMA protocol and thus APs cannot coordinate client uplink transmissions.

They propose a framework, meSDN, that extends the use of SDN to client
devices, using Open vSwitch to manage end-devices’ traffic, including additional
features such as support for PTDMA and QoS. This extension of the SDN APIs
in clients can bring the centralized management of the backhaul network also to
the uplink traffic coming from those end devices, achieving a better performance.

To do so, meSDN makes use of an architecture composed of three modules that
run over the mobile client: the Scheduler (which applies prioritization and
limitations in rate to uplink flows), the Flow Manager (an OVS that measures per-
flow statistics at the client side) and the Local Controller (which manages both
the Scheduler and the Flow Manager, as well as communicating with a Global
Controller for the definition of traffic policies and QoS profiles).

So as to solve the synchronisation issues that TDMA obviously brings to a
wireless network, they simply define that <<PTDMA scheduling unit is not per-
packet basis but is a larger time window during which a client can transmit and
receive multiple packets>>. That way, a millisecond-level synchronisation is
enough instead of the typical microsecond-level required in other scenarios.

HTDMA

HTDMA is the approach to TDMA in WLANs that will be under study in this thesis.
It is the technique proposed by the TKN group at the TU Berlin and it is based on
the idea of using a hybrid TDMA/CSMA medium access control protocol where
outgoing flows are controlled in a first instance by scheduling on the wireless
card, while the “real transmission” is later done using the default IEEE802.11
CSMA protocol.

Dividing time in a set of slots on each AP participating in the TDMA system, there
is a centralized controller that communicates with the APs using an agent that
has to be deployed at each machine. The controller then defines how time slots
are distributed according to the information collected by another SDN controller.

The HTDMA implementation that is later reviewed in more detail in chapters 3
and 4, also enables QoS by using 802.11e’s EDCA for traffic differentiation.

22 Intelligent management and control for Wi-Fi small cells

 Synchronisation in centralized scenarios

As explained in the introduction of this project, and noted also in projects like [17],
centralized TDMA scheduling requires a high level of precision between the
nodes that will be transmitting in the different time slots. This ought not to be a
problem with existent protocols that can provide an accurate synchronisation
such as the ones analysed in section 2.4.

The chosen solution in most of the cases (as in ours) is a software-based PTP
implementation, which has already been studied to be able to provide µs-level
accuracy with some tweaks made over the standard implementation. Taking into
account that the transmission time of a WLAN packet can usually move between
hundreds and thousands of µs, the accuracy variance is unperceivable.

Aneeq Mahmood et al. have studied the limits of precision with PTP
synchronisation in several ways. Paper [28] analyses Software Timestamping in
IEEE 802.11 environments in a theoretical way, without further implementations
or experiments. It is said that accuracies below 1 µs in terms of jitter can be
achieved. Paper [29] analyses Hardware Timestamping over WLANs with real-
life experiments, trying to understand the timestamping system instead of treating
it as a black-box, and proving that a solution for hardware PTP timestamping over
WLAN with a comparable performance to software PTP timestamping over
Ethernet is feasible.

 Working implementations and off-the-shelf devices

Although there is still a lot under development in this area, some companies
already offer their own proprietary solutions for TDMA in WLANs. The American
company Ubiquiti Networks offers 802.11 devices working with their airMax
protocol [30], which enables TDMA in order to “allow each client to send and
receive data using pre-designated timeslots [...], eliminate hidden-node collisions
and maximize airtime efficiency”. So, basically, they have a real-life
implementation of the studies shown before, focused on outdoor scenarios where
hidden nodes are a real problem and QoS provisioning is required.

AirMax is a centralized TDMA protocol that keeps track of the activity of all the
stations connected to what they call an airMax Sector (translated to standard
names, a BSS), preassigning slots dynamically to all active stations. Moreover,
intelligent QoS provisioning is also offered, identifying and prioritizing voice and
video sessions to provide a lower latency in those delay-aware transmissions.

Despite being a good reference for a real-life implantation of what is being studied
in this project, the off-the-shelf devices Ubiquiti Networks offers are a proprietary
solution that would work as a black box for us, being then unable to know how
they work and make any necessary tweak.

Chapter 3. Technologies 23

CHAPTER 3. TECHNOLOGIES

3.1. SENSEFUL Project and WiSHFUL platform

As already explained all along this report, the SENSEFUL project uses the
resources of the WiSHFUL platform to test new technologies and developments
in the field of small cells, aiming to provide a reliable wireless backhaul network
that efficiently shares the channel resources with the access network.

WiSHFUL is a platform developed by the Telecommunication Networks Group at
the Technische Universität Berlin that aims to provide an easy way to get projects
into the experimentation process, by offering a flexible and open source
architecture where novel wireless solutions can be tested. WiSHFUL offers a
great variety of features that were totally in line of what SENSEFUL was intended
to. It provides a node-discovery environment, remote management of the testbed
devices (frequency and power management, statistics collection, handover
control, etc.) and has both the hardware and software that this project requires,
as there are, among other things, an SDN-driven Wi-Fi access network with
network-initiated handover support, HTDMA functionalities and a synchronised
backhaul.

In this section, a description of all the elements available through the WiSHFUL
platform that are being used in the SENSEFUL project is provided. Finally, an
example showcase scenario is explained. Although an example topology is
shown in Fig. 3. 1, for a better understanding of what is being explained, the
reader can go to Appendix B in the annexes, where a figure illustrating the
intended scenario can be found.

Fig. 3. 1 SENSEFUL showcase scenario

24 Intelligent management and control for Wi-Fi small cells

3.1.1. Components

SENSEFUL makes use of the following components:

 Controller nodes: these are the elements in charge of providing the

intelligence to the network, as the whole system centralizes its functioning

in only some controller devices, following the SDN mentality. SENSEFUL

will have three different controller entities, each of which is in charge of a

different part of the project. These entities are:

o BigAP Access Controller: despite being part of SENSEFUL, this

branch of the project is out of the scope of this thesis. In short,

BigAP [3] is an architecture that provides high network performance

and a seamless handover in IEEE 802.11 networks. To do so, it

performs below MAC-layer handover making use of DFS (Dynamic

Frequency Selection) to force clients to change the AP to which

they are connected, while they think they are only changing the

operating channel. That is possible thanks to the concept of BigAP:

several APs working as a single device.

o HTDMA Controller: this entity is in charge of assigning the HTDMA

scheduling to all backhaul and access nodes.

o Backhaul Controller: SDN controller working with OpenDayLight

that manages the control plane of the backhaul links.

As expected, all three entities share some interfaces through which

relevant information to each of the controllers is transmitted. These

interfaces work with queries to the RESTful APIs working on each entity,

so that the access (BigAP), backhaul (Backhaul) and medium (HTDMA)

controllers can obtain from each other the data they need for decision-

making purposes.

 SENSEFUL nodes: wireless elements that transport the client flows across

the network to a gateway. In the WiSHFUL platform, these nodes are

implemented over Intel NUC devices (their specifications are detailed later

on this chapter) , which are equipped with up to three type of wireless

interfaces available:

o Backhaul interface: TDMA-enabled PCI-E interface working with

modified ath9k drivers that interconnects backhaul nodes.

o Access interface: TDMA-enabled PCI-E interface working with

modified ath9k drivers that connects the client nodes to the

backhaul device.

Chapter 3. Technologies 25

o Scanning interface: USB wireless interface without TDMA

capabilities, working with an rt2x00 driver, used to obtain

information about the medium status.

 Client nodes: wireless client stations that generate traffic to be carried by

the SENSEFUL network. They share the medium resources and are

implemented using TP-Link routers, and their specifications are detailed

later on this chapter.

3.1.2. Example scenario

Fig. B. 1 is a good example of a simple scenario where a complete SENSEFUL
system is built. In the legend of the image, a brief reference to each type of device
can be found.

As the figure illustrates, there are 4 SENSEFUL nodes, only two of them having
client nodes attached (10 clients connected to AP2 and 1 client connected to
AP3). Furthermore, the stations share the transmission channel with the APs
following a schedule that could be similar to the one found in the centre of the
image: channel 36 allots more time for backhauling purposes than access, as the
channel between AP2 and AP1 is carrying the data of 10 stations, while there is
only 1 station (Client STA Y1) working in this channel; on the other hand, channel
40 allocates more time for the 10 active access links than the 2 active backhaul
links. This scheduling could change if, for instance, all uplink traffic from stations
X is directed towards station Y, then channel 40 would have to increase the time
it devotes to the backhaul links so as to improve the performance.

The BigAP controller would be in charge of managing the connection of the client
stations to the APs and, for instance, it could initiate the handover of Client STA
X10 from AP2 to AP3 just by changing its operating channel from 40 to 36. The
HTDMA Controller would be centrally managing the slots at which each backhaul
and access node can transmit. Last, the Backhaul Controller would be choosing
the most appropriate path for each of the traffic flows coming from the stations.

3.2. Hardware and test scenarios

In order to run all the experiments related to the execution of this project,
experiments with different testbeds and scenarios have been run. To begin with,
there was a simple home-made topology with some Raspberry Pi devices and
laptops. Later, after some successful experiments and with the objective of
progressing in the SENSEFUL project, the development progressed into the
TWIST testbed. Below, an explanation of the available hardware in each of the
cases can be found.

26 Intelligent management and control for Wi-Fi small cells

3.2.1. Initial small-scale testbed

The initial testbed was a simple series connection of three devices (three
Raspberry Pi at the beginning, but two Raspberry and 1 laptop at the end)
connected to a virtual machine running the OpenDayLight SDN controller. In fact,
all three devices were connected to a router using their Ethernet ports; the router
connected the nodes to the VM via a private virtual network implemented with
OpenVPN. The devices were connected among them using their Wi-Fi cards.

