
UNIVERSITAT POLITÈCNICA DE CATALUNYA

FAPEC integration as an HDF5 filter

by

Sergi Dueñas Pedrosa

in the

Escola Tècnica Superior d’Enginyeria de Telecomunicació de Barcelona

Departament de F́ısica

Advisor: Enrique Garcia-Berro Montilla

Supervisor: Marcial Clotet Altarriba

Co-Supervisor: Jordi Portell i de Mora

July 2016

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/46606745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.upc.edu/
mailto:sergi.dupe@outlook.es
http://www.etsetb.upc.edu/
http://fa.upc.edu/

Acknowledgements

Curiosament, les primeres ĺınies que es llegeixen en aquest projecte, són les últimes que

s’han escrit. I també les més fàcils i alhora les més dif́ıcils.

Són les més fàcils perquè aquestes ĺınies estan dedicades a les persones que sempre he

tingut a prop en el transcurs d’aquest projecte que es diu vida, i les més dif́ıcils perquè

no es pot expressar amb paraules el que sento cap a elles.

Aquestes ĺınies estan dedicades al meu pare i a la meva mare. Al meu mein. Al meu

iaio i els seus enginyosos acudits i a la meva iaia i els seus dinars dels divendres. A la

meva tia i els seus “achaques”. I per últim a l’Andrea, la persona amb la qual vull viure

mil i una aventures i a la que estimo amb bogeria.

Sóc qui sóc gràcies a tots vosaltres. Us estimo molt́ıssim a tots.

També vull agrair a l’Enrique, el Marcial i el Jordi la manera tan magistral en com

m’han anat guiant en el transcurs del meu projecte final de carrera. Són tres persones

que tant de bo tothom tingues l’oportunitat de conèixer i treballar amb elles.

Aquest projecte també és per a vosaltres.

Sergi

iii

Contents

List of Figures vii

List of Tables ix

Acronyms xi

1 Introduction 1

1.1 Background . 1

1.2 State of the art . 3

1.3 Motivation . 3

1.4 Structure and plan of this project . 4

2 The HDF5 file format 5

2.1 Overview . 5

2.2 HDF5 . 5

2.3 File structure . 6

2.4 Datasets . 7

2.5 Datatypes . 9

2.6 Filters . 9

2.6.1 The data pipeline . 9

2.6.2 Registering a third-party filter . 11

2.7 Available compression filters in HDF5 . 13

2.7.1 Deflate or gzip . 13

2.7.2 Szip . 13

2.7.3 Bzip2 . 14

2.7.4 Blosc . 14

3 FAPEC 15

3.1 Overview . 15

3.2 PEC and its Fully Adaptive layer . 15

3.3 Configuration and modes . 16

3.4 The FAPEC API . 18

4 Integration 21

4.1 Feasibility study . 21

4.1.1 Astro Observation File Structure 21

4.1.2 ASCII procedures and results . 22

v

vi FAPEC integration as an HDF5 filter

4.1.3 Binary procedures and results . 23

4.1.4 Reassembling the Astro Observation file 24

4.2 Identification of data formats . 25

4.3 Integration approach and description . 27

4.3.1 Writer or Compression . 28

4.3.2 Reader or Decompression . 32

4.4 Implementation and code structure . 33

5 Tests and results 35

5.1 Test case description . 35

5.2 Results . 37

5.3 Discussion . 38

6 Conclusions 45

6.1 Conclusions . 45

6.2 Future work . 46

A MD5 filter 47

A.1 Filter definition . 47

B FAPEC filter 49

B.1 Filter definition for FAPEC Core 2016.0 Release 49

Bibliography 55

List of Figures

2.1 Simple HDF5 file structure . 7

2.2 Complex HDF5 file structure. 7

2.3 Application view of a dataset . 8

3.1 FAPEC compression ratios for two-sided geometric distributions. 17

3.2 FAPEC command-line switches. 18

4.1 HDF5 Astro Observation file structure . 22

4.2 Overall code structure. 33

vii

List of Tables

2.1 Datatype classes and their properties. 10

2.2 Stages of the data pipeline. 11

2.3 Lossless compression results. 14

4.1 Test results for ASCII format files. 23

4.2 Class0 group test results. 24

4.3 Class1T group test results. 25

4.4 Class2T group test results. 26

4.5 Overall file size comparison. 26

4.6 HDF5 datatype to FAPEC parameters mapping. 28

5.1 Decompressing the original test files. 36

5.2 SKA test file structure. 36

5.3 Gaia AO test file structure. 36

5.4 ASTER test file structure. 36

5.5 BIG-ASTER test file structure. 37

5.6 Equipment specifications. 37

5.7 Description of the test metrics. 38

5.8 SKA overall test results. 38

5.9 SKA detailed test results. 39

5.10 AO file test results. 40

5.11 ASTER file test results. 41

5.12 BIG-ASTER file test results. 42

5.13 Normalized compression results. 43

5.14 Weighted average of compression results. 43

ix

Acronyms

AO Astro Observation.

API Application Program Interface.

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer.

AVX2 Advanced Vector Extensions 2.

BSC Barcelona Supercomputing Center.

CCSDS Consultative Committee for Space Data Systems.

CUs Coordination Units.

DICOM Digital Imaging and Communication in Medicine standard.

DPAC Data Analysis and Processing Consortium.

DPCB Data Processing Center of Barcelona.

DPCs Data Processing Centers.

EDAC Error Detection and Correction.

ESA European Space Agency.

FAPEC Fully Adaptive Prediction Error Coder.

FITS Flexible Image Transport System.

GBIN Gaia Binary File Format.

HDF Hierarchical Data Format.

HDF4 Hierarchical Data Format version 4.

xi

xii FAPEC integration as an HDF5 filter

HDF5 Hierarchical Data Format version 5.

IDU Intermediate Data Updating.

IEEC Institute for Space Studies of Catalonia.

NASA National Aeronautics and Space Administration.

PEC Prediction Error Coder.

SIMD Single Instruction, Multiple Data.

SKA Square Kilometre Array.

SSE2 Streaming Single Instruction Multiple Data Extensions 2.

UB Universitat de Barcelona.

UPC Universitat Politècnica de Catalunya.

Chapter 1

Introduction

By definition, supercomputers are hardware and software computing systems that provide

a sustained performance close to the best one achievable nowadays. Clearly, the per-

formance of these systems is much better than that of home and office systems. Su-

percomputers and supercomputing centers are used to solve very complex problems,

including simulations of physical phenomena such as weather predictions, supernova ex-

plosions, genome sequencing, astronomical observations or the data packets traffic in

mobile networks. All these processes and simulations require a large amount of data to

correctly model the problem. A clear example is the European Space Agency (ESA)

Gaia mission, which will generate over 100 Terabytes of raw data by the end of its five

years of nominal duration. Given these huge data volumes, one of the first problems is

the storage and data management. Moreover, database systems or similar solutions are

required in order to keep data organized. Data organization and indexing is extremely

important to allow efficienty access, data transfers among computing elements or organ-

izations (either inside or outside the computing premises) and to ensure data integrity.

Finally, backups are obviously mandatory for such large projects, so the volume of data

can be easily doubled or tripled.

1.1 Background

Gaia is an ambitious astrometric space mission integrated within the scientific program

of ESA in October 2000 and launched in December 2013. It measures with very high

accuracy the position and velocities of a large number of stars, and galactic and extra-

galactic objects. For each object observation (also called transit) the brightness, color

and position of the object are recorded. Gaia will map more than 1 billion stars, which

1

2 FAPEC integration as an HDF5 filter

means that data processing centres will have a huge amount of complex data to store

and process.

Gaia data storage and processing constitutes a challenging task in terms of efficiency,

effort and computing power. For this reason, a large team of experts including scientists,

engineers and software developers has been set up, constituting the Data Analysis and

Processing Consortium (DPAC). It is responsible for the data processing and the elab-

oration of the final Gaia cataloge. This consortium is divided into nine Coordination

Units (CUs), each of them specialized on a given set of data processing tasks, as well

as in six Data Processing Centers (DPCs). CU3 is the unit in charge of the develop-

ment and implementation of the core data processing pipelines, which process the raw

telemetry data coming from Gaia. Within CU3 there are different systems with specific

tasks. One of these systems is the Intermediate Data Updating (IDU), a cyclic system

that processes the entire set of raw data using the updated calibrations obtained so far

during the mission. IDU will provide higher coherence between all the scientific results

and will correct any errors or bad data interpretations from previous iterations. IDU is

executed in the Data Processing Center of Barcelona (DPCB) using the MareNostrum

supercomputer of the Barcelona Supercomputing Center (BSC).

The files used to run IDU in MareNostrum are serialized Java objects compressed with

zip. This format is called Gaia Binary File Format (GBIN). However, a transition from

the GBIN format to Hierarchical Data Format version 5 (HDF5) is being studied to

increase the processing and computing efficiency, thus optimizing the usage of MareN-

ostrum. The HDF5 library implements some compression algorithms such as zlib or

szip as filters, but users can register their own compression algorithm as a third-party

filer and use it in their systems. Taking advantage of this feature, the main goal of this

project is to integrate a high-performance compression algorithm, the Fully Adaptive

Prediction Error Coder (FAPEC) into HDF5 to use it as a compression filter.

FAPEC is a compression algorithm that was especially designed for Gaia, so the com-

putational efficiency, the data storage management and data transmission performance

could be considerably improved if this integration is done. However, not only the Gaia

mission could benefit from this work. Many other organizations or work groups use

HDF5 for different purposes. In particular, HDF5 has been successfully used in the field

of geophysics, in remote sensing applications, in the field of Finantial Engineering, or in

oceanography, to put just a few examples. All of them could make use of FAPEC once

integrated as an HDF5 filter.

Chapter 1. Introduction 3

1.2 State of the art

HDF5 is not the only data management suite available for scientific or engineering pro-

jects. A first example is ROOT. It is a modular scientific software framework that

provides all the functionalities needed to deal with big data processing, statistical ana-

lysis, visualization and storage. Users can store their data in a compressed binary form

in a ROOT file. These files are self-descriptive and data is organized in a tree structure,

similarly to HDF5. Moreover, powerful mathematical and statistical tools are provided

to operate on the data, and a powerful C++ application and parallel processing is

available for any kind of data manipulation.

Another file format to store data is Flexible Image Transport System (FITS), which

is the most common format used in astronomy. FITS includes many tools to describe

photometric and spatial calibration information, together with image origin metadata.

This file format also supports a large variety of programming languages such as C, C++,

Fortran or Java.

Finally, the Common Data Format (CDF) is another example of data storage and man-

agement libraries. This solution is an interface for storage and manipulation of multi-

dimensional data sets.

Regarding high-performance data compressors, there is a large variety of algorithms such

as LZO, bzip2, blosc, snappy, MAFISC, LZ4, LPC-Rice, zlib or szip. All of them can

be used as a compression filter in HDF5. Each has its strengths and weaknesses, so for

illustrative purposes we will select and evaluate only a few of them in this work.

1.3 Motivation

In this work we propose a solution to some of the problems found in supercomputing

environments by combining an extremely efficient, standard, open-source data manager

suite with a high-performance data compressor. We do not intend to use such an efficient

file format and, later, compress the resulting files or data sets without further ado, as

we would be losing in the compression process the file format benefits. Our aim is to

compress the little portions of data that conform the data sets stored inside the file

(which are named chunks), thus without losing any of the functionalities offered by the

mentioned data management suite.

HDF5 is our choice for the data storage and management format, and FAPEC is the

high-performance data compressor chosen. By integrating FAPEC as an HDF5 filter we

4 FAPEC integration as an HDF5 filter

will offer a solution that can solve in a smart, clean and efficient way the storage and

management problems in supercomputing environments.

It is worth mentioning that a first tentative of integrating the Prediction Error Coder

(PEC) into HDF5 exists [1], but in that case the solution was not actually a filter but an

adhoc application just for the Gaia case. Furthermore, PEC is a static data compressor,

whereas in the present work we intend to use the fully adaptive version (FAPEC).

1.4 Structure and plan of this project

The final goal of this project is to integrate FAPEC as an HDF5 filter. To do this, we

will first study the HDF5 Application Program Interface (API), FAPEC in itself, and

design the software implementation. We will analyze the performance of the solution

and compare it with the alternatives available in HDF5, such as szip or gzip, as well

as third-party filters such as bzip2 or blosc.

The project is structured as follows. First, in Chapter 2 an introduction to HDF5 and

its main concepts and benefits is given, as well as a description of the filters concept.