Fig. 3. 2 Initial testbed scenario

Fig. 3. 2 shows the initial scenario, designed to emulate the network that would
later be built in the real testbed. This small-scale testbed was implemented to get
in touch with the SDN environment and with all the modules that were already
working in the project. In the testbed, each RaspberryPi had a wireless card that
interconnected them (emulation wireless backhaul links), and an Ethernet
connection used to access the device via SSH through a terminal so as to
manage their operation. In the figure, real connections represent the wired or
wireless connectivity established among the devices, while the logical
connections represent what would in fact be seen by the ODL controller at the
VM machine: a controller machine connected to a gateway AP using an Ethernet
connection, which then leads to two more APs connected in a wireless
environment.

The initial scenario with which the first experiments were performed worked with
the following devices:

3.2.1.1. Raspberry Pi Model B+

The Raspberry Pi is a cheap single-board computer (SBC) that was originally
thought to bring computer learning to schools. Nowadays, it is one of the most
demanded SBC devices all over the globe, and is used by students, project
developers, etc. The versatility and computing possibilities it offers for such a low
budget make it really useful in lots of scenarios.

For this project, some Raspberry Pi Model B+ devices were used to build some
simple SENSEFUL topologies and perform some synchronisation experiments

Chapter 3. Technologies 27

and measurements (mainly with NTP, as this model does not support all the
timestamping capabilities required for PTP to work [Fig. 3. 3]).

Fig. 3. 3 Raspberry Pi Model B+ timestamping options

The main characteristics relevant for this project are:

 CPU: Broadcom BCM2835 with single-core ARMv6 processor

 RAM: 512 MB SDRAM 400 MHz

 Connections:

o Ethernet port at 10/100 Mbps

o 4 USB 2.0

o 40 GPIO pins

The Raspberry Pis ran a Raspbian Wheezy operating system [19], kernel version
3.10 suitable for the specifications of all the software integrated in the SENSEFUL
project. Raspbian is nothing but a Debian-based OS specially designed for the
Raspberry Pi.

3.2.1.2. Wi-Fi cards

Taking into account the needs of the project, we worked with some Wi-Fi cards
that would match all the requirements, mainly: having an open Linux driver with
softMAC support. SoftMAC-based devices use the mac80211 module [20], which
takes care of the MAC functionalities.

For the Raspberry Pi, there were some Wi-Fi dongles with Ralink chipset: the Wi-
Pi1, a low-cost wireless interface built for the Raspberry; and Alfa Networks
AWUS051NH2, a bigger wireless USB adapter.

However, in order to take advantage of the feature set offered by the existent
WiSHFUL framework (such as the HTDMA MAC), an ath9k-based ([21]) card is
needed. Nevertheless, they usually come in the shape of PCI cards, so they
would not work with a Raspberry Pi. That is why some work was also performed
on an HP laptop with mini-PCI interface and a WLE200NX card with a Qualcomm
Atheros AR9280 chipset. Then, the whole Linux image with all the modules for
the laptop was built, the new Atheros drivers with some extra modifications made

1 https://www.element14.com/community/docs/DOC-69361
2 https://www.alfa.com.tw/products_show.php?pc=67&ps=241

https://www.element14.com/community/docs/DOC-69361
https://www.alfa.com.tw/products_show.php?pc=67&ps=241

28 Intelligent management and control for Wi-Fi small cells

by both the I2CAT team and the TKN compiled (they had added some features
to enable their HybridTDMA tools in the card) and finally it was integrated in the
initial small-scale test topology.

3.2.2. TWIST testbed

The German TWIST testbed in which the final experiments would be run is part
of the iMinds initiative ([22]), a digital research centre that offers a network of
experimentation testbeds that can be accessed remotely. There are several
testbeds available under this brand, and TWIST was designed to run experiments
where an advanced management of Wi-Fi networks is required.

So as to take part in an experiment using an iMinds testbed, reserachers have to
be registered in the iMinds Authority3, an organisation that provides verified
identities for accessing their available testbeds. Once the registration process is
completed, an SSH key for working with the testbed is granted.

TWIST consists of Intel NUC D54250WYKH Embedded PCs and TP-Link
WDR4300 routers distributed all along the TKN building. Their main hardware
details are:

 TWIST Routers:
o Atheros AR9344@560MHz SoC
o Atheros AR9340 2x2 MIMO for 2.4GHz 802.11b/g/n
o Atheros AR9580 3x3 MIMO for 5GHz 802.11a/n
o 3 external detachable dual band antennas (RP-SMA)
o 128 MiB RAM
o 8192 KiB Flash
o Atheros AR8327N Ethernet Switch

 TWIST NUCs
o Intel Core i5-4250U 4. Gen. 2 * 1,3-2,6GHz
o 4GB RAM
o SSD SATA 64GB
o WLAN a/b/g/n Qualcomm Atheros AR928X (PCI-Express)
o 10/100/1000 Mbps Ethernet
o 15W TDP

In order to operate the TWIST testbed remotely, we were provided with a software
called jFed, which allowed us to deploy the devices we needed with a default or
custom Linux image. See section 3.5.3.4 for more details on the jFed
environment.

The first experiments in the testbed were run with the same topology as in Fig. 3.
2, but using their NUCs instead of the three Raspberry Pi. The topology shown in
Fig. 3. 4, on the other hand, was intended to perform some synchronisation
measurements.

3 https://authority.ilabt.iminds.be/login.php

https://authority.ilabt.iminds.be/login.php

Chapter 3. Technologies 29

Fig. 3. 4 PTP measurements topology schematics (left) and in jFed view (right)

3.3. Synchronisation tools

This section is intended to work as an explanation of the main synchronisation
tools that have been used along the development of the project.

3.3.1. NTP implementation

For the tests with the NTP protocol, the default ntp Linux tool was used, which
can be obtained through the main repositories. Its functioning is based on
modifying the /etc/ntp.conf file according to the server/client function we want the
device to perform:

 Server: add the following lines to the configuration file:

Permit synchronisation to our time source but do not allow the source to

query or modify the system:

restrict default kod nomodify notrap nopeer noquery

restrict -6 default kod nomodify notrap nopeer noquery #-6 adds IPv6 support

These options were included: kod (Kiss-of-Death, send a packet to

reduce undesired queries), nomodify (forbids changes to the

configuration), notrap (prevents ntpdc control message traps), nopeer

(no peer association can be established), noquery (ntpq and ntpdc

queries will not be answered, although time queries will).

Allow only machines in your network (192.168.1.0, in our case) to

synchronize with the server, and grant all permissions to localhost:

restrict 192.168.1.0 mask 255.255.255.0 nomodify notrap

restrict 127.0.0.1

In case the server is disconnected from its time reference, use the local

clock as backup:

server 127.127.1.0 # local clock

fudge 127.127.1.0 stratum 10

30 Intelligent management and control for Wi-Fi small cells

Add log files to see the evolution of the synchronisation:

driftfile /var/lib/ntp/ntp.drift

logfile /var/log/ntp.log

Finally, after restarting the ntpd daemon, we will have a working NTP

server.

 Client: add the following lines to the configuration file:

Specify multiple servers in case the first ones can’t be reached. Also add

the IP address of the NTP server configured previously, with the prefer

option to set it as the desired source. The iburst option sends 8 packets

after each poll instead of 1, so that the initial synchronisation can be

made faster.

server 0.rhel.pool.ntp.org iburst

server 1.rhel.pool.ntp.org iburst

server 2.rhel.pool.ntp.org iburst

server 3.rhel.pool.ntp.org iburst

server 19.168.1.1 prefer

Again, restarting the daemon will get us the NTP client working.

In order to force the synchronisation to the server, you may have to type the

following command:

ntpdate –u 19.168.1.1

Finally, using the commands ntpq -p and ntpdc –c sysinfo we can obtain

information about the synchronisation.

Fig. 3. 5 NTP server (left) and client (right)

For example, in the initial test scenario, configuring a server and a client in NTP,
then running the ntpdc –c sysinfo command, resulted in Fig. 3. 5. As you can see,
the server is in this case a stratum 3 device, while the client (which obviously
must be below) is in stratum 4.

Chapter 3. Technologies 31

3.3.2. PTP implementation

As for the project in which I have taken part, there are different implementation
options for the PTP standard.

3.3.2.1. IEEE 802.11v

Despite being a standard supported by some consumer devices, we found the
IEEE 802.11v (explained in section 2.4.1.1) to be something too specific for the
proportions of our project, so we decided to use a different approach in this area.

3.3.2.2. Higher layer implementations and timestamping: the Linux PTP
Project

As an alternative to low layer PTP implementations, several options for running
this protocol in higher layers have appeared. All of them are based on the concept
of a “packet timestamp”, i.e. a time reference added to a packet when it is
transmitted or received by a device. Although, ideally, we would want the
timestamp to be set in the same instant as when the packet is received or sent,
this cannot be achieved due to the OSI Reference Model, as the timestamping
and packet transmission/reception work in different layers and there is some
delay when the packet travels through them. In order to minimize the error
between the timestamping and packet physical delivery, there are two different
timestamping models:

 Software timestamping: it is implemented either in the Application or
Operating System layers and the time reference is obtained from the
system clock, so a relatively large error is assumed.

 Hardware timestamping: it is implemented either in the Physical or MAC
layers and the time reference is obtained directly from the PHC (PTP
Hardware Clock) included in the NIC, so that the error is minimized. This
alternative is slightly more complicated as the one based on software,
because it requires the synchronisation between two clocks in the same
device: the system clock and the PHC.

In Fig. 3. 6 we can graphically see the difference between this two models.
Although hardware timestamping is inherently a better option due to its reduced
timing error, it must be noted that it requires the functioning of more pieces of
software as will later be explain. Moreover, not all connection devices (either
Ethernet or Wireless cards) offer software and/or hardware timestamping options,
so it is something that needs to be taken into account.

32 Intelligent management and control for Wi-Fi small cells

Fig. 3. 6 Software (left) and Hardware (right) timestamping layers comparison

All these higher layer PTP implementations work on user space, provided that
the Linux kernel supports some specific features, such as:

 Packet socket timestamping options, generally referred to as
SO_TIMESTAMPING. Linux applications as ethtool (available through
Linux usual repositories) can help to know whether the interfaces we want
to use have software and/or hardware timestamping capabilities. For
instance, the Intel NUCs being used in the TWIST testbed (Fig. 3. 7) do
implement support for both hardware and software timestamping in
transmission and reception mode.

Fig. 3. 7 TWIST NUCs timestamping capabilities

 The PHC subsystem should be accessible using system calls such as
clock_gettime or clock_settime.

 The drivers must support timestamping. In the TWIST testbed, NUCs are
equipped with Ethernet cards compatible with the e1000e drivers, which
are timestamping-enabled.

APP

OS

MAC

PHY

Timestamp

SYS

CLOCK

Transmission

Error

APP

OS

MAC

PHY

Timestamp
 PHC

Transmission
Error

Chapter 3. Technologies 33

As the community sees it, Richard Cochran's Linux PTP Project ([26]) seems to
be the reference system for PTP over Linux. Many important companies such as
Fujitsu, Intel, RedHat ([27]) or SUSE, among others, have shown interest in this
project and actively participated in its development. It is based on three main
applications that work together to provide a whole PTP-enabled system:

ptp4l

The ptp4l application offers an implementation of the PTP boundary and ordinary
clocks. It works with IEEE 802.3, UDP IPv4 or UDP IPv6 transport protocols, and
lets the user choose between hardware or software timestamping. When working
in software mode it synchronises directly the system clock to the master, while in
the hardware mode, it synchronises the PHC to the master clock and another tool
will be needed to synchronize the system clock.

Fig. 3. 8 Software timestamping synchronisation chain

A use example for this program can be found below, where -i identifies the
interface to be used, -S specifies Software Timestamping (-H alternatively), -s
sets the slave only mode, where the device cannot work as master clock and -m
enables the verbose mode so that all messages output are shown on screen.
Other options such as -E establish the E2E mechanism (-P for P2P instead) and
-p sets the PHC device to be synchronised.

ptp4l -i eth0 -S -s –m

Fig. 3. 9 ptp4l master (top) and slave (bottom) devices

Grandmaster Linux Server

MASTER SLAVE

SYS CLOCK
ptp4l

34 Intelligent management and control for Wi-Fi small cells

phc2sys

The phc2sys application is only needed when hardware timestamping is chosen,
and it takes care of synchronising the system clock to the PHC on the NIC, which
is synchronised to a master clock by ptp4l.

Fig. 3. 10 Hardware timestamping synchronisation chain

A use example for this program can be the one presented below, where -s
specifies the network's interface PHC, -c the slave clock (typically the system
clock) and -w tells the software to wait for ptp4l synchronisation.

phc2sys -s eth0 -c CLOCK_REALTIME –w

pmc

The PTP Management Client (pmc) application sends PTP management
messages (as specified in IEEE 1588) to connected PTP nodes. Although GET,
SET and CMD actions are available through the definition of the protocol, not all
messages are supported by most PTP devices.

LinuxPTP precision

Due to the increasing use of the Linux PTP Project in environments where
synchronisation is required, researches have started studying the precision limits
to which LinuxPTP can be brought. With complex mathematical models and
experiments as the ones used in [28] and [29], accuracies below 1 µs can be
achieved, although statistical models and further tools have to be applied in most
of the cases in order to reduce the errors produced by the path delay
asymmetries. This topic has already been treated in section 2.5.2.1 of this project.

3.4. Hybrid TDMA

The reason why synchronisation is an important part of this project is that it is
essential for developing a TDMA-based access system for Wi-Fi networks. TDMA
relies on a perfect synchronisation among all the devices in the network, so as to
have a good definition of the slots in which the shared resources will be divided.

One of the main focuses of SENSEFUL was to test TDMA techniques in Wi-Fi
environments. To do so, we have worked with some pieces of software provided
by the TKN group. Their approach to time scheduling in a WLAN is called Hybrid

 NIC Grandmaster Linux Server
MASTER SLAVE

SYS CLOCK
ptp4l

PHC

phc2sys

Chapter 3. Technologies 35

TDMA (HTDMA), a technique that makes use of both TDMA and CSMA for the
medium access control in a network. It basically enables the possibility of dividing
the transmission queue of an ath9k wireless card into N slots of duration t
microseconds. Then, a set n of the slots are configured to allow a given type of

traffic and hence, that traffic will only be transmitted for
𝑛

𝑁
𝑡 each cycle, as Fig. 3.

11 shows.

0 1 2 3 4 5 6 7 8 9

Fig. 3. 11 Hybrid TDMA example with N=10, n=3 and t=200µs

The relevant configuration parameters of the HTDMA implementation are:

 Number of slots per cycle (N), i.e. the amount of divisions each cycle has.

 Duration of each slot (t), in µs; being N*t the total duration of a cycle.

 Traffic allowance in each slot:

o Allow all: any kind of traffic can be transmitted, without restriction.

o Disable all: no traffic will be transmitted in this slot. This feature is
useful when thinking in a TDMA environment, where some nodes
remain silent while others are allowed to transmit.

o Filter by MAC address and ToS: only the traffic directed to a device
with a certain MAC address and with a specific access category is
allowed (following the priority levels in Table 3. 1). This feature is
useful for the implementation of QoS, as some slots can be
reserved for high-priority traffic, for example.

 802.1D 802.11e

Priority
Type of

Service (ToS)
Traffic Type

Access
Category (AC)

Designation

Lowest 1 Background (BK) AC_BK Background

 2 Spare AC_BK Background

 0 Best Effort (BE) AC_BE Best Effort

 3 Excellent Effort (EE) AC_BE Best Effort

 4 Controlled Load (CL) AC_VI Video

 5 Video (VI) AC_VI Video

 6 Voice (VO) AC_VO Voice

Highest 7 Network Control (NC) AC_VO Voice

Table 3. 1 Priority levels and Access Categories

200µs

36 Intelligent management and control for Wi-Fi small cells

Regarding the required pieces of software to make this work, first of all, there is
a modified version of the ath9k driver that enables all the required features for
slot division and assignment in the wireless card. Moreover, a daemon must be
installed, which takes care of the communication with the driver and offers an API
that can be accessed remotely (for example by the HTDMA centralized controller)
for its configuration. Finally, if we just want to run the protocol locally, we only
need a python script with a couple of classes and a main function that takes care
of creating, updating or deleting the slot system with which the wireless card will
be working.

3.5. Other tools

This section aims to explain other important tools that have been used or taken
into account during the development of the project, from programming languages
to SDN software or deployment tools.

3.5.1. Programming languages

These are the main programming languages that have been used during the
development of the project: Bash, Java, C and Python.

3.5.1.1. Bash

Command language used by the majority of Linux distributions, with which the
user can send actions to the computer using commands. Bash can read
commands from a file, called script, and can make use of other software such as
grep, aptitude, or any other Linux default command.

Bash scripts have been really useful when deploying all modules of the project,
as a single script was in charge of installing git and its keys, downloading chef
and the recipes for all the modules, and installing them. Moreover, there was
another bash script with which the SENSEFUL scenario could be started up.

3.5.1.2. Java

Object-oriented, concurrent, class-based programming language designed with
the WORA (Write Once, Run Anywhere) mentality so that a compiled Java
program can be run on any platform with Java support without requiring any
further recompilation.

The OpenDayLight SDN controller used in SENSEFUL is based on Java, and all
the modules implemented in the SESAME project are written in this programming
language.

Chapter 3. Technologies 37

3.5.1.3. C

General-purpose programming language that provides constructs equivalent to a
series of machine language instructions. Its run-time requirements are minimal
due to its low-level programming paradigm, although this fact also makes its use
more complex for some applications.

C offers a really simple access to network sockets, reason why this language was
chosen to write the scripts in Appendix C, used to measure synchronisation in a
PTP environment.

3.5.1.4. Python

General-purpose programming language with a syntax focused on readability
that can achieve the same functionalities as other languages with fewer lines of
code. It works with some useful and popular libraries such as ZeroMQ, an
asynchronous messaging library that uses N-to-N sockets to carry messages
through different transport mechanisms.

Python and ZMQ are used by the HTDMA implementation written by the TKN
group.

3.5.2. Version control

Version control tools are essential in development teams, as they ease the task
of tracking all the parallel progresses while having a permanently available
version of the project online. One of the most popular tools, is git.

3.5.2.1. Git

Version control system used by most of the software development teams in the
industry. It works under a distributed topology, which means that in a shared
repository, every terminal in which the repository was cloned, is a repository itself,
with full tracking capabilities. That way, the server side of the repository is nothing
but a cloud version of the directories being tracked. With git, everyone works with
their local version of the repository, which then has to be uploaded for example
to a GitLab server using commits. In this procedure, merges between users may
be needed, when the same file has been modified in two independent local
repositories.
Git has been really useful for this project in the sense that all the SENSEFUL
scripts required to start it were already available in an I2CAT GitLab repository.
For this thesis, some personal branches were also created so as not to interfere
with the work under development while performing other experiments. Git also
made everything easier when having to deploy the modules to a new device, as
everything was available online.