Chapter 3 introduces FAPEC, its main features and the API that allows its use by

other software. It follows Chapter 4 where we explain in detail how FAPEC has been

integrated as an HDF5 filter, the feasibility study that has been done, and how the

code has been structured. Chapter 5 presents the tests done and discusses the results

obtained. Finally, Chapter 6 presents the main conclusions obtained in the course of

this work and proposes some improvements that could be implemented in the future.

Chapter 2

The HDF5 file format

2.1 Overview

Hierarchical Data Format (HDF) technologies consist of two data storage and man-

agement formats, Hierarchical Data Format version 4 (HDF4) and HDF5, and their

associated libraries. The HDF Group also provides tools, such as a data browser or

editor, as well as command line tools. Both HDF4 and HDF5 were designed to be

adaptable to virtually any scientific or engineering application. Another of the advant-

ages of this file format is the availability of an API in different programming languages.

Such compatibility allows HDF to work across a large variety of computational systems.

Actually, HDF technologies are intended to be used in super-computing environments.

HDF5 allows to express very diverse and large amounts of data in a natural manner.

In contrast to databases that work with tables, HDF5 supports n-dimensional datasets,

and each element in the dataset may be a complex object (such as an image, an array of

integers, strings, or floating point numbers). This fact allows users to develop powerful

data processing systems that work on HDF-stored data, either with sequential or parallel

access. This might be an advantage in some cases as filed-matching queries are not

straightforward on traditional databases. Currently, the HDF format is used by many

scientific and engineering communities like atmospheric physics, or Astrophysics [2], to

put just two examples.

2.2 HDF5

HDF5 is a suite that allows the management of extremely large and complex data col-

lections. It addresses important deficiencies of HDF4 taking advantage of the latest

5

6 FAPEC integration as an HDF5 filter

computing advances, to deliver users and developers an extra efficient data processing

and management system [3]. Abstractly, an HDF5 file is a container of an organized

collection of objects. These objects are the following ones. First, Groups and Data-

sets are used for the data in itself. Then, Dataspaces, Datatypes and Attributes, are

employed for the description of these data or as meta-data. Lastly, Property lists and

Links describe the way objects are created and related with each other. A deeper view

of Datasets and Datatypes is presented in Sects. 2.4 and 2.5.

Owing to its powerful API [4], developers can implement their own HDF5 solutions

for their projects. The HDF5 API provides resources to work with all HDF5 objects

and their properties. An example of this is the H5D API that allows developers to

deal with datasets, or the H5G API that allows to deal with groups. Moreover, HDF5

also implements a high-level API to ease common HDF5 operations when working with

images or tables, among others. As previously mentioned, HDF5 has C, C#, C++,

Fortran and Java API.

One of the most powerful features of HDF5 is that it includes powerful storage ar-

rangement and processing options such as chunking and compression. These allow very

efficient read and write data routines, such as writing or reading just a portion of a very

large dataset, and parallel I/O operations over the same file.

Lastly, regarding size limits, the HDF5 format has no practical limit on the size of

its files. The library allows up to 32-dimension dataspaces (that defines the size of a

dataset), with each dimension able to allocate up to the limit of an unsigned 64-bit

value [5]. Most likely, the maximum file size limitation will be imposed by the maximum

file size that can be allocated in a single file.

2.3 File structure

An HDF5 file can be easily compared to a Unix file system. It has a hierarchical

structure, at the top of which we find the root group, represented by the “/” symbol.

This group is the parent or ancestor of the rest of the objects that conform the file. An

HDF5 file will always have at least one object, that is, the root group.

The objects generated are linked to their associated parent. It is important to note that

the objects themselves have no name, but instead names are provided through links. As

in an UNIX file system, /foo represents an object (named foo), which is linked directly

to the root group. Objects have a unique object identifier, but because of the possible

file structure, an object can be named in as many ways as paths to the object exist.

Figs. 2.1 and 2.2 show examples of possible structures in an HDF5 file.

Chapter 2. The HDF5 file format 7

Figure 2.1: Possible structure of an HDF5 file. The descendant objects of the root
group have /group1 and /group2 names.

Figure 2.2: A more complex structure of an HDF5 file. Group1, dataset2 and group2
are members of the root group. Dataset1 is member of group1. Dataset3 and dataset4

are members of group 3, which in turn is member of group2.

2.4 Datasets

An HDF5 dataset is an object composed of a collection of data elements or raw data.

Data is stored as one-dimensional or multi-dimensional arrays of elements, the charac-

teristics of which is described by the dataspace. A data element stored into the dataset

is a single unit of data, which is a set of bits with a certain layout. This layout is de-

scribed by the datatype. Data in different datasets may have different datatypes (this

is, different layouts) such as integer numbers, floating point numbers, strings, arrays,

references or even compound elements. However, data in a given dataset must always

have the same datatype.

8 FAPEC integration as an HDF5 filter

Figure 2.3: Application view of a dataset. A dataset contains some given data with
the type specified by the datatype. A dataset may have user-defined attributes.

Datatype objects are closely linked to a dataset. When a dataset is created, the datatype

is set and it cannot be changed for the lifetime of the dataset. For more information

about datatypes, see Sect. 2.5. When a dataset is generated, a list of creation properties

is set, which includes storage properties such as chunking and a list of filter to be

applied (which might include compression). Like the datatype the properties list cannot

be changed once the dataset is created. This properties are stored as metadata within

the HDF5 file.

HDF5 allows users to store custom metadata within the same file. This metadata is

managed through attributes. An attribute can have any datatype that the user defines,

and thus allows complex data structure, and can be attached to any HDF5 object.

Fig. 2.3 shows a possible schematic view of a dataset and its elements.

A dataset object is stored in a file in two parts: a header and a data array. The header

contains information that is needed to interpret the array portion of the dataset, as well

as meta-data that describes or annotates the dataset. Header information includes the

name of the object, the dimensions, the datatype, information about how the data in

itself is stored on disk, and other information used by the library to speed up access

to the dataset or maintain the integrity of the file. For instance, HDF5 automatically

stores the filters and the order in which they have been applied when writing the data

to a given dataset. In this way, the library will transparently process the stored data

with the same filters in the inverse order when reading.

Chapter 2. The HDF5 file format 9

2.5 Datatypes

Datatype objects implement a mechanism to specify the storage layout of data elements,

which determines how to interpret the elements, and allows to convert data from different

compatible layouts. The idea behind datatype objects is similar to Objected Oriented

classes. A generic datatype class with some properties and parameters is given, but its

determination into specific values is equivalent to instantiating a datatype object. Once

the dataset is created, the datatype object is set and linked to the dataset and cannot

be changed during the life of the dataset.

A datatype class is defined as a set of one or more datatype properties. The datatype

properties are defined by the logical model of the datatype class. For example, the

integer class has properties such as “signed or unsigned”, “length” and “byte-order”.

Table 2.1 presents the properties of each datatype class.

When a read or write operation is performed, the HDF5 library must know the exact

datatype that describes the layout of the data. The library provides the NATIVE

types, which are mapped to the corresponding datatype of each platform. That means,

for example, that the integer type of any platform such as Linux will be mapped to

H5T NATIVE INT, where H5T refers to the API portion to deal with datatypes. These

platform dependent types are used to read or write data from memory of the host

system. There are as well fixed datatypes, as H5T IEEE F64LE which corresponds to an

eight-byte, little-endian, IEEE floating-point.

2.6 Filters

When a dataset is generated, the user can specify if data has to be processed by filters

prior to being written or after being read from the filesystem. These filters are added to

the data pipeline or data flow. The HDF5 standard library implements many of them,

such as data compression, shuffling or error detection filters. Additional user-defined

filters can also be used. In this section we describe how the data flows through the

HDF5 library in order to understand how filters are applied.

2.6.1 The data pipeline

When data is written or read from an HDF5 file, the HDF5 library passes the data

through a sequence of steps. Each of these steps processes the data according to the

meta-data located at the header of the dataset when this was created. This data pro-

cessing can be, for example, a simple byte swapping (to adjust the data to a Little

10 FAPEC integration as an HDF5 filter

Class Description Properties Notes

Integer
Twos complement
integers

Size (bytes), precision (bits),
pad, byte order, signed/un-
signed

Float
Floating Point
numbers

Size (bytes), precision (bits),
offset (bits), pad, byte order,
sign position, exponent posi-
tion, exponent size (bits), ex-
ponent sign, exponent bias,
mantissa position, mantissa
size (bits), mantissa sign,
mantissa normalization, in-
ternal padding

See IEEE 754 for a
definition of these
properties. These
properties can de-
scribe non-IEEE 754
floating point formats
as well.

Character
Array of 1-byte
character encoding

Size (characters), Character
set, byte order, pad/no pad,
pad character

Currently, ASCII and
UTF-8 are supported.

Bitfield String of bits
Size (bytes), precision (bits),
offset (bits), pad, byte order

A sequence of bit val-
ues packed into one or
more bytes.

Opaque Uninterpreted data
Size (bytes), precision (bits),
offset (bits), pad, byte order,
tag

A sequence of bytes,
stored and retrieved as
a block. The “tag’ is a
string that can be used
to label the value.

Enumeration

A list of discrete
values, with sym-
bolic names in the
form of strings.

Number of elements, element
names, element values

Enumeration is a list
of pairs (name, value).
The name is a string;
the value is an un-
signed integer.

Reference
Reference to object
or region within the
HDF5 file

See the Reference API,
H5R

Array
Array (1-4 dimen-
sions) of data ele-
ments

Number of dimensions, di-
mension sizes, base datatype

The array is accessed
atomically: no selec-
tion or sub-setting.

Variable-
length

A variable-length
1-dimensional array
of data elements

Current size, base type

Compound
A Datatype of a
sequence of Data-
types

Number of members, mem-
ber names, member types,
member offset, member class,
member size, byte order

Table 2.1: Datatype classes and their properties, extracted from the HDF5 User’s
Guide [6].

Chapter 2. The HDF5 file format 11

Layers Description

I/O initiation
Initiation of HDF5 I/O activities (H5Dwrite and
H5Dread) in a user application program.

Memory hyperslab operation
Data is scattered to (for reading), or gathered from
(for writing) the application memory buffer (by-
passed if no datatype conversion is needed).

Datatype conversion
Datatype is converted if it is different between
memory and storage (bypassed if no datatype con-
version is needed).

File hyperslab operation
Data is gathered from (for reading), or scattered to
(for writing) file space in memory (bypassed if no
datatype conversion is needed).

Filter pipeline

Data is processed by filters when it passes. Data
can be modified and restored here (bypassed if no
datatype conversion is needed, no filter is enabled,
or dataset is not chunked).

Virtual File Layer
Facilitate easy plug-in file drivers such as MPIO or
POSIX I/O.

Actual I/O
Actual file driver used by the library such as MPIO
or STDIO.

Table 2.2: Stages of the data pipeline, extracted from the HDF5 User’s Guide [6].

Endian or Big Endian system), alignment, scatter-gather or hyperslab selections (which

consist of selecting a subset of a dataset, for example if this is too large).

The HDF5 library determines automatically which operations are needed on the data

buffers. Each operation transforms its input buffer, writes the transformed data into an

output buffer, and passes the output buffer to the next processing stage. Table 2.2 lists

the stages of the Data Pipeline.

To apply any filter to the data such as the mentioned byte swapping or, for example, a

high performance compressor, the HDF5 library must know about the filter to be able

to add it into the data pipeline. The process of registering a filter is explained with full

detail in Section 2.6.2.

2.6.2 Registering a third-party filter

The integration of a user-defined filter is quite simple. First, the HDF5 file must be

created. After that, the filter has to be registered. Finally, the last step is to create

the dataset into the HDF5 file with the properties specifying that the registered filter

shall be applied. Once this is done, the library will automatically call the filter for each

data chunk and the filter output data will be stored into the actual file. Once all data

is written, the dataset and the file have to be closed. After the file creation and write

operations, the file and the dataset can be re-opened in order to read and display the

12 FAPEC integration as an HDF5 filter

data stored into the dataset. To do so, the program that performs the read operation

must have the filter registered as well. Again, once the file and the dataset have been

used they must be closed properly.