38 Intelligent management and control for Wi-Fi small cells

3.5.3. Deployment tools

Under the title of deployment tools, all the software that has been used in the
different stages of the deployment of our system is included. Chef made it easier
to get all the SENSEFUL modules working just by running some scripts. Ansible
was used to prepare some Ubuntu images for the TWIST testbed. Finally, jFed
did the “physical” deployment of the images on the testbed.

3.5.3.1. Chef

Configuration management tool that is really popular when dealing with multiple
identical deployments of a system in several machines. It is also integrated in
some of the most popular cloud-based platforms, like Amazon EC2, Google
Cloud Platform, OpenStack or Microsoft Azure. With chef, you define a set of
recipes, cookbooks and roles that must be executed by the Chef Client (Ruby-
based) in order to set a machine to the working state we want it to be. In recipes
the user defines which packages (for instance git, ssh or ethtool) must be installed
and how to configure them, which files must be written or which services running.
Then, the developer can group several related recipes under a cookbook; and
define other specifications in a role.

For the deployment of the SENSEFUL modules, a bash script that launched a
chef-client instance with a role that installed all the required packages and
modules was used.

Fig. 3. 12 Examples of chef role (left) and recipe (right)

3.5.3.2. Ansible

Configuration management tool used by the TKN to build the custom Ubuntu
images ready to be deployed in the TWIST NUC devices. With ansible you
basically establish a set of roles (a similar meaning to the term used in chef, as it
represents a set of actions to be executed) that, by means of calls to ansible tasks
prepare the configuration the user has programmed. The roles are defined inside

Chapter 3. Technologies 39

ansible playbooks, *.yaml format files that include all the parameters and tasks to
be done.

Using a playbook provided by the TKN team (which included a debootstrap task
pointing to an Ubuntu Precise image) we could have a “clean” Ubuntu12.02
image with a 3.2 kernel version. Over that image, we would have to install all the
required packages and modules using other tools such as chroot and chef.

3.5.3.3. debootstrap

Tool used to install a Debian-based operating system inside a subdirectory of the
running OS. The Debian image can be automatically downloaded from any official
repository.

Using debootstrap as a task inside the ansible playbook, we obtained the Ubuntu
base image we needed for the TWIST testbed.

3.5.3.4. jFed

jFed [31] is a software developed by the iMinds organisation (Flemish research
institute in charge of promoting ICT companies, authorities and other
organisations), the Ghent University (a telecommunications team in Belgium) and
Fed4Fire (the Federation for Future Internet Research and Experimentation). It
is a Java-based framework designed for testbed federation that, in our case, we
use to access the TWIST testbed and deploy our network on their devices. It is
really easy to use, and has a friendly interface when talking about the deployment
of the nodes. However, it can be a bit rough to work with when problems appear,
as there is no feedback when nodes cannot be deployed, so there is no way to
know what the problem was.

Before getting in jFed, the user must download the certificate granted by iMinds
and browse it in the launcher. If the certificate is valid, jFed will show the user,
the authority that granted it and its expiration date.

Here there is a brief explanation on how to deploy a node:

1. Click and drag a “Wireless node” to the workspace.

2. Choose the testbed to be used (TWIST in our case), the node to be

deployed (“NUCx”, were x is a figure) and copy the link to an http server

(note that services offering storage with access via https protocol such as

Dropbox will not work in jFed, so an http storage server has to be used)

containing the desired image compressed in a *.tar.gz file.

3. Run the experiment, and once the node lights in green (red means the

deployment was unsuccessful), you will be able to access the node via

SSH.

40 Intelligent management and control for Wi-Fi small cells

Fig. 3. 13 jFed main screen and node configuration

3.5.4. Drivers

Below, some of the drivers with which this thesis has interacted along the project.

3.5.4.1. mac80211

Framework used to modify drivers in SoftMAC wireless devices. SoftMAC
devices, in comparison to FullMAC, enable a bigger control over the hardware,
as the 802.11 frames can be managed via software. mac80211 makes use of
cfg80211 for networking registration and configuration, while it uses nl80211 and
other wireless extensions to configure the device.

In the project, a modified version of mac80211 has been used, which basically
collects statistics of the wireless medium, enables QoS and changes VLAN LLID
and PLID tags. All these modifications were developed in order to integrate the
system with the SDN platform.

3.5.4.2. ath9k

The wireless Atheros cards we have used in the project (Compex WLE200NX4)
ran with the ath9k driver using the Qualcomm Atheros AR9280 chipset. In fact, it

4 http://www.compex.com.sg/product/wle200nx/

http://www.compex.com.sg/product/wle200nx/

Chapter 3. Technologies 41

is a modified version that collects information from the debugFS (RAM-based file
system designed for debugging) about the hardware outbound queues.

Later, some extra modifications were added to the driver, so as to enable some
TDMA capabilities required to make the HybridTDMA module work.

3.5.5. SDN software

Here the main SDN software used in the SENSEFUL project is described.

3.5.5.1. OpenDayLight

OpenFlow controller written in Java that provides the intelligence to the control
plane of an SDN network. It can be accessed through several interfaces, the most
common of them being a RESTful API and a graphical user interface accessible
through a web browser.

OpenDayLight makes use of the OSGi platform to manage Java modules (or
bundles, using its own terminology). They can be installed during running time
and are grouped up under a single virtual machine.

Below there is an example screenshot of the OpenDayLight GUI. The first tab,
“Devices”, shows a list of the devices connected to the controller, some
information about them, and a graphical representation of the network. The
second tab, “Flows”, lists all flows being carried through the network, while
showing some of the information that can generally be found in an OpenFlow flow
table.

Fig. 3. 14 OpenDayLight GUI

42 Intelligent management and control for Wi-Fi small cells

3.5.5.2. Open vSwitch

OVS is a software implementation of a multilayer virtual switch. It makes use of
OpenFlow and OVSDB (OVS Database Management Protocol) to bring together
all the virtual machines within a hypervisor instance on a certain server.

3.5.6. User space

Below, the uncommon user space software that was used is detailed.

3.5.6.1. chroot

Tool that changes the apparent root directory of the current running OS by the
one specified on its parameters when executed (in our case, the second OS
installed with debootstrap through the ansible playbook [3.5.3]). Chroot is really
useful when building a Linux image inside another Linux system, as required
when preparing the TWIST distribution over a running Ubuntu. With the simple
instruction below, the system root directory will change to the “child OS” and we
will get inside it, and every other command executed will affect to the child
system.

 sudo chroot directory_to_childOS_rootfs

However, take into account that the running kernel will still be the one in the
parent distribution, so any kernel-related package (such as linux-image or linux-
headers) will be installed according to the running OS version.

3.5.6.2. ethtool

User space tool that displays or changes Ethernet card settings, as in Fig. 3. 7,
for instance. It must be taken into account that in the Precise (12.04) version of
Ubuntu, the most recent available version is 3.1, which does not still include the
–T (--show-time-stamping) tool used to see the timestamping capabilities. That is
why, to see the options of the TWIST NUCs we had to work with an Ubuntu Trusty
(14.04) or Xenial (16.04) version, which supports later versions of this program.

Its use is really simple, the following order is enough to show the timestamping
capabilities:

 ethtool –T eth0

3.5.6.3. nginx

NGINX is an open-source HTTP server tool that was used to upload all the
Ubuntu images that had been developed for the TWIST testbed, so as to be used
by jFed.

Chapter 4. Development and results 43

CHAPTER 4. DEVELOPMENT AND RESULTS

4.1. Synchronisation evaluation

Due to the importance of synchronisation among nodes in our scenario, we
performed some measurements to assess how well some of the techniques and
protocols studied in chapter 2 would work in a real-life environment.

4.1.1. Measuring synchronisation

When thinking about how to measure the time difference between two nodes
some ideas came up. As a first approach, we considered programing events at a
certain frequency, set a timestamp when the event was launched at both
machines and then compare the logs and measure the difference. Being this
maybe a good idea for occasional measurements, we thought it wouldn’t be
suitable for a continuous tracking during hours, so we discarded it.

On a second round of thought, we chose the idea of using a three-node scenario
(such as the one explained in section 3.2.2’s Fig. 3. 4), where a client terminal
would send broadcast messages to a couple of receivers, which share a
synchronisation protocol (one of the nodes acts as master and the other as
slave). That way, and taking profit of the timestamping capabilities of the network
cards, a timestamp would be set to every received packet (the actual reception
time being identical for both receivers, since the packets were transmitted in
broadcast mode). Then, the accuracy in the synchronisation protocol was simply
calculated by comparing both measurements.

In order to build this experiment, two scripts were developed: one for the
transmitter, sending packets every second for a certain period of time; and one
for the two receivers, listening for packets, timestamping at their arrival,
translating the timestamp to a human-readable format and writing it to a CSV file
for its posterior analysis. The transmission was built over UDP sockets, on a fixed
port, and with the timestamping capabilities enabled on the socket (the
SO_TIMESTAMP or SO_TIMESTAMPNS flags have to be declared before
opening the socket; the only difference is that the first flag counts up to
microseconds, while the second goes to nanoseconds).

In the annexes (Appendix C) you can have a closer look at the scripts used.

4.1.2. Performance evaluation

Once the proper functioning of the scripts was tested, the three-node topology
was built, first with Raspberry Pis and then in the TWIST testbed. Two of the most
popular software-based synchronisation protocols, NTP and PTP, have been
tested.