With this procedure in mind, the first step is to define the filter function. Although it

could be defined in the main program, defining it in a separate file and compiling it as

a shared library makes the code more modular, clean and elegant. The filter definition

prototype is defined by the HDF5 API, with the following prototype:

/∗ Dec lara t ion o f the f i l t e r f unc t i on ∗/
s i z e t m y f i l t e r f u n c t i o n (unsigned int f l a g s , s i z e t cd nelmts ,

const unsigned int cd va lue s [] , s i z e t nbytes ,

s i z e t ∗ b u f s i z e , void ∗∗buf) ;

Note that the interface deals with one single data pointer (**buf), which means that we

must use it for both receiving and returning the data. Once the filter is defined, which

should return a value of 0 in case it fails, it has to be registered into the main program

so that the HDF5 library knows that it can be called. The way to do this operation is

invoking the H5Z API, which deals with filter operations:

/∗ Reg i s t e r the f i l t e r ∗/
h e r r t H5Zreg i s t e r (const H5Z c la s s t ∗ f i l t e r c l a s s)

Finally, since filters in HDF5 only work with chunks, both chunking and the desired

filters must be set up in the dataset creation properties list. This process is done by

means of the H5P API, which deals with property lists:

/∗ Create the da t a s e t c r ea t i on proper ty l i s t ∗/
h i d t H5Pcreate (h i d t c l s i d)

/∗ Set up chunking to the p r o p e r t i e s l i s t ∗/
h e r r t H5Pset chunk (h i d t p l i s t , int ndims , const h s i z e t ∗ dim)

/∗ Set the f i l t e r to the p r o p e r t i e s l i s t ∗/
h e r r t H 5 P s e t f i l t e r (h i d t p l i s t i d , H 5 Z f i l t e r t f i l t e r i d ,

unsigned int f l a g s , s i z e t cd nelmts ,

const unsigned int cd va lue s [])

Applications that want to read and display the data that has been processed by the

filter and has been stored into the HDF5 file, such as for example HDF5 tools, have to

be recompiled linking the filter library in the process. This will allow such applications

to access the contents processed by the custom filter. Otherwise, an error message will

appear.

Chapter 2. The HDF5 file format 13

Before attempting the integration of FAPEC (see Chapter 3 below) as an HDF5 filter,

a test has been performed to demonstrate how a third-party filter can be used with an

HDF5 file. This test has also been used to create the base of the adaptation layer that

allows the integration of FAPEC in the HDF5 API. The filter used in this demonstration

test follows the described procedure. Specifically, it implements an example proposed at

the HDF5 web page [7], which simply adds a checksum to the data by using the MD5()

function of the OpenSSL cryptographic libary [8].

2.7 Available compression filters in HDF5

A large variety of compression filters can be integrated into HDF5 files. Such filters

allow to reduce the size of the datasets and contribute to improve the efficiency of the

storage and data transfers. Sect. 2.6 explains how filters work in HDF5. To evaluate

and compare the performance of FAPEC as an HDF5 filter, we have considered some

of the compression algorithms that can be used as an HDF5 filter. These are deflate,

szip, bzip2 and blosc. Other filters available in HDF5 include LZO, LZF, LZ4, snappy

and LPC-Rice [9].

2.7.1 Deflate or gzip

Gzip is a data compressor relatively popular that uses the Zlib library as a compres-

sion/decompression algorithm. The algorithms were written by Jean-Loup Gially and

Mark Adler [10] and is fully integrated by default into the with HDF5 Library and it

offers nine compression levels. It is worth mentioning that deflate never expands the

data [11].

2.7.2 Szip

Szip is a stand-alone library that can be set as a filter in HDF5. It uses a maximum

blocksize of 4.1 MB, which means that the compressor works better with larger files [12].

Szip implements a quick algorithm that achieves good compression ratios. It is able to

adapt rapidly to the statistical variations of the data to be compressed. Actually, Szip

is an implementation of the extended Rice lossless compression algorithm [13, 14] which

the Consultative Committee for Space Data Systems (CCSDS) adopted more than a

decade ago as an international standard for space applications. As it will be seen later,

it means that this is probably the algorithm that is more comparable to FAPEC. In the

14 FAPEC integration as an HDF5 filter

case of Szip, it has been adopted by the NASA Earth Observatory System (EOS) to

compress the data generated [15].

Table 2.3 illustrates a comparison between different compression techniques including

Szip algorithm. The table is extracted from the tests performed [15] with the HDF4 Szip

integration. Szip also has been integrated and is being distributed with HDF5 Library

since Release 1.6.0.

Technique RLE Adaptative Huffman Szip Gzip
Compression Ratio 1,60 2,28 2,80 2,37
Compression Time (sec) 85,7 558,4 71,6 273,1
Decompression Time (sec) 41,6 574,9 63,6 68,3

Table 2.3: Lossless compression results using various compression techniques. Tested
on Pentium II 300Mhz processor.Table extracted from Earth Science Technology Con-

ference [15].

2.7.3 Bzip2

Bzip2 library was written by Julian Seward, and it compresses the data using the

Burrows-Wheeler block-sorting text compression algorithm and Huffman coding [16].

Bzip2 is usually more effective than Deflate in terms of compression ratio, but it per-

forms slower in terms of time. However, decompression is relatively fast.

2.7.4 Blosc

Blosc was written by Francesc Alted Resumé. It is a high performance compressor

optimized for binary data. It has been designed to compress data extremely fast, at the

expense of achieving lesser compression ratios [17, 18].

Chapter 3

FAPEC

3.1 Overview

The Data Compression Group of the Institute for Space Studies of Catalonia (IEEC)

has developed FAPEC, the Fully Adaptive Prediction Error Coder. It is currently being

commercialized by DAPCOM Data Services S.L., a spin-off company participated by the

Universitat Politècnica de Catalunya (UPC) and the Universitat de Barcelona (UB).

FAPEC is a high performance data compressor, which can be applied as a compression

solution for satellite payloads owing to its resiliency in front of data outliers and its

autonomous operation. Moreover, FAPEC is prepared to operate in a large variety

of on-ground engineering and scientific projects, be these related to radiotelescopes,

geophysical probes, radars, genomics, text from web or huge log files, images and video

including High-Definition, or medical projects working with the Digital Imaging and

Communication in Medicine standard (DICOM) format [19].

Having in mind the benefits of using HDF5 in a computational environment as a very

efficient data storing and managing library, and the advantages of using FAPEC in any

kind of environment and data type, the integration of FAPEC as an HDF5 is a logical

step. This is the main motivation of this project. The aim is to achieve an excellent

performance both in compression ratio and I/O speed.

3.2 PEC and its Fully Adaptive layer

PEC is a fast and noise-resilient semi-adaptive entropy coder. It offers a high per-

formance in presence of noise or when the input data contains a substantial fraction of

outliers, while requiring very few processing resources. PEC offers an excellent coding

15

16 FAPEC integration as an HDF5 filter

efficiency for a wide range of data statistics. In order to obtain the best performance,

an adequate pre-processing stage should be used for this coder [20]. Moreover, PEC re-

quires some calibration parameters in order to reach optimum ratios. However, in some

cases, even with a simple fixed calibration, it can provide still good compression ratios.

In spite of the assets previously mentioned, PEC must be trained for each particular

case to get the optimum performance. This is due to the fact that significant variations

in statistics of the data to be compressed can lead to a rapid decrease in the compression

ratio. To solve this, the Fully Adaptive implementation of PEC (FAPEC) was devised.

FAPEC adds an adaptive layer in order to configure the PEC coding options according

to the data statistics of each data block. This powerful adaptive layer allows PEC to

achieve nearly-optimal ratios. With FAPEC, prior knowledge of the statistics of the

data to be compressed is not needed anymore.

Fig. 3.1 shows a performance comparison between PEC, FAPEC and the current re-

commendation for lossless data compression in space (CCSDS 121.0) which is based on

Rice codes. The Shannon Limit, or the maximum theoretical compression ratio, is also

represented.

3.3 Configuration and modes

FAPEC is distributed as a software library and as a command-line data compressor.

If we call fapec with the -h switch we get additional information on the compression

options, shown in Fig. 3.2 to give an idea on the capabilities and configurability of

FAPEC. In our case we will have to configure it through the adequate API functions.

In the case of command-line execution, FAPEC can be invoked without any option,

leading to an automatic configuration. However, in the routines that we will use for its

integration in HDF5 the adequate configuration options must be passed. Most of these

are optional, but there is a specific option that is mandatory, namely, the data type.

This is related to the HDF5 data types described in Sect. 2.5, and in the command-line

case of FAPEC it is indicated with the -dtype <t> switch. This option only supports

from 4 to 28 bits per sample, but then we can go beyond with interleaving (indicated

with the -il <s> switch in the command-line case). For example, if a Dataset has

a 64-bit integer datatype, a 16-bit sample with an interleaving of 4 can be indicated.

Also, since the current version of FAPEC does not include yet an adequate handling of

floating-point data, in those cases we can also improve compression through interleaving.

For example, single-precision 32-bit floats can be compressed as 16-bit samples with an

interleaving of 2. Depending on the nature of the data another size and interleaving

configuration could perform somewhat better.

Chapter 3. FAPEC 17

Figure 3.1: FAPEC compression ratios for two-sided geometric distributions. This
figure has been taken from Ref. [20]. Left panels: absolute compression ratios. Right
panels: efficiency of the coders. From top to bottom, tests with 0.1%, 1% and 10% of
outliers (flat noise). The ranges of the distributions (values of b) are representative of
real applications. A small value of b means a low dispersion of the data (that is, a low
entropy) and, hence, an accurate prediction in the pre-processing stage, and vice versa.

Obviously, interleaving can also be used to obtain a better compression ratio in cases

where there is some kind of pattern in the data, such as an array of integer values which

are more correlated across the columns than along the rows. In such a case, being

M the number of columns in the array, an interleaving of M can be used to improve

compression.

The case of text data is peculiar, because it has to be indicated with -dtype txt in

18 FAPEC integration as an HDF5 filter

Figure 3.2: FAPEC command-line switches.

the command-line case. In the library that is activated with a specific configuration

function call. That leads to 8-bit samples which are then processed with a special text

compression algorithm.

The last option which is relevant in the context of this project is the -be command-line

switch (also handled adequately in the API). Most of the Datatypes that are presented

in Table 2.1 of Sect. 2.5 indicate a byte order property. This FAPEC switch only affects

16-bit and 24-bit settings, for which FAPEC assumes Little Endian coding by default

unless this switch is indicated.

3.4 The FAPEC API

The FAPEC API [21] allows to easily integrate FAPEC in our software. It defines two

major configuration sets. The first one is the User Options set, encoded into a single

32-bit integer value. This value combines user parametres such as privacy, file handling,

console logging, or error detection and correction, among others. The following function

allows the users to encode this information into an integer:

Chapter 3. FAPEC 19

/∗ User Options func t i on ∗/
int newFapecUsrOpts (int verbLevel , int askOverwrite , int de l e te Input ,

int en fo rcePr iv , int streamMode , int keepAttr , int noCompHead ,

int edacOpt , int cryptOpt , int threadPool , int decMode) ;

For simplicity, this value can be set to 0 (zero) and it will lead to the default options:

no logging, force output file overwrite, no deletion of input file when done, no privacy

enforcement, no streaming, generate default compressed header, no Error Detection

and Correction (EDAC), no encryption, single thread, and do not store original file

attributes.

In a similar way, the user options can be retreived from a given encoded value using the

following function:

/∗ Function to r e t r e i v e User Options ∗/
void getFapecUsrOpts (int fapecUsrOpts , int ∗verbLevel , int ∗ askOverwrite ,

int ∗ de l e te Input , int ∗ en forcePr iv , int ∗streamMode , int ∗keepAttr ,

int ∗noCompHead , int ∗edacOpt , int ∗cryptOpt , int ∗ threadPool ,

int ∗decMode) ;

The second configuration set corresponds to the FAPEC Compression Options. Here,

user can configure the specific parameters of FAPEC such as the symbol size (data type),

pre-processing algorithm, adaptative block size, and other. This set of options include

the main configuration options described in the previous subsection. All this information

is encoded in the t fapecOpts type which can be created as follows:

/∗ Function to c r ea t e the FAPEC Options v a r i a b l e ∗/
t fapecOpts ∗ newFapecOpts () ;

It is mandatory to generate this variable before either compression or decompression.

Once this is done, it can be directly used as far as we operate at a high enough level, that

is, working with files instead of FAPEC chunks — which are the basic data block allowed

for FAPEC compression. Here the concept of chunk is very similar to that of HDF5.