44 Intelligent management and control for Wi-Fi small cells

4.1.2.1. NTP

NTP is known for being a decent synchronisation protocol in scenarios where
precision and accuracy requirements are not extreme. However, we wanted to
have a better look at its flaws on the long term. That is why a six hour experiment
was run, with a packet being sent every second through the UDP socket
explained before, i.e. 21600 samples.

Fig. 4. 1 NTP synchronisation measurements during 6h

As can be seen in Fig. 4. 1, NTP does not seem suitable for the development of
a TDMA application, since from time to time, the time difference between two
nodes reaches values of nearly 1 second, and that would get even worse in multi-
hop scenarios. If we have a closer look at the peaks, we appreciate there’s a
more or less fixed spacing between them, of about 2500 samples, which
translates to 40-45 minutes; however, no explanation to why NTP would behave
strangely every that period of time has been found.

Analysing this data deeper, we get to know that:

 Only 52.9% of the samples (11429 samples) have a value smaller than

1ms, which means that half of the time, microsecond accuracies are not

achieved.

In Fig. 4. 2, values greater than 5ms have been put to 0 and highlighted in

orange. There you can see that there is some kind of curve evolution for

the synchronisation: approximately for the first 1500 samples (25 minutes),

NTP does not reach accuracy below 5ms, while later it lowers its values

and stabilizes, with some obvious outliers every 40-45minutes.

 The average time difference during the 6h run is 879,4µs.

-1,5

-1

-0,5

0

0,5

1

1,5

0 5000 10000 15000 20000 25000

Ti
m

e
d

if
fe

re
n

ce
 (

s)

Samples

Chapter 4. Development and results 45

Fig. 4. 2 Measurements with values greater than 5 ms ignored

4.1.2.2. PTP

In principle, PTP would be a better option for meeting the requirements of our
project. To check this assumption, a 2h (7200 samples) experiment with packets
being sent every second and software timestamping was run.

Fig. 4. 3 PTP synchronisation measurements during 2h (left) and only in the
first 75 minutes (right)

As depicted in Fig. 4. 3 (left), PTP does not show as many outliers as NTP. There
are still some accuracy losses, but they are far away from the nearly 1s suffered
in NTP (in fact, they do not reach 80ms). If we consider only the first 4500
samples (75 minutes) (Fig. 4. 3 [right]) we can see that most values are kept
under the 100µs accuracy after a transient initial time with peaks under 300µs.

Further analysis of the 7200 samples provides us with the following information:

 99.0% of the samples have a time difference below the millisecond, 91.1%

below 100µs and 58% below 10µs.

 The average time difference during those two hours was of 46.8µs.

-0,006

-0,004

-0,002

0

0,002

0,004

0,006

0 5000 10000 15000 20000 25000

Ti
m

e
d

if
fe

re
n

ce
 (

s)

Samples

-0,04

-0,02

0

0,02

0,04

0,06

0,08

0 2000 4000 6000 8000

Ti
m

e
d

if
fe

re
n

ce
 (

s)

Samples
-0,25

-0,15

-0,05

0,05

0,15

0,25

0,35

0 1000 2000 3000 4000 5000

Ti
m

e
d

if
fe

re
n

ce
 (

m
s)

Samples

46 Intelligent management and control for Wi-Fi small cells

4.1.3. Conclusions

As we already anticipated, despite being a good solution for deployments without
strict requirements of synchronisation accuracy, NTP does not provide us with
the precision that a TDMA-enabled environment asks for. Only half of the
samples show a time difference below the millisecond threshold.

On the other hand, PTP (with its linuxptp implementation and with no further
protocol modification) grants better synchronisation, staying below the 100µs
nine tenths of the time, values that are much more compliant with the
transmission time of WLAN environments (i.e. comparable to frame transmission
time).

Finally, it must be said that both solutions studied here show some problems on
the long run, with peaks of desynchronisation that could possibly affect the
performance until the protocol recovers its normal operation.

4.2. HTDMA

In this section, the summary and conclusions of the experiments run in the
HTDMA scenario can be found. There is a review of the process to find the best
slot duration, a comparison between HTDMA and pure CSMA, and some other
experiments aimed at taking profit of the advantages of this medium access
control technique.

4.2.1. Slot times and first steps with the system

As seen in section 3.4, the deployment of a hybrid TDMA MAC is done using a
python user-space script that exposes some of the parameters under which the
scheduling will be configured. First of all, we wanted to see how the system
behaved with different slot durations, and later there was some further work with
performance under different slot-assignment conditions and how QoS can be
enabled in such a system.

4.2.1.1. Slot duration

In order to find the best configuration for an optimal behaviour of the protocol,
several experiments were performed, with the first objective of finding the most
suitable length for each slot. We found it interesting to see what happened when
the duration of the slot corresponded to N times the transmission time of a packet,
being N both smaller and greater than 1, i.e. studying the impact of having slots
shorter than the real duration of a transmission or slots that can accommodate
several packets.

To do so, a scenario with only 2 devices connected in an Ad-hoc network was
built. One of the computers would work as a server, while the other would be the

Chapter 4. Development and results 47

client, and would have an active HTDMA MAC on its wireless interface. That way,
using tools such as iperf and Wireshark, we are able to analyse throughput and
packet bursts.

Fig. 4. 4 Slot assignment for the “slot duration” experiments

Fig. 4. 4 illustrates an example slot assignment, where: in blue, the slots where
packets could be sent; in white, the slots that were disabled; and in orange, the
packets that fit inside a slot, being Tslot = 3Tm in this example. For the experiments,
time was divided in 20 slots, only the first of them being used for transmission,
while the rest were disabled. With that scheme, using traffic analysis software
such as Wireshark it was easy to detect packet bursts, as they would have to
happen only for the duration of 1 time slot every cycle (the duration of a cycle is
20 times the duration of a single time slot). The length of each slot, Tslot, was
varied to see which value provides the best performance.

Logically, Tslot would have to be proportional to the transmission time of a single
packet, so first of all, some calculations about transmissions would have to be
done. The time required to transmit a frame is shown in (4.1), where some values
are constant for the scenario built with 802.11g and a physical bitrate of 54Mbps:
DIFS = 28µs, SIFS = 10µs and 𝛿 can be neglected, as it represents the
propagation delay (which is really small considering the distances in typical
WLAN environments).

𝑇𝑚 = 𝐷𝐼𝐹𝑆 + 𝑇𝑑𝑎𝑡𝑎 + 𝛿 + 𝑆𝐼𝐹𝑆 + 𝛿 + 𝑇𝐴𝐶𝐾 (4.1)

The transmission time of a packet, Tdata, corresponds to (4.2), where TH is the
duration of the preamble/header and equals 20µs, Tsext is the signal extension
time of 6µs, L depends on the packet length (L includes 36Bytes of MAC and LLC
headers plus the payload, LDATA) and r is the transmission rate (54Mbps for
normal frames or 24Mbps for ACKs). TACK equals Tdata using L = 14 Bytes.

𝑇𝑑𝑎𝑡𝑎 = 𝑇𝐻 + 4 ⌈
(22+𝐿·8)

4𝑟
⌉ + 𝑇𝑠𝑒𝑥𝑡

 (4.2)

Following these equations, we obtain, for example, Tm for packets of 800 Bytes
is 226µs. Then, the slot duration, proportional to this value, could be half the
transmission time of a packet, 1 time that value, 2, 3, 5, 10, 20 and 30 times
(enough variety so as to see a tendency in the behaviour).

After several experiments, the results were:

48 Intelligent management and control for Wi-Fi small cells

 If Ts < 10Tm, 8 to 10 packets are transmitted on a single slot.

 If Ts = 10, 20 or 30Tm, on average, 10, 20 or 30 packets are transmitted

on a single slot.

That behaviour can be explained due to a hardware limitation introduced by the
wireless card. Apparently, the Qualcomm Atheros AR9280 chipset has a
hardware queue that fills even though the open slot does not theoretically let so
many packets through, so the minimum possible transmission corresponds to
those 8 to 10 frames.

Experiments were run with other packet lengths, and the same results were
obtained, so in conclusion we can assume that, for the scheduling to work as
close as possible to its theoretical model, slots should be able to admit at least
10 frames. Otherwise, slots may overlap since, at the end of the slot, there may
be pending frames in the hardware queue.

4.2.1.2. Performance evaluation

Once the first doubts regarding the operation of HTDMA are solved, it would be
interesting to study the performance of this MAC protocol in terms of throughput
and jitter (measurements that can be easily obtained with a client-server topology
and iperf).

To do so, experiments with three variables were run:

 Frame size: 1400, 800 and 100 Bytes

 A cycle of 10 slots, with different amounts of open slots: 1/10, 2/10, 5/10

or 10/10.

 Number of frames per slot (i.e. slot length): 10, 20 or 30 frames.

Launching iperf with the command below, a UDP flow at 25Mbps with the desired
packet length (subtract 28 Bytes corresponding to IP and UDP headers) is
obtained. Moreover, the HTDMA python script had to be modified according to
the slot duration depending on the amount of packets to fit in a slot.

 iperf –u –c @IPclient –b 25M –l L –t 30 –i 3

The results are summarized in the figures below (due to space restrictions, here
we show only a couple of representative examples of throughput and jitter
measurements; Appendix D includes a more complete set of results), comparing
the values obtained against legacy CSMA.

Chapter 4. Development and results 49

Fig. 4. 5 Throughput for packets of 1400 Bytes (left) and 100 Bytes (right)

Fig. 4. 6 Jitter for packets of 1400 Bytes (left) and 100 Bytes (right)

In Fig. 4. 5 there is a clear representation of how smaller time slots achieve a
better performance than bigger ones in terms of bandwidth, regardless of the
proportion of open slots; having a slot duration of 10 frames is preferable to it
being 30 times the frame transmission time both in terms of throughput and delay.