If we operate on files (which is not our case), the default configuration options include

auto-configuration and a default chunk size of 1 MB. However, as already said, for a

better HDF5 integration we will use the chunk-based compression functions (leaving the

file-level handling to {glsHDF5), which means that we must update the t fapecOpts

variable with, at least, the data type. The following function allows us setting some

common options, such as the chunk size we want (which can be adjusted to the HDF5

chunk size):

/∗ Function to con f i gu r e the FAPEC Options v a r i a b l e ∗/
int setCommonFapecOpts (t fapecOpts ∗ fapecOpts , i n t 3 2 t chunkSize ,

20 FAPEC integration as an HDF5 filter

u i n t 3 2 t headerOf f set , u i n t 3 2 t chunkOffset , u i n t 1 6 t fapecBlockLength) ;

After this, the user can define a specific compression configuration, which includes the

data type and the pre-processing algorithm. There are several algorithms available: basic

pre-processing, basic lossy pre-processing, filter pre-processing, text pre-processing, or

image pre-processing algorithm. In this work, basic pre-processing compression algorith

will be used. The reason for this choice will be explained in Chapter 4. To set up such

basic pre-processing compression algorithm, as well as the data type to be used (and

any eventual interleaving value), the following function must be used:

/∗ Set b a s i c pre−proce s s ing compression a l gor i thm ∗/
int act ivateBas icFapecOpts (t fapecOpts ∗ fapecOpts , i n t 8 t symSize ,

bool bigEndian , u i n t 1 6 t i n t e r l e a v i n g) ;

Once the user has set up the User and FAPEC Options, data can finally be compressed.

The FAPEC API provides compression functions to operate at three different levels:

chunk-based functions, memory-based functions and file-based. According to Sect. 2.6.2,

filters in HDF5 only work whith chunks. Therefore, the chunk-based function of FAPEC

will be used in this project:

/∗ Chunk−based compression func t i on ∗/
int fapecChunkCompression (unsigned char ∗∗ buf f , s i z e t ∗ bu f fS i z e ,

int userOpts , t fapecOpts ∗ inputConf) ;

The FAPEC decompression API is equivalent to the compression case. To recover the

original data from a compressed chunk the following function must be used:

/∗ Chunk−based decompression func t i on ∗/
int fapecChunkDecompression (unsigned char ∗∗ buf f , s i z e t ∗ bu f fS i z e ,

int userOpts , t fapecOpts ∗ inputConf) ;

Chapter 4

Integration

4.1 Feasibility study

Before starting the integration work in itself, which requires quite some development

effort, we want to know if compressing data stored in HDF5 files with FAPEC can really

be done, and if so, which improvement can we expect with respect to other compressors.

To answer this question, we have carried out a simple feasibility study. The idea is to

extract, from an HDF5 file, every single dataset into separate files (using tools available

in the HDF5 suite). Then we will compress them with FAPEC and with gzip level

1 (fastest), 4 (average/fast) and 9 (best), and compare the size and compression time.

Finally, we will reassemble the outputs into a single HDF5 file again (just considering

the level 9 gzip in this case), to compare the original HDF5 file size with this reassembled

one. As we will see, the results of this feasibility study prove the benefits of FAPEC

integration as an HDF5 filter.

4.1.1 Astro Observation File Structure

The HDF5 file selected to do this comparison is an Astro Observation (AO) file from

the Gaia space mission [22]. The AO.h5 file structure is presented in Fig. 4.1. Inside the

AO.h5 file there are five groups (in fact, there are six groups if the root group is taken

into account): Class0, Class1, Class1T, Class2 and Class2T, containing 3 datasets each

(Af, Header and Sm). These correspond to the different window classes (of pixels on

the Gaia focal plane), window truncation, and data provenance (astrometric field, sky

mapper or ancillary data). The data types are arrays of 16-bit unsigned integers for

both Af and Sm, and compound types for Header.

21

22 FAPEC integration as an HDF5 filter

Figure 4.1: HDF5 Astro Observation file structure. The hierarchical structure with
5 groups and 3 datasets each group can be seen.

4.1.2 ASCII procedures and results

As a first approach, we have dumped the above mentioned datasets in ASCII format

using the h5dump command-line tool. Once the datasets have been dumped, they have

been compressed with gzip using level 1, 4 and 9. Gzip lower levels offer quick com-

pression, but less compression ratio while higher levels offer the best compression ratio,

but higher compression times. These compression levels have been chosen to have a

broad view of the different compression ratios and times. Finally, the dumped files also

have been compressed with the FAPEC command-line executable program in its auto

configuration mode.

In order to simplify the analysis of the results obtained with this procedure, Class1 and

Class2 groups have been ignored (we have chosen test files where these groups do not

contain any data). Table 4.1 shows the original sizes of the ASCII files extracted, their

size once compressed with FAPEC, and their size with gzip levels 1, 4 and 9. The best

results in terms of size are highlighted using boldface.

As can be seen, FAPEC does not achieve good compression results when compared

with gzip, not even with the lowest gzip level. We should recall that FAPEC is a binary-

optimized high-performance compressor, whereas this test has been performed on ASCII

(text) files.

Chapter 4. Integration 23

Size (bytes)
Dataset Original FAPEC Gzip (lev.1) Gzip (lev.4) Gzip (lev.9)

Class0/AF 16204992 7656546 5829566 5088653 4571501
Class0/Header 846688 133583 115484 97539 78703
Class0/Sm 2124654 896534 706014 616063 543246

Class1T/AF 8015445 4390097 3366319 2922941 2670382
Class1T/Header 5505488 700519 623998 524593 426959
Class1T/Sm 3080665 1230628 1018785 891936 755098

Class2T/AF 134286752 53943574 44644963 39283718 32849861
Class2T/Header 139804160 17191764 15449932 12563645 10045645
Class2T/Sm 81035772 23845852 20379312 17131143 14231032

Table 4.1: Feasibility test results for the ASCII dumps. Since FAPEC is a binary-
optimized compressor, the compression sizes are not competitive in front of gzip per-

formance.

4.1.3 Binary procedures and results

As in the previous section, every single dataset has been extracted from the AO.h5 file,

but this time the datasets have been dumped using the binary switch in the command-

line h5dump tool. As this is a more realistic case, we provide more detailed results

including compression times. Tables 4.2, 4.3 and 4.4 show the ratios and times for the

several dumped files. This is, the size and compression times of the original dumped

files, of gzip-compressed files, and of FAPEC-compressed files. To better illustrate the

differences in performance for the several compression solutions, some performance ratios

are also shown. Again, the best performances in terms of size (and also time, in this

case) are highlighted in boldface.

These three tables show that FAPEC always performs better than gzip when compressing

AF datasets. In all cases, FAPEC achieves better compression ratios and also performs a

faster compression. FAPEC also produces excellent results when compressing SM data-

sets. Again, FAPEC always performs better than gzip in terms of compression ratios,

and also better than gzip level 9 in terms of compression speed. Nevertheless, gzip level

1 and 4 perform faster than FAPEC, notwithstanding the compression ratios are far

from the ones achieved by FAPEC. On the other hand, for Header datasets FAPEC is

not the best option. The compression ratios are reasonably good, but they are signi-

ficantly better with gzip using either of its levels. Also, FAPEC performs slower when

processing these files. It is worth mentioning that Header datasets have a particular,

very heterogeneous structure with several datatypes such as unsigned 64-bit integers,

8-bit, 16-bit and 32-bit integers, and arrays of 8-bit and 16-bit integers.

Finally, we should also mention that to obtain good results compressing Class2T/Sm

dataset, FAPEC autoconfig feature had to be turned off to manually pass the compres-

sion parameters. With autoconfig turned on, the current FAPEC release incorrectly

24 FAPEC integration as an HDF5 filter

Dataset Original Gzip (lev.1) Gzip (lev.4) Gzip (lev.9) FAPEC

Size (bytes)

Class0/AF 5372136 3862598 3823948 3801570 3366311
Class0/Header 172634 58704 55517 52201 65086
Class0/Sm 702240 461424 455444 451258 406024

Compression time (ms)

Class0/AF - 365 511 678 221
Class0/Header - 10 12 25 162
Class0/Sm - 45 61 126 123

Time ratio (t/tmin)*

Class0/AF - 1,652 2,312 3,068 1,000
Class0/Header - 1,000 1,200 2,500 16,200
Class0/Sm - 1,000 1,356 2,800 2,733

Compression ratio (Sizeorig/Sizecomp)**

Class0/AF - 1,391 1,405 1,413 1,596
Class0/Header - 2,941 3,110 3,307 2,652
Class0/Sm - 1,522 1,542 1,556 1,730

* Lower is better

** Higher is better

Table 4.2: Class0 group test results. The table shows the comparison of four para-
meters for the dumped Class0 files. Namely, size in bytes, compression time in ms, a

time ratio and a compression ratio.

selects a pre-processing stage based on ASCII. By manually indicating the correct para-

meters to FAPEC, the compression ratio increases from 1.52 to 2.30. This means that,

as otherwise expected, it is better to use a configuration based on the data types to be

compressed (in case this can be known) rather than an automatic configuration. This

conclusion is important for an adequate integration of FAPEC in HDF5, as it will be

shown below.

4.1.4 Reassembling the Astro Observation file

Once the datasets have been compressed using FAPEC and gzip, they have been reas-

sembled into a single HDF5 file again, using the HDF5 command line tool, to compare

the overall file size. For this purpose, a HDF5 file has been generated from the separ-

ate dataset files compressed with gzip level 9, and another HDF5 file with the datasets

compressed using FAPEC. We have chosen level 9 of Gzip because it delivers the best

compression ratio compared to the rest of levels. The results are presented in Table 4.5.

As can be seen, the overall compression ratio obtained using FAPEC is 2.41, in contrast

to just 2.12 achieved by gzip in its best version (level 9). However, the main advantage

of FAPEC is in the processing time to compress the data. Gzip takes almost 30 seconds

to compress all datasets. FAPEC has done this operation in less than 10 seconds.

Chapter 4. Integration 25

Dataset Original Gzip (lev.1) Gzip (lev.4) Gzip (lev.9) FAPEC

Size (bytes)

Class1T/AF 2630160 2192647 2186181 2178683 1934781
Class1T/Header 1146480 304337 291326 272610 309767
Class1T/Sm 1011600 646446 633019 627698 568492

Compression time (ms)

Class1T/AF - 198 302 928 147
Class1T/Header - 35 49 106 218
Class1T/Sm - 64 87 255 112

Time ratio (t/tmin)*

Class1T/AF - 1,347 2,054 6,313 1,000
Class1T/Header - 1,000 1,400 3,029 6,229
Class1T/Sm - 1,000 1,359 3,984 1,750

Compression ratio (Sizeorig/Sizecomp)**

Class1T/AF - 1,200 1,203 1,207 1,359
Class1T/Header - 3,767 3,935 4,206 3,701
Class1T/Sm - 1,565 1,598 1,612 1,779

* Lower is better

** Higher is better

Table 4.3: Class1T group test results.

From these results we can conclude that, indeed, FAPEC can not only be integrated in

HDF5 to compress its datasets, but also that we can expect a good performance both

in compression ratios and times.

4.2 Identification of data formats

To properly integrate FAPEC as an HDF5 filter, one of the main goals of this work con-

sists of identifying the data types of the datasets that can be contained in an HDF5 file.

By knowing the data type of a particular dataset, we will be able to adjust the FAPEC

compression parameters correctly to obtain the best possible compression performance

when invoking it as a filter from the HDF5 Data Pipeline (see Sect. 2.6.1).

The HDF5 Library implements two datatype models: atomic datatypes and composite

datatypes. We have focused the attention on atomic datatypes because they correspond

to commonly used storage formats. In addition, composite datatypes are an aggregation

of one or more atomic or composite datatypes. According to that explained in Sect. 2.5,

a datatype class is defined as a set of one or more datatype properties, so we have taken

into account every single combination of these properties to set up a robust relationship

between a specific datatype with its defined properties, and the compression parameters

that will be set in FAPEC. For instance, a H5T STD I32LE (standard 32-bit, little endian

integer) has to be mapped to different compression parameters than a H5T IEEE F64BE

26 FAPEC integration as an HDF5 filter

Dataset Original Gzip (lev.1) Gzip (lev.4) Gzip (lev.9) FAPEC

Size (bytes)

Class2T/AF 45385716 29156378 28718163 28503094 22887364
Class2T/Header 28922270 7736744 7144833 6625418 6802527
Class2T/Sm 26697480 12510143 12070230 12002927 11605445

Compression time (ms)

Class2T/AF - 2781 4002 9850 1201
Class2T/Header - 839 1297 3486 2154
Class2T/Sm - 1188 1798 14520 5400

Time ratio (t/tmin)*

Class2T/AF - 2,316 3,332 8,201 1,000
Class2T/Header - 1,000 1,546 4,155 2,567
Class2T/Sm - 1,000 1,513 12,222 2,733

Compression ratio (Sizeorig/Sizecomp)**

Class2T/AF - 1,557 1,580 1,592 1,983
Class2T/Header - 3,738 4,048 4,365 4,252
Class2T/Sm - 2,134 2,212 2,224 2,300

* Lower is better

** Higher is better

Table 4.4: Class2T group test results.