Jitter will obviously be worse with fewer active slots and longer slots, as the
variation in the arrival of frames under those two conditions will be larger. That is
exactly what Fig. 4. 6 illustrates. Taking as an example the single slot
measurements, we can see that jitter is nearly directly proportional to slot
duration. That is because the duration of those 9 inactive slots is longer in each
case.

In order to confirm this behaviour, some more experiments were run, where the
proportion of open slots (the open slots were consecutive too) kept invariable: 2
out of 10, 4 out of 20 and 8 out of 40. Packet size of 1000 Bytes, a bandwidth of
25Mbps and slots of size equivalent to 10Tm were used.

0

5

10

15

20

25

CSMA 1 slot 2 slots 5 slots 10 slots

Th
ro

u
gh

p
u

t
(M

b
p

s)

Slot assignment 10Tm 20Tm 30Tm

0

0,4

0,8

1,2

1,6

2

CSMA 1 slot 2 slots 5 slots 10 slots

Th
ro

u
gh

p
u

t
(M

b
p

s)

Slot assignment 10Tm 20Tm 30Tm

0

2

4

6

8

10

12

14

CSMA 1 slot 2 slots 5 slots 10 slots

Ji
tt

e
r

(m
s)

Slot assignment 10Tm 20Tm 30Tm

0

4

8

12

16

20

CSMA 1 slot 2 slots 5 slots 10 slots

Ji
tt

e
r

(m
s)

Slot assignment 10Tm 20Tm 30Tm

50 Intelligent management and control for Wi-Fi small cells

Fig. 4. 7 Throughput and jitter with a constant proportion of open slots

Fig. 4. 7 illustrates how jitter increases and throughput decreases as long as the
HTDMA cycle increases its size, despite having the same proportion of usable
time.

As a conclusion, we can assume that the smaller the slot the better the
performance, taking into account the limitations imposed by the hardware.

4.2.2. QoS over HTDMA

Quality of Service is generally enabled in legacy CSMA by means of
IEEE802.11e’s Enhanced Distributed Channel Access (EDCA). This system sets
four different priorities, called Access Categories (AC), each having different
transmission parameters in order to set different priorities. Concretely, the
maximum and minimum contention window sizes, inter frame spacing (Arbitration
Interframe Space, AIFS) and duration of a transmission opportunity (TXOP) are
defined for each AC. These parameters have some default values, which in a
Linux-based device can be found (and thus modified) in a mac80211 kernel
module file5.

The HTDMA system makes it possible to have a more flexible QoS provisioning
by means of defining the time slots available for each type of traffic. A dynamic
approach to the scheduling can result in a big improvement on the performance
of the wireless network.

So as to test the possibilities of HTDMA regarding QoS provisioning, some
experiments were run where various simultaneous UDP data flows were sent
from a single client to a common server. Each of the flows has a different EDCA

5 mac80211_driver_directory/net/mac80211/util.c

5,64

4,39

3,784,418

6,653
7,269

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

2/10 4/20 8/40

Ji
tt

er
 (

m
s)

Th
ro

u
gh

p
u

t
(M

b
p

s)

Open slots

Effects of bigger HTDMA frames

Chapter 4. Development and results 51

definition (levels 2, 3 and 5 in Table 3. 1; they can be defined in iperf with the –s
flag followed by the code of the AC) and the same offered traffic of 20Mbps.

Then, two tests were performed, one using the legacy CSMA MAC, and another
one using HTDMA. The experiments consisted, at first, in three simultaneous
flows with ToS definitions AC5, AC3 and AC2, respectively; and then, after one
minute, two new AC3 flows are added. The experiments worked as follows:

 Legacy CSMA works assigning bandwidth depending on the Access

Category and its default configuration parameters. The results are shown

in Fig. 4. 8.

Fig. 4. 8 Throughput measuremens in QoS environament using CSMA

 With HTDMA, there was a manual change on the slot assignments (as in

Fig. 4. 9), emulating an ideal dynamic scheduling: for 3 flows, a time frame

of 12 slots with an assignation of 8, 3 and 1 in descending AC priority; for

the case of 5 flows, 18 slots, assigning of 8, 9 and 1 to give more resources

to AC3 flows. The results are shown in Fig. 4. 10.

Fig. 4. 9 Slot assignment in the HTDMA QoS experiment

52 Intelligent management and control for Wi-Fi small cells

Fig. 4. 10 Throughput measurements with 3 (left) and 5 flows (right)

It is interesting to note that legacy CSMA does not let us dynamically adapt the
traffic preferences, as it performs its own prioritization according to the values of
the parameters configured in the driver. That is why the same example run with
CSMA adapts worse to the varying traffic demands: the highest priority traffic is
kept stable at maximum bitrates, while the traffic of medium and low priority are
brought to really similar values of throughput, which is unfair in terms of individual
flows. Meanwhile, the assignment performed in HTDMA is much fairer, as AC5’s
throughput is slightly reduced to allocate the two new AC3 flows. The fairness of
the system can be calculated with a variation of the Jain’s fairness index (4.3),
where fi is the actual throughput achieved by each of the i flows and Fi is the Max-
min fair throughput for each flow, considering its weight as compared to the rest.

𝐽 =
(∑

𝑓𝑖
𝐹𝑖

)𝑛
𝑖

2

𝑛·∑ (
𝑓𝑖
𝐹𝑖

)2𝑛
𝑖

 (4.3)

That way, for the case of 5 flows sharing the resources, the Jain’s fairness index
for CSMA is 0.77, while for HTDMA it is 0.96.

Nevertheless, we can think of different scenarios where, for example, fairness is
not important and traffic AC5 is critical, so that it needs maximum throughput.
With HTDMA, this can also be achieved by scheduling more transmission time to
AC5. That is why HTDMA can be used in many different situations, enabling a
wider range of QoS policies through different scheduling algorithms and different
optimization parameters.

In conclusion, EDCA is a decent technique for QoS provisioning in standard
scenarios, but newer techniques such as HTDMA enable a more precise
provisioning with more options so as to dynamically accommodate the medium
to the requirements of the system.

Chapter 5. Conclusions and future work 53

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

With regards to the development of this thesis, the overall valuation is positive,
as the main objectives of the project have been accomplished. First of all, there
was the study of potential synchronisation tools to be used in the project, both in
terms of theoretic research and practical performance in small test scenarios; the
experiments that were performed with synchronisation protocols provided useful
information about the real capabilities of PTP and NTP, and how much better the
former is. Later, and with the help of the research team in I2CAT I was able to
get familiar with the development of the SDN SENSEFUL platform, which led me
then into preparing my own Linux-based image to deploy the system in the
WiSHFUL TWIST testbed, making use of some of the tools provided by the TKN
team. Finally, the HTDMA mechanism was studied, by means of understanding
how it worked, installing it on my local testbed and the image for the TWIST, and
performing some initial tests on its performance comparing it to legacy CSMA
MAC. Some of these experiments have resulted in learning about optimal slot
durations, QoS and throughput performance, etc., which is really useful for the
project itself.

In a more personal note, the development of this project has been really
gratifying, as a lot of the knowledge acquired during my studies have become
useful while working on it. Moreover, it has introduced me into fields that are not
so deeply explored in the degree, such as synchronisation or Software Defined
Networking, while letting me learn about the latest researches in some other
areas such as the introduction of TDMA in Wireless LANs. While the main
objectives where fulfilled, and each of them meant a challenge in some sense,
some of them were more a bit of a problem than others. The first steps of the
project, understanding and catching up with the SENSEFUL project, were
difficult, as it was something really big that had been under development for long,
although I had the help of the team for anything I needed. Then the pace slowed
down as everything started working and my test scenarios were set up. Finally,
the adaptation of all the work that had been done into the German testbed was
also a big challenge, as lots of specifications and requirements had to be met
regarding both the hardware itself and the SENSEFUL platform, and the software
used to interact with TWIST did not provide enough information whenever
problems occurred, so lots of mail exchanges and teleconferences became
necessary. However, and seen from the present, having been able to fulfill all the
expectations that were set up at the beginning of the project, I am really happy
with the result.

5.1. FUTURE WORK

Despite having done everything that was once planned for this thesis, there is still
some more work to do regarding the SENSEFUL project. The team, together with
the TKN group in Berlin, are planning the topology and hardware requirements to
run some of the experiments which may result in more interesting conclusions.

54 Intelligent management and control for Wi-Fi small cells

Synchronisation is still to be tested in bigger multi-hop scenarios too. It has been
studied in this thesis that PTP can provide a good level of synchronisation among
nodes, but it has still to be tested whether this level of accuracy is enough for a
system that relies on the perfect timing between slots.

The state of the art of TDMA MAC over WLANs shows that there are many
research groups interested in this area. It was shown that there are already
consumer solutions that offer scheduling in hybrid medium access mechanisms.
However, the tendency of the sector is to have software implementations that can
be applied over any kind of hardware, so alternatives such as the proposed
HTDMA seem to be the future.

In terms of HTDMA, there are still several tests which we want to perform, so as
to learn more about this mechanisms and its real capabilities. We want to test
throughput and jitter in topologies were several machines use this MAC, also take
profit of the hybrid composition of the system to assign the same slots to several
devices so that they work both under TDMA and CSMA, etc.

Finally, there is the provisioning of QoS using HTDMA and compare it to the
standard CSMA’s EDCA tool. QoS over HTDMA implies a big challenge, as slot
reservations have to be very dynamic in order not to waste transmission
opportunities with slots that are empty because of waiting for a future flow or once
a flow ends. However, once everything is set up and working correctly, its
performance should be much better –and way more configurable– than the
capabilities of today’s Wi-Fi.

As long-term objectives for SENSEFUL, the team wants to prove all the
advantages of this Wi-Fi micro-cell system with a shared medium between
backhaul and access network, focusing, above all, on the dynamicity in resource
management thanks to SDN, the benefits of BigAP regarding handover, and how
HTDMA can solve some of the endemic problems of Wi-Fi.

Finally, regarding the environmental impact of this thesis there is not much to say,
as the current legislation makes sure that WiFi works within non-dangerous limits
of transmission power. Moreover, the concept of the project itself is aimed at
minimizing interference by using scheduled transmissions, optimize network
performance and thus producing energy savings.

All in all, this thesis covers the most relevant aspects of future SDN-driven small
cell networks, the present of synchronization in wireless networks and the future
of medium access mechanisms. Experiments were run so as to prove the points
made in the theoretical chapters, and there is a finishing brief explanation of what
is still to come.

Bibliography 55

BIBLIOGRAPHY

[1] I2CAT Foundation website - http://www.i2cat.net/en

[2] WiSHFUL Project website - http://www.wishful-project.eu/

[3] A. Zubow, S. Zehl, A. Wolisz, “BIGAP–Seamless Handover in High

Performance Enterprise IEEE 802.11 Networks”. Technical Report TKN-
15-004, Telecommunication Networks Group, Technische Universität
Berlin, 2015

[4] TWIST testbed website - https://www.twist.tu-berlin.de/

[5] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast

Update, 2015-2020 White Paper -
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-
networking-index-vni/mobile-white-paper-c11-520862.html

[6] Small Cell Forum website - http://www.smallcellforum.org/

[7] Small Cell Forum, “Backhaul technologies for small cells: use cases,
requirements and solutions”, February 2013

[8] Software Defined Networking’s Open Networking Foundation definition -
https://www.opennetworking.org/sdn-resources/sdn-definition

[9] Software Defined Everything’s (SDx) SDN architecture definition-
https://www.sdxcentral.com/sdn/definitions/inside-sdn-architecture/

[10] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.
Rexford, S. Shenker, J. Turner, “OpenFlow: Enabling Innovation in
Campus Networks”, March 2008

[11] Metro Ethernet Forum, “LTE Synchronisation v075.06.01”, pages 1 - 28,
February 2014

[12] K. Stanton, C. Aldana, “Addition of p802.11-MC Fine Time Measurement
(FTM) to p802.1AS-Rev: Tradeoffs and Proposals”, IEEE 802.1 Plenary,
March 2015

[13] “Distribution of timing information through packet networks”, ITU-T
Recommendation G.8264, October 2008

http://www.i2cat.net/en
http://www.wishful-project.eu/
https://www.twist.tu-berlin.de/
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
http://www.smallcellforum.org/
https://www.opennetworking.org/sdn-resources/sdn-definition
https://www.sdxcentral.com/sdn/definitions/inside-sdn-architecture/

56 Intelligent management and control for Wi-Fi small cells

[14] “Network Limits for Time Synchronization in Packet Networks”, ITU-T
G.8271.1/Y.1366.1, July 2013

[15] I. Tinnirello, P. Gallo. "Supporting a pseudo-TDMA access scheme in
mesh wire-less networks." Wireless Access Flexibility, pages 80-92,
Springer Berlin Heidelberg, 2013

[16] Y. Khan, M. Derahkshani, S. Parsaeefard, T. Le-Ngoc, "Self-Organizing
TDMA MAC Protocol for Effective Capacity Improvement in IEEE 802.11
WLANs." 2015 IEEE Globecom Workshops (GC Wkshps). IEEE, 2015

[17] Z. Yang, J. Zhang, K. Tan, Q. Zhang, Y. Zhang, "Enabling TDMA for
today's wireless LANs." Computer Communications (INFOCOM), 2015
IEEE Conference on. IEEE, 2015

[18] J. Lee, M. Uddin, J. Tourrilhes, S. Sen, S. Banerjee, M. Arndt, K. Kim, T.
Nadeem, “meSDN: Mobile Extension of SDN”

[19] Raspbian - https://www.raspbian.org/

[20] Documentation for Linux wireless modules - http://www.linuxwireless.org

[21] Ath9k drivers - https://wireless.wiki.kernel.org/en/users/drivers/ath9k

[22] iMinds - https://www.iminds.be/en

[23] IEEE 802.11v - http://www.ieee802.org/11/Reports/tgv_update.htm

[24] G. Venkatesan, “Timing Measurement”, Intel Corporation, July 2008

[25] K. Ichikawa, “Precision Time Protocol on Linux – Introduction to linuxptp”,
Fujitsu Limited, LinuxCon Japan 2014

[26] The Linux PTP Project - http://linuxptp.sourceforge.net/

[27] Linux PTP RedHat documentation -
https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/ch-
Configuring_PTP_Using_ptp4l.html

https://www.raspbian.org/
http://www.linuxwireless.org/
https://wireless.wiki.kernel.org/en/users/drivers/ath9k
https://www.iminds.be/en
http://www.ieee802.org/11/Reports/tgv_update.htm
http://linuxptp.sourceforge.net/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/ch-Configuring_PTP_Using_ptp4l.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/ch-Configuring_PTP_Using_ptp4l.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/ch-Configuring_PTP_Using_ptp4l.html

Bibliography 57

[28] A. Mahmood, G. Gaderer, “Towards High Accuracy in IEEE 802.11
based Clock Synchronization using PTP”, Institute for Integrated Sensor
Systems, Austrian Academy of Sciences

[29] A. Mahmood, R. Exel, T. Sauter, “Delay and Jitter Characterization for
Software-Based Clock Synchronization Over WLAN Using PTP”, IEEE
Transactions on Industrial Informatics, Vol. 10, Nº 2, May 2014

[30] Ubiquiti Networks, “airMAX TDMA Technology Datasheet”, California
(EEUU) 2014

[31] jFed website - http://jfed.iminds.be/

http://jfed.iminds.be/

Abbreviations and Acronyms 59

ABBREVIATIONS AND ACRONYMS

AC Access Category

ACK Acknowledgement

AGNSS Assisted Global Navigation Satellite System

AIFS Arbitration Interframe Space

AP Access Point

API Application Programming Interface

BSS Basic Service Set

CDMA Code Division Multiple Access

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

CSV Comma-Separated Values

DCF Distributed Coordination Function

DIFS DCF Interframe Space

DFS Dynamic Frequency Selection

DSSS Direct-Sequence Spread Spectrum

E2E End To End

EDCA Enhanced Distributed Channel Access

FTM Fine Time Measurement

IEEE Institute of Electrical and Electronics Engineers

GLONASS Global’naya Navigatsionnaya Sputnikovaya Sistema

GNSS Global Navigation Satellite System

GPS Global Positioning System

GSM Global System for Mobile Communications

HRM Hypothetical Reference Model

60 Intelligent management and control for Wi-Fi small cells

HTDMA Hybrid TDMA

MAC Media Access Control

MWN Mesh Wireless Network

NBI Northbound Interface

NIC Network Interface Controller

NUC Next Unit of Computing

OFDM Orthogonal Frequency-Division Multiplexing

OFDMA Orthogonal Frequency-Division Multiple-Access

OS Operating System

P2P Peer To Peer

PCF Point Coordination Function

PHC PTP Hardware Clock

PIFS PCF Interframe Space

PON Passive Optical Network

PSK Phase-Shift Keying

PTP Precision Time Protocol

QAM Quadrature Amplitude Modulation

QoS Quality of Service

RAN Radio Access Network

RTS/CTS Request to Send / Clear to Send

SBI Southbound Interface

SDN Software Defined Networking

SDR Software Defined Radio

SENSEFUL SDN driven Joint Access Backhaul coordination for next

generation dense Wi-Fi Small Cell networks via WiSHFUL APIs

SIFS Short Interframe Space

Abbreviations and Acronyms 61

TCP Transmission Control Protocol

ToS Type of Service

TDMA Time Division Multiple Access

TLS Transport Layer Security

TM Time Measurement

TWIST TKN WIreless NetworkS Testbed

TXOP Transmission Opportunity

UDP User Datagram Protocol

WiSHFUL Wireless Software and Hardware platforms for Flexible and

Unified radio and network controL

62 Intelligent management and control for Wi-Fi small cells

Annexes 63

ANNEXES

Annexes 65

APPENDIX A. OTHER SYNCHRONISATION TOOLS

A.1. DCF77

The DCF77 is a standard long-wave time signal broadcasted with an availability
of 0.997 by a radio station located near Frankfurt am Main, Germany, which is
controlled by the German nation physics laboratory Physikalisch-Technische
Bundesanstalt (PTB). Working 24/7, and with an agreed downtime of 26.28 hours
per year (corresponding to its availability), it radiates a 50kW of nominal power
signal at 77.5 kHz generated by local atomic clocks.

The DCF77 is used to broadcast the German time and date, and the signal has
mainly been used to synchronise clocks, appliances, industrial equipment or
radio and TV stations.

The signal is modulated on amplitude, and coded with pulse-width at 1 bps. It is
repeated every minute and the packet carries the following information: current
date and time, leap second flag, announcement bit (change CET-CEST),
CET/CEST flag, abnormal operation flag and parity bits. The time is represented
in binary and the time transmitted corresponds to the following real minute. The
transmission goes as follows: seconds 0-20 for special flags, 21-28 for seconds,
29-34 for hours and 36-58 for the date, leaving a last bit for another flag.