File Size (bytes) Ratio (Sizeorig/Sizecom)* Time (ms) Ratio (t/tmin)**

AO 115848704 1 - -
AO (Gzip lev.9) 54546775 2,124 29995 3,064
AO (FAPEC) 47977129 2,415 9789 1

* Higher is better

** Lower is better

Table 4.5: Overall file size comparison. FAPEC is 3 times faster than gzip level 9,
and it also delivers a higher compression ratio.

(64-bit, big endian IEEE floating point) to obtain in both cases the optimum compression

performance. Sect. 3.3 explains the most important FAPEC switches involved in the

context of the present project. We have checked which characteristics of an HDF5

dataset can be translated into a FAPEC compression parameter, and found the following

ones:

• Size in bits of the sample, which affects the datatype and interleaving to be used

in FAPEC.

• Byte order, which affects the endianess.

• Text format case, which then requires the selection of text-based FAPEC pre-

processing.

Note that the first two datatype properties correspond to compression parameters that

FAPEC expects to receive when basic pre-processing compression algorithm is selected:

Chapter 4. Integration 27

/∗ Set b a s i c pre−proce s s ing compression a l gor i thm . ∗/
int act ivateBas icFapecOpts (t fapecOpts ∗ fapecOpts , i n t 8 t symSize ,

bool bigEndian , u i n t 1 6 t i n t e r l e a v i n g) ;

That is the main reason why the basic pre-processing algorithm is selected in FAPEC.

In order to determine this datatype information, the HDF5 API offers excellent methods

to retrieve it in a clean and simple way. To retrieve the datatype of a dataset we have

used the following function:

/∗ Returns the the da ta type c l a s s i d e n t i f i e r ∗/
H5T clas s t H5Tget c lass (h i d t dtype id)

On the other hand, to retrieve the sample size of a dataset and the byte order, we have

used the following functions:

/∗ Returns the s i z e o f the a c t ua l da ta type in b y t e s ∗/
s i z e t H5Tget s ize (h i d t dtype id)

/∗ Returns the by t e order o f an atomic da ta type ∗/
H5T order t H5Tget order (h i d t dtype id)

The optimum value for the interleaving parameter has been assessed with several tests

with different sample sizes and interleaving configurations. The chosen values offer the

best performance, but depending of the nature of the data, other values could perform

even better. Table 4.6 shows the mapping implemented in our integration layer that

allows us to map the datatype properties into compression parameters that FAPEC

currently supports. We have indicated the configuration as command-line switches for a

simpler description, but the actual invocation and configuration will obviously be done

through the adequate API functions and parameters. For example, float 16-bit Little

Endian (LE) will be compressed with FAPEC using 8-bit samples and an interleaving

of 2 samples.

4.3 Integration approach and description

As described in Sect. 2.6.2, to integrate FAPEC as an HDF5 filter we need to implement

a software program (or better said, library) that calls the filter in the precise moment

that data is being written into a dataset. That can be considered a wrapper of the

FAPEC compressor in itself, adapting it to the exact HDF5 API.

FAPEC obviously provides both compression and decompression routines, so we have

divided the implementation in two parts: the Writer (or compression) and the Reader

28 FAPEC integration as an HDF5 filter

Class Size (bits) Byte Order FAPEC switch

Integer/Bitfield/Opaque

8 N/A -dtype 8 -il 1

16
LE -dtype 16 -il 1
BE -dtype 16 -il 1 -be

32
LE -dtype 16 -il 2
BE -dtype 16 -il 2 -be

64
LE -dtype 16 -il 4
BE -dtype 16 -il 4 -be

Float

16
LE -dtype 8 -il 2
BE -dtype 8 -il 2 -be

32
LE -dtype 16 -il 2
BE -dtype 16 -il 2 -be

64
LE -dtype 16 -il 4
BE -dtype 16 -il 4 -be

Char N/A N/A -dtype txt

String N/A N/A -dtype txt

Table 4.6: Mapping between HDF5 datatype properties and FAPEC parameters.

(or decompression). Additionally, some other filters (see Sect. 2.7) have been integrated

into our software to be able to compare FAPEC performance against that of other high-

performance algorithms.

4.3.1 Writer or Compression

The writer program expects two command-line parameters: an HDF5 input file name,

and the name of the filter to be applied to the data. Optionally, an output file name can

be indicated. The input file is opened with read-only permissions. After that, the filter

registration takes place. Because we need an output file to store the data read from the

input file, the program creates a new empty HDF5 file. Finally, the writer traverses the

input file in search of all objects in an iterative way. A pseudocode listing of the main

part of the writer is shown here:

/∗ Open the input f i l e ∗/
H5Fopen(i n p u t f i l e , H5F ACC RDONLY, H5P DEFAULT) ;

/∗ Reg i s t e r the f i l t e r ∗/
H5Zreg i s t e r (FAPEC FILTER) ;

/∗ Create the d e s t i n a t i o n f i l e us ing d e f a u l t p r o p e r t i e s ∗/
H5Fcreate (o u t p u t f i l e , H5F ACC TRUNC, H5P DEFAULT, H5P DEFAULT) ;

/∗ Traverse the input f i l e ∗/
H5Lvis i t (i n p u t f i l e i d , H5 INDEX NAME, H5 ITER NATIVE ,

op func , (void ∗) &od) ;

One of the input parameters of the H5Lvisit() function is a pointer to another function

(the callback function) which defines the operations to be done when an HDF5 object is

Chapter 4. Integration 29

found. It is worth mentioning that H5Lvisit() does not search for objects in a file, but

it searches for links. It means that it can discover groups and datasets, but it cannot

discover other objects such as attributes, which are inserted as a header information and

do not have any link to any object. To simplify the integration of FAPEC in HDF5,

only datasets and groups are handled. The prototype of the callback function is defined

by the HDF5 API as follows:

h e r r t (∗ H 5 L i t e r a t e t) (h i d t i n p u t f i l e i d , const char ∗name ,

const H5L in fo t ∗ o b j e c t i n f o , void ∗ op data)

When the callback function finds a group, it opens the output file previously created and

generates a new group inside the output file with the same name as the group found,

and finally it closes the objects. A pseudocode of the group handling part of the callback

function is listed here:

/∗ Open the output f i l e ∗/
H5Fopen(FILE , H5F ACC RDWR, H5P DEFAULT) ;

/∗ Copy the group o f the input f i l e to the output f i l e ∗/
H5Gcreate (f i l e i d , name , H5P DEFAULT, H5P DEFAULT, H5P DEFAULT) ;

/∗ Close the o b j e c t s ∗/
H5Gclose (group id) ;

H5Fclose (f i l e i d) ;

The first step when a dataset is found, as in the case of groups, is to open the output

file created before. After that, the input file dataset that has been discovered has to

be opened and its creation properties list must be retrieved. Afterwards, the callback

function adds the registered filter to this list. The number of dimensions, its size and

its data type must be known in order to create a new compressed copy of the current

dataset, so the function also retrieves this information from the input dataset. Finally,

the callback function reads the data from the input dataset, creates a new datatset to

the output file already opened, and writes the data with the filter set up into the output

dataset. When done, all objects must be closed. A pseudocode of the dataset handling

part of callback function is listed below:

/∗ Open the output f i l e ∗/
H5Fopen(o u t p u t f i l e , H5F ACC RDWR, H5P DEFAULT) ;

/∗ Open the input f i l e da t a s e t to r e t r i e v e data ∗/
H5Dopen(i n p u t f i l e , name , H5P DEFAULT) ;

/∗ Retr i eve the dcp l ∗/
H 5 D g e t c r e a t e p l i s t (i n p u t d a t a s e t i d) ;

30 FAPEC integration as an HDF5 filter

/∗ Set the f i l t e r to the dcp l ∗/
H 5 P s e t f i l t e r (p l i s t , FAPEC FILTER ID , H5Z FLAG MANDATORY,

NUM ELEMENTS, cd va lue s) ;

/∗ Retr i ve the numer o f dimension and i t s s i z e o f the input f i l e ∗/
H5Dget space (i n p u t d a t a s e t i d) ;

H5Sget s imple extent d ims (dataspace id , dims , NULL) ;

/∗ Retr i eve the da t a s e t type ∗/
H5Dget type (i n p u t d a t a s e t i d) ;

/∗ Read the input f i l e data us ing the d e f a u l t p r o p e r t i e s ∗/
H5Dread (i n p u t d a t a s e t i d , datatype id , H5S ALL , H5S ALL ,

H5P DEFAULT, rdata [0]) ;

∗ Create the new datase t i n to the output f i l e ∗/
H5Dcreate (o u t p u t f i l e , name , datatype id , dataspace id ,

H5P DEFAULT, p l i s t , H5P DEFAULT) ;

/∗ Write the f i l t e r e d data in t o the new da t a s e t ∗/
H5Dwrite (output data s e t id , datatype id , H5S ALL , H5S ALL ,

H5P DEFAULT, rdata [0]) ;

/∗ Close the o b j e c t s ∗/
H5Fclose (i n p u t f i l e) ;

H5Dclose (i n p u t d a t a s e t i d) ;

H5Pclose (p l i s t) ;

H5Sclose (da ta space id) ;

H5Tclose (data type id) ;

Before the writing operation, the HDF5 library sends the data automatically to the

filter in order to process it. The filter function prototype is defined by the HDF5 API

as follows:

/∗ Dec lara t ion o f the f i l t e r f unc t i on ∗/
s i z e t m y f i l t e r f u n c t i o n (unsigned int f l a g s , s i z e t cd nelmts ,

const unsigned int cd va lue s [] , s i z e t nbytes ,

s i z e t ∗ b u f s i z e , void ∗∗buf) ;

Our implementation of this function manages all FAPEC configuration processes and

ultimately calls FAPEC through its API (see Sect. 3.4). First of all, the FAPEC common

options are configured: chunk size, chunk offset, header offset and block length. The

chunk and header offsets are set to 0, and a default value of 128 samples is used for

the block length. These are the values recommended by the FAPEC API and the User

Manual, and confirmed by FAPEC developers. Finally, the chunk size must be set to

Chapter 4. Integration 31

the nominal chunk size that can be found in an HDF5 dataset, making sure that it is

not smaller than the minimum recommended FAPEC chunk size (which is 1024 bytes).

These common options are stored into an array and passed as an argument to FAPEC.

The next pseudocode listing shows the way to do that operation:

/∗ Reg i s t e r common op t i ons ∗/
setCommonFapecOpts (fapecOpts , chunk s ize , h e a d e r o f f s e t ,

chunk o f f s e t , b l o c k l e n g t h) ;

After configuring and registering FAPEC, it is time to configure its actual compression

options. The values of these options are the result of implementing Table 4.6, and

depending on the data type, sample size, interleaving and byte order, they will have

one or another set up. According to the discussion of Sect. 4.2, the basic pre-processing

compression algorithm has to be used because its input parameters are the ones that we

have retrieved from the HDF5 dataset:

/∗ Configure ba s i c fapec op t i ons : s i z e , endianness , i n t e r l e a v i n g ∗/
act ivateBas icFapecOpts (fapecOpts , s i z e ,

endianness , i n t e r l e a v i n g) ;

An exception to this is the case of text (char or string) datasets, for which we will use

the text-based FAPEC pre-processing instead.

Finally, the FAPEC chunk compression function is invoked, passing all the adequate

parameters, stored into two variables:

/∗ Ca l l FAPEC compression ∗/
fapecChunkCompression ((unsigned char ∗∗) buf ,

&nbytes , fapecUsrOpts , fapecOpts) ;

With this last operation, the HDF5 original chunks become compressed with FAPEC.

We have added some mechanisms to ensure the correct execution of the writer regardless

of the complexity of the input HDF5 file. According to what was stated in Sect. 4.2,

only atomic datatypes are processed and compressed with FAPEC, but the writer can

also identify and handle other situations. The first complex situation occurs when a

dataset exists, but does not contain data, or in other words, the storage size of the

dataset is equal to zero. In this case, the filter call by HDF5 Library returns an error.

Another complex situation occurs when an HDF5 file contains complex datatypes such

as H5T COMPOUND, H5T ENUM, H5T REFERENCE, H5T TIME or H5T VLEN, which are not sup-

ported in compression yet. Finally, the third complex situation occurs when a dataset

does not have a chunked layout. According to that explained in Sect. 2.6.2, filters in

HDF5 only work when a dataset implements a chunked layout.

32 FAPEC integration as an HDF5 filter

Our writer software can identify these three situations and handle them by simply im-

plementing a bypass. When any of these cases are detected, the writer copies the input

dataset into the output file as-is, without any kind of processing. The H5O API handles

this:

/∗ Copy the input o b j e c t to the output f i l e ∗/
H5Ocopy(i n p u t l o c a t i o n , input name , output l o ca t i on , output name ,

H5P DEFAULT, H5P DEFAULT) ;

4.3.2 Reader or Decompression

Decompression is quite similar to the compression case described before. The reader

functionality is the same as that of the writer in the sense that the eader expects an

HDF5 input file, but with its datasets compressed with FAPEC or other compression

techniques that we currently support in the present work. The reader generates a new

empty HDF5 file, reads the data of the input file, decompresses the data, and writes it

from the input file to the output file.