The DCF77 is said to be received over 2000 km from the transmitter, although
interferences, signal propagation and other factors can make that distance longer
or shorter. However, in our case we would be working within the margins of
operation, so it was an option that was considered.

DCF77 receivers can easily be found and purchased6, and there are many
developers that have open-source software7 ready to decode the signal and
synchronise the device to which the receiver is connected.

A.2. Synchronous Ethernet (SyncE)

The Synchronous Ethernet (SyncE) ITU-T standard is built over legacy Ethernet
standards and its main aim is to make it easier to transport clock signals over the
physical layer. To do so, transmit clocks in SyncE devices are not synchronised
to their own crystal oscillator, but to an external traceable Stratum-1 clock which,
ideally, should be unique for the whole network. SyncE is built on three ITU-T
recommendations:

6 http://www.conrad.com/ce/en/product/641138/DCF-receiver-module-Compatible-with-C-
Control
7 https://blog.blinkenlight.net/experiments/dcf77/the-clock/

http://www.conrad.com/ce/en/product/641138/DCF-receiver-module-Compatible-with-C-Control
http://www.conrad.com/ce/en/product/641138/DCF-receiver-module-Compatible-with-C-Control
https://blog.blinkenlight.net/experiments/dcf77/the-clock/

66 Intelligent management and control for Wi-Fi small cells

 G.8261 “Timing and synchronization aspects in packet Networks”:

establishes an introduction to SyncE, while referring to the network

architecture and wander performance.

 G.8262 “Timing characteristics of a synchronous Ethernet equipment

slave clock”: defines SyncE clock equipment.

 G.8264 “Distribution of timing information through packet networks” ([13]):

describes the Synchronisation Status Messaging (SSM).

 Clock distribution on the physical layer

While the synchronisation methods summarized up to now rely on packets in
order to transmit the time information all over the network, this requires several
filtering algorithms so as to avoid any error that would affect the time count.
SyncE does not have this kind of problem, as it transmits the clock directly and
continuously over the physical layer on full-duplex scenarios. However, that is
exactly what makes it impossible to implement in a project like ours, because this
standard depends on the continuous transmission of slow Ethernet frames (as
defined in [13] section 11 ‘SSM for synchronous Ethernet’), requiring a full-duplex
environment unavailable in a Wi-Fi network.

A.3. Global Navigation Satellite Systems (GNSS)

The most typical GNSS system used in telecommunication environments is GPS,
which was designed to provide accurate time and location references (or only
time in bad GNSS-signal conditions at the expense of position being manually
supplied) in any point on the planet Earth.

GPS works with 24+7 satellites (24 permanent and 7 additional ones that can be
placed in the system at will) that provide CDMA spread-spectrum signal in the 1.2
and 1.5 GHz bands with low bit rate transmissions and a theoretical accuracy of
up to 14 nanoseconds (although real-system conditions set 100 ns as a more
realistic figure with which to work).

The main problem GPS has is that direct sky visibility is required for it to work in
most of the cases, which reduces its functionality in some scenarios. That is
because the general GNSS signal strength at the surface of our planet is around
-130 dBm, what makes it about 30dB under the general noise floor. However,
some vendors have started to offer devices that work with non-direct visibility
using multi-path signal reception, guaranteeing a time reference with a 500ns
accuracy. Moreover, some regions and countries have developed their own
GNSS deployments (for example, GPS is the American version, GLONASS the
Russian one, and the European Union has Galileo), and new devices are
appearing that can work with several signals at the same time so as to improve
the time and location accuracy.

Annexes 67

Its high accuracy and global functioning makes GPS one of the most used
systems for primary synchronisation, and in fact lots of Stratum 0 clocks are
based on GPS time and frequency references. However, the direct sky visibility
restriction, bad urban penetration, and it being very susceptible to interferences,
reduces its use cases in real scenarios.

A.4. Cellular network listen (CNL)

CNL bases its functioning on the same idea with which User Equipment obtain
synchronisation, i.e. listening to surrounding cellular base stations of any
technology, such as GSM, LTE, etc. This way, small cells can simulate the work
of a UE to synchronise their time base to those of the adjacent cells.

CNL is then a good idea for the deployment of small cells in highly populated
areas, where it will be at range of many others cells and then it will be able to
perform its functioning correctly. However, before a CNL deployment, the
environment should be studied carefully, because we cannot allow a scenario
where several small cells rely on each other (without a good primary reference)
because they all work with CNL.

A.5. Miniature atomic frequency references

Stratum 0 clocks typically rely either on GNSS or on atomic clocks, which can
meet synchronisation accuracy requirements (from 0.1ppb to 1ppb) without the
need of an external reference.

However, this kind of technology is only suitable, for example, for important base
stations, as its costs multiplies several times the one offered by other options.
Moreover, only frequency synchronisation is achievable this way, not time or
phase.

A.6. Hybrid technology options

As shown in this section, there are a lot of different technologies that can be used
in small-cell scenarios in order to provide synchronisation options. Each of those
has its own pros and cons, and none of them is the most suitable choice for all
kind of scenarios. That is why nowadays, combinations of several of these
technologies is a better option when designing a system that requires of
synchronisation capabilities.

There is a huge amount of possible combinations, but just to set some examples
of how the joint of different technologies can provide new advantages to the
system, here there are some alternative approaches:

 Network solutions and AGNSS: as explained in the GNSS section the low

strength of the signal makes it compulsory for GNSS receivers to recover

the signal from the noise by means of correlation with a correct code,

68 Intelligent management and control for Wi-Fi small cells

which will vary depending on the frequency modulation of the Doppler

effect of the transmitter in the moving satellites. That is why AGNSS

receivers are more common these days. They use extra information

deployed over the utility network so as to speed up the search of the proper

code. If network synchronisation solutions such as PTP or NTP are

incorporated into the system, the whole process can be improved by

adding a constant frequency and time reference (which can be also useful

against outages in coverage loss periods).

 PTP and SyncE: ITU-T G.8271.1 recommendation ([14]), titled ‘Network

limits for time synchronisation in packet networks’, provides itself an

example of joint SyncE and PTP synchronisation network to provide

frequency, time and phase to a certain end application (which for instance

could be an eNodeB in an LTE network). This way, using an infrastructure

as the one presented in the image below (Fig. A. 1), SyncE can be used

to synchronise each of the up to 21 PTP nodes (20 Boundary Clocks T-

BC and 1 Grand Master T-GM) that form the chain that feeds the end

application.

Fig. A. 1 HRM with physical layer frequency support ([14] page 16)

This way, each of the PTP nodes plus the end application itself have a

reliable frequency reference, fact that reduces the overall dynamic time

error that can be accumulated in the usage of long synchronisation chains.

As a side advantage, in the case of the chain breaking, the end application

could be able to maintain time precision for a certain time until the

reference is recovered.

Bibliography 69

APPENDIX B. SENSEFUL SHOWCASE SCENARIO

Fig. B. 1 SENSEFUL showcase scenario

Bibliography 71

APPENDIX C. SYNCHRONISATION MEASUREMENT

Fig. C. 1 Client script

72 Intelligent management and control for Wi-Fi small cells

Bibliography 73

Fig. C. 2 Server script

Bibliography 75

APPENDIX D. HTDMA PERFORMANCE EVALUATION

Fig. D. 1 Throughput measurements

21

5,15
7,06

13,6

21

4,07
5,6

12,1

21,1

3,5
5,15

11,6

21

0

5

10

15

20

25

CSMA 1 slot 2 slots 5 slots 10 slots

Th
ro

u
gh

p
u

t
(M

b
p

s)

Slot assignment

Throughput measurements for packets of 1400B

10Tm

20Tm

30Tm

14,3

3,84
5,08

9,41

14,3

2,6
3,98

8,26

14,4

2,53 3,59

8,08

14,3

0

2

4

6

8

10

12

14

16

CSMA 1 slot 2 slots 5 slots 10 slots

Th
ro

u
gh

p
u

t
(M

b
p

s)

Slot assignment

Throughput measurements for packets of 800B

10Tm

20Tm

30Tm

1,78

0,578

0,784

1,29

1,78

0,383
0,55

1,1

1,76

0,337

0,482

1,04

1,78

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

CSMA 1 slot 2 slots 5 slots 10 slots

Th
ro

u
gh

p
u

t
(M

b
p

s)

Slot assignment

Throughput measurements for packets of 100B

10Tm

20Tm

30Tm

76 Intelligent management and control for Wi-Fi small cells

Fig. D. 2 Jitter measurements

0,399

6,434

3,068 2,548
1,48

7,866
9,208

0,158
1,26

13,114

7,751

1,861

0,136
0

2

4

6

8

10

12

14

CSMA 1 slot 2 slots 5 slots 10 slots

Ji
tt

e
r

(m
s)

Slot assignment

HTDMA Jitter measurements for packets of 1400B

10Tm

20Tm

30Tm

1,351

5,868

4,544

2,171

1,257

8,491

6,902

2,439

1,464

7,845

4,665

2,947

1,385

0

1

2

3

4

5

6

7

8

9

CSMA 1 slot 2 slots 5 slots 10 slots

Ji
tt

e
r

(m
s)

Slot assignment

HTDMA Jitter measurements for packets of 800B

10Tm

20Tm

30Tm

2,663

6,687

2,521 3,107
2,387

10,27

5,911
4,573

2,72

18,416

7,691

3,156 2,579

0

2

4

6

8

10

12

14

16

18

20

CSMA 1 slot 2 slots 5 slots 10 slots

Ji
tt

e
r

(m
s)

Slot assignment

HTDMA Jitter measurements for packets of 100B

10Tm

20Tm

30Tm