Some considerations have to be taken into account. The first one is that we do not have to

set the FAPEC filter into the new dataset creation properties list. This list is retrieved

from the incoming dataset, which already has the filter in it. If we set up again the

FAPEC filter to the retrieved creation properties list, we would add twice the filter into

the data pipeline causing a bad decompression operation. The second consideration is

that instead of calling the FAPEC chunk compression function, we obviously have to call

the FAPEC chunk decompression function. Exactly the same common and compression

options as in the compression case must be used except the chunk size, which must be

set to 0 (as indicated by the FAPEC API), because we cannot know the compressed

chunk sizes beforehand in HDF5:

/∗ Reg i s t e r common op t i ons ∗/
setCommonFapecOpts (fapecOpts , 0 , h e a d e r o f f s e t ,

chunk o f f s e t , b l o c k l e n g t h) ;

Once again, a bypass has been implemented to detect and handle the complex situations

explained at the end of Sect. 4.3.1. With these considerations in mind, the compressed

HDF5 file is now decompressed.

Chapter 4. Integration 33

Comp(){

…

}

FapecComp
Adaptation.so

FapecCompAdaptation.c{

Filter(){

confFapecCommOpts();

setCommFapecOpts();

activateBasicFapecOpts();

fapecChunkCompression();

}
}

Compilation

Writer

MyFileCompressed.h5

Decomp(){

…

}

Reader

Run time
fapec_conf_com_opt.h
{
//Conf fapec_copts[n]
/*
 * n = 0 --> chunksize
 * n = 1 --> chunkoffset
 * n = 2 --> header offset
 * n = 3 --> block length
 */
…
return fapec_copts[];
}

type_maper.h
{
//Conf cd_values[n]
/*
 * n = 0 --> datatype
 * n = 1 --> size
 * n = 2 --> interleaving
 * n = 3 --> LE/BE
 */
...
return cd_values[];
}

FapecDecomp
Adaptation.so

FapecDecompAdaptation.c{

Filter(){

confFapecCommOpts();

setCommFapecOpts();

activateBasicFapecOpts();

fapecChunkDecompression();

}
}

Compilation

- ska.h5
- ao.h5
- aster.h5
- big-aster.h5

Run time

- ska.h5
- ao.h5
- aster.h5
- big-aster.h5

Shared library Shared library

Figure 4.2: Overall code structure, illustrating the modular approach taken to op-
timize compilation time and memory usage.

4.4 Implementation and code structure

In Sect. 4.3 we have explained with some technical detail how FAPEC has been integrated

as an HDF5 filter through the corresponding APIs. Here we present the overview of the

implementation and code structure, which we have tried to do as clean, simple, modular

and efficient as possible. Fig. 4.2 shows the overall structure of our software project.

34 FAPEC integration as an HDF5 filter

We have split the actual filter implementation into two files. One file defines the FAPEC

compression operations, and the other file defines the decompression operations. We

have chosen to compile these two files as shared libraries to provide more versatility and

because it contributes to reduce the size of the executable file and the compilation time

of the whole program. Benefits in memory management are another argument to do

that, and lastly, and most important, if changes have to be done on the filter definition

or configuration, updating to a new version of the shared library will solve the problem

without having to modify any other code. This is specially interesting in case we wish

to keep some parts of the code confidential, as in the case of the FAPEC code.

In two header files we implement the mentioned mapping of datatype properties to

FAPEC compression parameters (see Table 4.6) and the function that computes FAPEC

common options (chunk size, chunk offset, header offset and block size). Having them

implemented as header files avoids duplicate code, since these functions will be used

with both writer and reader executables.

Finally, the writer and reader programs are also split into two executable files. The

shared library corresponding to the FAPEC filter compression implementation is linked

to the Writer, and the shared library corresponding to FAPEC filter decompression

implementation is linked to the reader.

Chapter 5

Tests and results

5.1 Test case description

Once FAPEC has been integrated as an HDF5 filter, we have designed and implemented

a test to check the performance of the compression algorithm within the file manager.

The test consists on executing our writer and reader software over four different files.

This is, to compress and decompress them, measuring the compression ratios and the

time spent to do the operation for every single compression algorithm that we have

integrated: blosc, bzip2, deflate, FAPEC and szip. For bzip2 and deflate we have used

compression level 5, and for szip we have configured the “Pixels per Block” compression

parameter to 16.

The files used to run these tests come from the Square Kilometre Array (SKA) pro-

ject [23], from the Gaia space mission of ESA, and from the Advanced Spaceborne

Thermal Emission and Reflection Radiometer (ASTER) mission [24] of National Aero-

nautics and Space Administration (NASA). It is worth to comment that some of these

files had to be decompressed before running the test because they were originally com-

pressed using deflate, szip or bit shuffling techniques. Thus, in order to have a raw file

(and hence a comparable test), we have first executed our reader to decompress all files.

Table 5.1 shows the original and decompressed sizes of these files and the type of filter

originally used.

Tables 5.2, 5.3, 5.4 and 5.5 show a description of the SKA.h5, AO.h5, ASTER.h5 and

BIG-ASTER.h5 files. The “empty file” size shown in these tables correspond to the size

of the file with only the internal structure without datasets. In other words, just with

the groups and HDF5 headers. This measure allows us to determine the size of the data

for a given file.

35

36 FAPEC integration as an HDF5 filter

Name Filter Original size (bytes) Raw size (bytes)

AO.h5 Shuffle 115858160 115850216
ASTER.h5 Gzip lev.6 422985016 768164128

Table 5.1: HDF5 test files (originally compressed). In order to have raw input files,
without any filter applied to their datasets, an initial decompression of AO.h5 and
ASTER.h5 file was required. The decompression operation has been done using our

reader software.

Name Size(bytes) Groups Datasets Datatypes

SKA.h5 75843628 30 247
32-bit and 64-bit floating-point, 64-bit
integer, 8-bit unsigned integer, com-
pound and string.

SKA.h5 (empty file) 23512 30 0 N/A

Datatype Amount Total size (bytes) Data size (bytes) (%) of file size
H5T INTEGER 8 1 8328688 8305176 11,0
H5T INTEGER 64 36 397376 373864 0,5
H5T FLOAT 32 5 66287408 66263896 87,4
H5T FLOAT 64 50 387856 364344 0,5
H5T STRING 3 33160 9648 0,0
H5T COMPOUND 152 530028 506516 0,7

Table 5.2: SKA test file structure.

Name Size(bytes) Groups Datasets Datatypes

AO.h5 115850216 6 15
Array of 16-bit unsigned integer and
compound.

AO.h5 (empty file) 4648 6 0 N/A

Datatype Amount Total size (bytes) Data size (bytes) (%) of file size
H5T ARRAY 10 82838128 82833480 71,5
H5T COMPOUND 5 33018376 33013728 28,5

Table 5.3: Gaia AO test file structure.

Name Size(bytes) Groups Datasets Datatypes

ASTER.h5 768164128 75 239
32-bit and 64-bit floating-point, 32-
bit integer and string.

ASTER.h5 (empty file) 66400 75 0 N/A

Datatype Amount Total size (bytes) Data size (bytes) (%) of file size
H5T INTEGER 38 80520 14120 0,0
H5T FLOAT 32 4 768093584 768027184 99,9
H5T FLOAT 64 74 93112 26712 0,0
H5T STRING 123 103096 36696 0,0

Table 5.4: ASTER test file structure.

Our implementation of the writer allows selecting just a given datatype to be compressed.

Note that the entire structure of the file will be created, including information on all

groups. This means that the selected datatype will be processed and copied to the

output file, but the rest of datatypes will be ignored and not copied to the output file.

By knowing the size of the empty structure of the file we can deduce the actual size of

the data of a given dataype, by simply subtracting the empty file size to the total file

size (which only contains one datatype). Thus, we are able to compare not only the

compression ratio and compression/decompression time for the entire file, but also for

Chapter 5. Tests and results 37

Name Size(bytes) Groups Datasets Datatypes

BIG-ASTER.h5 2332814752 1 4
64-bit floating-point and 16-bit
integer.

BIG-ASTER.h5 (empty file) 1832 1 0 N/A

Datatype Amount Total size (bytes) Data size (bytes) (%) of file size
H5T INTEGER 1 51845048 51843216 2,2
H5T FLOAT 3 2280971864 2280970032 97,8

Table 5.5: BIG-ASTER test file structure.

Test platform specifications

OS Linux 3.16.7-35-desktop openSUSE 13.2 (x86 64).
CPU AMD Turion(tm) 64 X2 Mobile Technology TL-58 @ 1900MHz.
RAM 2,63GiB of total physical memory + 2GiB of Swap memory.

Table 5.6: Equipment specifications to run the tests.

a specific datatype. That will give us a precise measure of how each filter performs for

every datatype.

To measure the compression and decompression times we have compiled HDF5 with

debugging turned on for the H5Z layer. Such layer is the portion of the API that

handles filter operations, so by turning the debugging mode on for this layer, an output

from the HDF5 library is given when any kind of filter is used in our program. In this

way the code supplies information such as the filter used and its direction (input or

output), the total number of bytes processed by the filter including errors, how many

of these bytes can be attributed to errors, the elapsed time and the throughput. Note

that since the elapsed time is subject to system load, the throughput, which is the total

processed bytes divided by elapsed time, may not be completely reliable.

Finally, an HDF5 tool has been used to check if the input file of the writer (that is,

the original file) is equal to the output file of the reader (that is, the decompressed or

restored one). This tool compares the whole file, its structure, every single dataset, the

dataset dataspace and datatype, its contents,. . . The tool is called h5diff, which works

in the same way than the Linux command-line tool diff.

5.2 Results

The equipment used to run the test is a end-user laptop with the characteristics specified

in Table 5.6, whereas Table 5.7 shows a brief description of each parameter that has been

measured in order to better understand the results obtained.

Tables 5.8, 5.9, 5.10, 5.11 and 5.12 present the results obtained from the execution of

each filter on each file. The best performance for each case is, as usual, highlighted in

38 FAPEC integration as an HDF5 filter

Parameter Description

Proc. in comp.(bytes)
Total number of bytes processed by the filter including errors in
compression.

Errors (bytes)
Number of processed bytes that could not be correctly handled
by the filter, and thus were output as-is.

Size after comp. (bytes) Size of the file after applying compression.

Ratio
Reduction of the data size after compression, defined as the
uncompressed size divided by the compressed size.

Comp. time (s) Elapsed time to compress the data.

Comp. throughput (MB/s)
Total number of bytes processed divided by the elapsed time in
compression.

Proc. in decomp. (bytes)
Total number of bytes processed by the filter, including errors,
in decompression.

Decomp. time (s) Elapsed time to decompress the data.

Decomp. throughput (MB/s)
Total number of bytes processed divided by the elapsed time in
decompression.

Table 5.7: Description of the metrics evaluated in the tests.

SKA.h5
OVERALL compression/decompression results

Blosc Bzip2 Deflate FAPEC Szip

Proc. in comp.(bytes) 74582561 74592511 74584144 74594985 74579968
Errors (bytes) 59180897 0 0 0 66060288
Size after Comp. (bytes) 67082657 50945168 50935237 66653315 67788462
Ratio 1,131 1,489 1,489 1,138 1,119
Comp. Time (s) 0,78 27,78 6,62 1,47 0,91
Comp. throughput (MB/s) 90,88 2,56 10,73 48,28 78,46
Proc. in decomp. (bytes) 15401664 161345503 110992382 74594985 8519680
Decomp. Time (s) 0,05 5,19 1,05 0,74 0,05
Decomp. throughput (MB/s) 314,90 29,64 101,10 96,60 167,00

Table 5.8: SKA overall test results.

bold face. Table 5.13 presents the compression ratio and compression throughput para-

meters normalized to the worst case, offering an easy view of how much compression an

algorithm achieves and how fast it is with respect to that with the worst performance.

Finally, Table 5.14 presents the weighted average for compression throughput and com-

pression ratio (according to the file and dataset sizes), only taking into account the test

executions without errors.

5.3 Discussion

The tests that we have executed consist of running our writer program (see Sect. 4.3)

over the four files described in Sect. 5.1 using each of the filters that we have integrated.

After that, we ran the reader to decompress the files. The results obtained present the

performance of each filter when compressing data in an HDF5 file, and specifically, they

show the advantages and drawbacks of the FAPEC integration as an HDF5 filter in front

of the rest of high-performance algorithms.

Chapter 5. Tests and results 39

SKA.h5
INTEGER 8-bit compression/decompression results

Blosc Bzip2 Deflate FAPEC Szip

Proc. in comp.(bytes) 8257536 8257536 8257536 8257536 8257536
Errors (bytes) 0 0 0 0 0
Size after Comp. (bytes) 407905 222754 222870 342378 508889
Ratio 20,418 37,390 37,370 24,326 16,366
Comp. Time (s) 0,02 0,42 0,22 0,07 0,06
Comp. Bandwidth (MB/s) 451,70 18,60 35,06 119,00 125,40
Proc. in decomp. (bytes) 8257536 12470520 11590656 8257536 8257536
Decomp. Time (s) 0,02 0,09 0,06 0,06 0,05
Decomp. Bandwidth (MB/s) 398,00 128,40 175,90 141,00 170,80

INTEGER 64-bit compression/decompression results

Blosc Bzip2 Deflate FAPEC Szip

Proc. in comp.(bytes) 263080 267657 263756 264016 262144
Errors (bytes) 936 0 0 0 0
Size after Comp. (bytes) 139339 140129 136212 176584 165065
Ratio 2,852 2,836 2,917 2,250 2,407
Comp. Time (s) 0,00 0,06 0,09 0,00 0,00
Comp. Bandwidth (MB/s) 154,60 4,21 2,85 78,32 54,97
Proc. in decomp. (bytes) 262144 293648 363084 264016 262144
Decomp. Time (s) 0,00 0,01 0,00 0,00 0,00
Decomp. Bandwidth (MB/s) 156,80 19,86 74,17 56,96 52,59

FLOAT 32-bit compression/decompression results

Blosc Bzip2 Deflate FAPEC Szip

Proc. in comp.(bytes) 66060288 66060288 66060288 66070816 66060288
Errors (bytes) 59179008 0 0 0 66060288
Size after Comp. (bytes) 65704922 49746529 49744875 65303169 66287408
Ratio 1,009 1,333 1,333 1,015 1,000
Comp. Time (s) 0,76 28,38 6,42 1,40 0,85
Comp. Bandwidth (MB/s) 83,12 2,22 9,81 45,11 74,24
Proc. in decomp. (bytes) 6881280 148561299 99035510 66070816 N/A
Decomp. Time (s) 0,03 4,78 0,81 0,68 N/A
Decomp. Bandwidth (MB/s) 241,20 29,61 117,00 92,08 N/A

FLOAT 64-bit compression/decompression results

Blosc Bzip2 Deflate FAPEC Szip

Proc. in comp.(bytes) 952 6289 1851 190 N/A
Errors (bytes) 952 0 0 0 N/A
Size after Comp. (bytes) N/A 392097 387856 387856 N/A
Ratio N/A 0,989 1,000 1,000 N/A
Comp. Time (s) N/A 0,07 0,03 0,00 N/A
Comp. Bandwidth (MB/s) N/A 1,07 0,09 1,87 N/A
Proc. in decomp. (bytes) N/A 18986 1851 1904 N/A
Decomp. Time (s) N/A 0,01 0,00 0,00 N/A
Decomp. Bandwidth (MB/s) N/A 2,86 0,93 2,22 N/A

STRING compression/decompression results

No chunked layout detected. Filtering not applicable.

COMPOUND compression/decompression results

Not atomic datatype. Filtering not implemented.

Table 5.9: SKA detailed test results.

First of all, FAPEC (and our HDF5 adaptation) appears to be a robust algorithm,

because in all the tests FAPEC has performed without any error. Such errors mean that

a chunk cannot be compressed or processed by the filter (because a given filter may not

support some specific datatype or chunk size, for example). In those cases, the HDF5

library bypasses the filter, and the chunk is copied to the output file without any kind

40 FAPEC integration as an HDF5 filter

AO.h5

OVERALL compression/decompression results

Blosc Bzip2 Deflate FAPEC Szip

Proc. in comp.(bytes) 82812672 82812672 82812672 82812672 N/A
Errors (bytes) 0 0 0 0 N/A
Size after Comp. (bytes) 85128993 70661195 80820485 72858829 N/A
Ratio 1,361 1,640 1,433 1,590 N/A
Comp. Time (s) 0,85 22,62 10,38 1,23 N/A
Comp. throughput (MB/s) 92,91 3,49 7,61 64,45 N/A
Proc. in decomp.(bytes) 82812672 115435952 123122982 82812672 N/A
Decomp. Time (s) 0,30 9,73 1,16 1,29 N/A
Decomp. throughput (MB/s) 265,50 11,30 101,20 61,18 N/A

ARRAY compression/decompression results

Blosc Bzip2 Deflate FAPEC Szip

Proc. in comp.(bytes) 82812672 82812672 82812672 82812672 N/A
Errors (bytes) 0 0 0 0 N/A
Size after Comp. (bytes) 52116905 37649107 47808397 39846741 N/A
Ratio 1,589 2,200 1,733 2,079 N/A
Comp. Time (s) 0,75 24,76 10,42 1,21 N/A
Comp. throughput (MB/s) 104,80 3,19 7,58 65,00 N/A
Proc. in decomp. (bytes) 82812672 115435952 123122982 82812672 N/A
Decomp. Time (s) 0,28 9,52 1,32 1,28 N/A
Decomp. throughput (MB/s) 278,30 11,55 88,75 61,92 N/A

COMPOUND compression/decompression results

Not atomic datatype. Filtering not implemented.

Table 5.10: AO file test results.

of processing. That is the reason why we could always recover the original file, despite

of the errors, such as in the case of blosc or szip in SKA, or szip in ASTER.

Looking closer at the results for SKA (Tables 5.8 and 5.9), it can be seen that FAPEC

performs very well offering a compression throughput of 48MB/s, although the compres-

sion ratio is low. It is worth commenting that blosc seems to be the fastest option in

this case, but taking into account the number of errors of the filter when dealing with

float and even with integer data, and the number of decompressed bytes that is less

than the rest of filters, it can be said that FAPEC is the fastest and safer option, since

it is almost 5 times faster than deflate, and 19 times faster than bzip2. On the other

hand, deflate obtains the best compression ratio together with bzip2, but with a much

lower compression throughput. The partial results for the float datatype reveal some

difficulties in FAPEC to compress float data efficiently, but also in blosc and szip. This

causes a low overall compression ratio for the entire file due to the large fraction of float

data in the SKA file (88% of the total data size). In the case of FAPEC it is worth

mentioning that there is no pre-processing stage specific for float data yet, but future

releases will include it and, thus, we a large improvement can be expected here.

Moving to the Gaia AO file (Table 5.10), FAPEC performs even better than in the SKA

case. The compression ratio achieved for the Array datatype is 2,08, whereas the best

option, bzip2, achieves a ratio of 2,2. However, the compression throughput is 20 times

Chapter 5. Tests and results 41

ASTER.h5

OVERALL compression/decompression results

Blosc Bzip2 Deflate FAPEC Szip

Proc. in comp.(bytes) 768000000 768000000 768000000 768000000 768000000
Errors (bytes) 0 0 0 0 512000000
Size after Comp. (bytes) 296633233 351638465 424306640 328723343 764778061
Ratio 2,590 2,185 1,810 2,337 1,004
Comp. Time (s) 4,89 298,64 92,91 9,63 18,95
Comp. throughput (MB/s) 149,60 2,45 7,88 76,06 38,65
Proc. in decomp.(bytes) 768000000 1429635358 1252280592 768000000 256000000
Decomp. Time (s) 2,85 104,40 10,01 10,55 4,53
Decomp. throughput (MB/s) 257,30 13,05 119,30 69,41 53,92

FLOAT 32-bit compression/decompression results

Blosc Bzip2 Deflate FAPEC Szip

Proc. in comp.(bytes) 768000000 768000000 768000000 768000000 768000000
Errors (bytes) 0 0 0 0 512000000
Size after Comp. (bytes) 296562689 351567921 424236096 328652799 764707517
Ratio 2,590 2,185 1,811 2,337 1,004
Comp. Time (s) 4,90 306,11 94,82 9,88 17,25
Comp. Bandwidth (MB/s) 149,50 2,39 7,72 74,16 42,47
Proc. in decomp.(bytes) 768000000 1429635358 1252280592 768000000 256000000
Decomp. Time (s) 3,43 105,73 12,61 13,22 4,57
Decomp. Bandwidth (MB/s) 213,60 12,89 94,74 55,42 53,43

FLOAT 64-bit compression/decompression results

No chunked layout detected. Filtering not applicable.
INTEGER compression/decompression results

No chunked layout detected. Filtering not applicable.

STRING compression/decompression results

No chunked layout detected. Filtering not applicable.

Table 5.11: ASTER file test results.

faster than with bzip2. Blosc also yields excellent results combining an acceptable ratio

with an extremely low compression and decompression time. Regarding the Compound

datatype, being this a complex datatype it cannot be compressed yet by our software.

Note that one of the limitations of szip is the impossibility to compress complex data-

types such as array datatypes, which is an important limitation that FAPEC does not

have.

The ASTER file (Table 5.11) is one of the largest files in this test with almost 770 MB.

Almost all of the datasets have a float datatype. The rest of the data that includes

integer and string datatypes cannot be compressed because they do not have a chunked

layout, as indicated in Sect. 2.6. Again, the results show an excellent performance of

FAPEC, which in this case is a bit surprising considering that they are float datatypes.

It is almost 32 times faster than bzip2, and 10 times faster than deflate. It also achieves

a high compression ratio of 2,34. The reason this is that in this file the float datatypes

are compressed much better than in the case of SKA. This, in turn, could be the much

smaller dispersion in the actual values. In contrast, the dispersion of float values in

SKA was much larger, which the values oscillating in a wide range and even changing

the sign often. To conclude the analysis of the ASTER file, we see that blosc obtains

42 FAPEC integration as an HDF5 filter

BIG-ASTER.h5

OVERALL compression/decompression results

Blosc Bzip2 Deflate FAPEC Szip

Proc. in comp.(bytes) 2332800000 2332800000 2332800000 2332800000 2332800000
Errors (bytes) 0 0 0 0 0
Size after Comp. (bytes) 75370792 22043926 43726608 76763906 255854286
Ratio 30,951 105,826 53,350 30,389 9,118
Comp. Time (s) 5,54 1061,30 42,63 10,97 127,78
Comp. throughput (MB/s) 401,50 2,10 52,10 202,80 17,41
Proc. in decomp.(bytes) 2332800000 2448673416 3455996688 N/A 2332800000
Decomp. Time (s) 8,27 82,66 13,32 N/A 70,05
Decomp. throughput (MB/s) 268,80 28,25 247,40 N/A 31,76

INTEGER compression/decompression results

Blosc Bzip2 Deflate FAPEC Szip

Proc. in comp.(bytes) 51840000 51840000 51840000 51840000 51840000
Errors (bytes) 0 0 0 0 0
Size after Comp. (bytes) 6999831 5405443 7536114 5354389 6796587
Ratio 7,406 9,591 6,879 9,682 7,628
Comp. Time (s) 0,16 4,73 1,63 0,28 0,22
Comp. throughput (MB/s) 308,00 10,44 30,31 173,60 224,20
Proc. in decomp.(bytes) 51840000 64804744 60248528 51840000 51840000
Decomp. Time (s) 0,19 1,64 0,43 0,35 0,27
Decomp. throughput (MB/s) 266,00 37,75 132,70 142,60 179,80

FLOAT compression/decompression results

Blosc Bzip2 Deflate FAPEC Szip

Proc. in comp.(bytes) 2280960000 2280960000 2280960000 2280960000 2280960000
Errors (bytes) 0 0 0 0 0
Size after Comp. (bytes) 68373121 16640643 36192654 71411677 249059859
Ratio 33,361 137,072 63,023 31,941 9,158
Comp. Time (s) 4,65 959,96 41,91 9,94 97,08
Comp. throughput (MB/s) 467,70 2,27 51,90 218,90 22,40
Proc. in decomp.(bytes) 2280960000 2383868672 3395748160 N/A 2280960000
Decomp. Time (s) 5,70 79,82 15,05 N/A 64,28
Decomp. throughput (MB/s) 381,30 28,48 215,10 N/A 33,83

Table 5.12: BIG-ASTER file test results.

the best results in this case, since it is 2 times faster in compression than FAPEC with a

high compression ratio, and almost 3 times faster in decompression. As described in the

blosc documentation, such excellent speeds are achieved because this compressor employs

Single Instruction, Multiple Data (SIMD) techniques, such as Streaming Single Instruc-

tion Multiple Data Extensions 2 (SSE2) and Advanced Vector Extensions 2 (AVX2) [25].

On the contrary, FAPEC just uses plain standard C instructions.

Finally, in the BIG-ASTER file test (Table 5.12) bzip2 achieves an amazing compression

ratio of 105,83, but the compression time is far from being competitive when compared

to the other filters. Again, FAPEC performs excellent and is not far from the results

obtained by blosc, achieving the best compression ratio for the dataset with an integer

datatype. For the float datatype (with almost 2,1 GB) the compression ratio achieved

is 31,94 in less than 10 seconds. It is worth mentioning that we have not been able to

decompress the FAPEC-compressed file because of limitations in our testing platform.

Chapter 5. Tests and results 43

Normalized compression ratio*

Blosc Bzip2 Deflate FAPEC Szip
SKA.h5 N/A 1,31 1,31 1,00 N/A
AO.h5 1,00 1,20 1,05 1,17 N/A
ASTER.h5 1,43 1,21 1,00 1,29 N/A
BIG-ASTER.h5 3,39 11,61 5,58 3,33 1,00

Normalized compression throughput*

Blosc Bzip2 Deflate FAPEC Szip
SKA.h5 N/A 1,00 4,19 18,85 N/A
AO.h5 26,61 1,00 2,18 18,46 N/A
ASTER.h5 61,01 1,00 3,21 31,02 N/A
BIG-ASTER.h5 191,56 1,00 24,86 96,76 8,31

* Higher is better

Table 5.13: Normalized compression results with respect to the worst value. Execu-
tions with errors in the tests are not taken into account.

Weighted average of compression results*

Blosc Bzip2 Deflate FAPEC Szip
Ratio 23,11 75,58 38,30 22,16 9,12
Throughput 330,23 2,24 39,27 161,81 17,41

* Higher is better

Table 5.14: Weighted average of compression results. We have only considered the
test executions without errors.

As already said at the beginning of this section, FAPEC has performed all the tests

without errors, in contrast to the case of blosc or szip filters that have reported many

errors when compressing SKA.h5 and ASTER.h5 files. With this in mind, and seeing

the excellent results in compression ratio and bandwidth in all cases, it is clear that

FAPEC is the most balanced compression algorithm. Finally, it is important to remark

that in all cases, the use of the HDF5 tool h5diff has reported no differences between

the original file and the decompressed one.

Chapter 6

Conclusions

6.1 Conclusions

In this work we have integrated FAPEC as an HDF5 filter aimed at super-computing

environments that need to optimize the size of their HDF5 files, the computational cost

and the file transfer time between nodes and storage systems. This integration is also

a clear solution for those users that need a high performance compression algorithm in

their projects, specially in cases where the compression techniques integrated by default

in the HDF5 library do not satisfy their needs.

The integration of FAPEC as an HDF5 filter has been done in a clear and simple way.

We have chosen to compile the compression and decompression routines of FAPEC as

shared libraries because it contributes to reduce the size of the final executable file and

the compilation time of the entire program, but specially it leads to a more modular

implementation. Benefits in memory management are another argument to do that,

and lastly, and most important, if changes have to be done on the filter definition or

configuration, updating to new version of the shared library will solve the problem

without requiring modifications to any other code parts.

The results of the tests reveal a good performance of FAPEC on HDF5 files in general.

In the SKA, AO and ASTER file cases, FAPEC provides a faster compression speed than

bzip2 and deflate. In the most extreme case, the compression throughput is increased by

20 times with respect to bzip2, and by 4 times with respect to deflate, while achieving

very similar compression ratios. The case of BIG-ASTER file is a bit different because

bzip2 and deflate achieve extremely high compression ratios at the expense of not being

competitive in terms of compression times. In this case, FAPEC works extremely well

when compressing integer data, and it also achieves very good results in ratios and speed

45

46 FAPEC integration as an HDF5 filter

when compressing float data. Specifically, it is 100 times faster than bzip2, and 4 times

faster than deflate.

In contrast to szip, the resiliency of the algorithm and the integration in itself allows

FAPEC to operate without errors in a wide range of datatypes, even in a specific complex

datatype such as arrays. Since data can be very heterogeneous in HDF5, the robustness

of the filter and of its integration is a critical point in order to allow users to process their

files without the risk of data corruption or data incompatibilities. On the other hand,

we have found that the blosc compressor is a tough competitor. Yielding very similar

compression ratios, blosc is typically two times faster than FAPEC in all cases, and in

decompression blosc works even better despite it is not the most robust algorithm.

6.2 Future work

Several issues might be improved in order to improve even further the FAPEC integration

as an HDF5 filter. First of all, it would be interesting to implement a solution to compress

complex datatypes with FAPEC, and specially, compound datatypes. They seem to be

frequently found in HDF5 files. To do that, the integration layer has to discover all

datatypes of a compound dataset, and read the data of every portion of the compound

datatype so they can be sent to the filter.

Regarding the implementation of the data buffer where data is stored when a dataset

is read, it could be improved in order to be more efficient in terms of memory usage.

Currently, the memory usage when a file is considerably large increases proportionally

to the file size, so a circular data buffer could be implemented to solve this issue.

Lastly, The HDF Group allows to register third-party filters in their website. The Group

would then assign a filter identifier, which could be used by our filter. That would mean

that the HDF5 API may include the FAPEC filter, so other users could know about

our solution and use it in their systems. We should check with the HDF5 Group which

requirements should be met in order to perform such request.

Appendix A

MD5 filter

A.1 Filter definition

The MD5 filter used in Section 2.6.2 is defined as follows. Note that the input part and

the output part have been defined into the same structure.

#include <s t d i o . h>

#include <s t d l i b . h>

#include <s t r i n g . h>

#include <opens s l /md5 . h>

#include <a s s e r t . h>

#include ” hdf5 . h”

#define HAVE MD5

/∗ Define MD5 f i l t e r f unc t i on ∗/

s i z e t m d 5 f i l t e r (unsigned int f l a g s , s i z e t cd nelmts ,

const unsigned int cd va lue s [] , s i z e t nbytes ,

s i z e t ∗ b u f s i z e , void ∗∗buf)

{
#ifde f HAVE MD5

unsigned char cksum [1 6] ;

i f (f l a g s & H5Z FLAG REVERSE) {
/∗ Input ∗/

a s s e r t (nbytes >=16) ;

MD5(∗ buf , nbytes −16, cksum) ;

47

48 FAPEC integration as an HDF5 filter

/∗ Compare ∗/
i f (memcmp(cksum , (char∗) (∗ buf)+nbytes −16, 16)) {

return 0 ; /∗ f a i l ∗/
}

/∗ S t r i p o f f checksum ∗/
return nbytes −16;

} else {
/∗ Output ∗/
MD5(∗ buf , nbytes , cksum) ;

/∗ Increase b u f f e r s i z e i f necessary ∗/
i f (nbytes+16 > ∗ b u f s i z e) {

∗ b u f s i z e = nbytes + 16 ;

∗buf = r e a l l o c (∗ buf , ∗ b u f s i z e) ;

}

/∗ Append checksum ∗/
memcpy((char∗) (∗ buf)+nbytes , cksum , 16) ;

return nbytes +16;

}
#else

return 0 ; /∗ f a i l ∗/
#endif

}

Appendix B

FAPEC filter

B.1 Filter definition for FAPEC Core 2016.0 Release

The next listing shows the compression part of FAPEC filter definition:

#include <s t d i o . h>

#include <s t r i n g . h>

#include <s t d l i b . h>

#include ” f a p e c o p t s . h”

#include ” fapec comp . h”

#include ” hdf5 . h”

#include ” fapec con f com opt . h”

#define DEBUG 0

#define STRING TYPE 3

#define HAVE FAPEC

/∗ Define FAPEC compression f i l t e r f unc t i on ∗/

s i z e t f a p e c c a l l (unsigned int f l a g s , s i z e t cd nelmts ,

const unsigned int cd va lue s [] , s i z e t nbytes ,

s i z e t ∗ b u f s i z e , void ∗∗buf)

{
#i f d e f HAVE FAPEC

int s tatus , f a p e c c o p t s [4] = {0 , 0 , 0 , 0} ;

int fapecUsrOpts = 0 ; /∗ Defau l t user con f i g /

s i z e t uncomp nbytes ;

t f apecOp t s ∗ fapecOpts = NULL;

49

50 FAPEC integration as an HDF5 filter

/∗ I n i t i a l i z e fapec op t i ons var ∗/
fapecOpts = newFapecOpts () ;

i f (f l a g s & H5Z FLAG REVERSE) {
/∗ NOT AVAILABLE. Return error to HDF5 ∗/
p r i n t f (” Error . Not a v a i l a b l e \n”) ;

return 0 ;

} else {
/∗ Output ∗/

/∗ S i z e o f the chunk b e f o r e compression ∗/
uncomp nbytes = nbytes ;

/∗
∗ Set FAPEC common op t i ons

∗/
s t a t u s = configureFapecCommonOptions (cd va lues , cd nelmts ,

f apec copt s , nbytes) ;

i f (s t a t u s != 0) {
p r i n t f (” Error coding common FAPEC opt ions : %d\n” , s t a t u s) ;

// Return f a i l u r e to HDF5

return 0 ;

}

s t a t u s = setCommonFapecOpts (fapecOpts , f a p e c c o p t s [0] , f a p e c c o p t s [1] ,

f a p e c c o p t s [2] , f a p e c c o p t s [3]) ;

i f (s t a t u s != 0) {
p r i n t f (” Error c o n f i g u r i n g common FAPEC opt ions : %d\n” , s t a t u s) ;

// Return f a i l u r e to HDF5

return 0 ;

}

/∗
∗ Set FAPEC compression op t i ons

∗/
i f (cd va lue s [0] == STRING TYPE) {

s t a t u s = activateTextFapecOpts (fapecOpts , 3) ;

i f (s t a t u s != 0) {
p r i n t f (” Error c o n f i g u r i n g FAPEC text opt ions : %d\n” , s t a t u s) ;

// Return f a i l u r e to HDF5

return 0 ;

}
} else {

/∗ Configure ba s i c fapec op t i ons : s i z e , endianness , i n t e r l e a v i n g ∗/
s t a t u s = act ivateBas icFapecOpts (fapecOpts , cd va lue s [1] ,

cd va lue s [3] , cd va lue s [2]) ;

Appendix A. FAPEC filter 51

i f (s t a t u s != 0) {
p r i n t f (” Error c o n f i g u r i n g ba s i c fapec opt ions : %d\n” , s t a t u s) ;

// Return f a i l u r e to HDF5

return 0 ;

}
}

/∗
∗ Compress the chunks

∗/
s t a t u s = fapecChunkCompression ((unsigned char ∗∗) buf ,

&nbytes , fapecUsrOpts , fapecOpts) ;

f r e e (fapecOpts) ;

return nbytes ;

}

#else

return 0 ; /∗ f a i l u r e ∗/
#e n d i f

}

The next listing shows de decompression part of FAPEC filter definition:

#include <s t d i o . h>

#include <s t r i n g . h>

#include <s t d l i b . h>

#include ” f a p e c o p t s . h”

#include ” fapec decomp . h”

#include ” hdf5 . h”

#include ” fapec con f com opt . h”

#define DEBUG 0

#define STRING TYPE 3

#define HAVE FAPEC

/∗ Define FAPEC compression f i l t e r f unc t i on ∗/

s i z e t f a p e c c a l l (unsigned int f l a g s , s i z e t cd nelmts ,

const unsigned int cd va lue s [] , s i z e t nbytes ,

s i z e t ∗ b u f s i z e , void ∗∗buf)

{
#i f d e f HAVE FAPEC

int s tatus , f a p e c c o p t s [4] = {0 , 0 , 0 , 0} ;

52 FAPEC integration as an HDF5 filter

int fapecUsrOpts = 0 ; /∗ Defau l t user con f i g ∗/
s i z e t comp nbytes ;

t fapecOpts ∗ fapecOpts = NULL;

/∗ I n i t i a l i z e fapec op t i ons var ∗/
fapecOpts = newFapecOpts () ;

/∗ Define maximum ” v e r b o s i t y ” o f FAPEC opera t ion ∗/
f a p e c u s r C f g S e t v e r b o s i t y (fapecUsrOpts , 2) ;

i f (f l a g s & H5Z FLAG REVERSE) {
/∗ S i z e o f the chunk b e f o r e decompression ∗/
comp nbytes = nbytes ;

/∗
∗ Set FAPEC common op t i ons

∗/
s t a t u s = configureFapecCommonOptions (cd va lues , cd nelmts ,

f apec copt s , nbytes) ;

i f (s t a t u s != 0) {
p r i n t f (” Error coding common FAPEC opt ions : %d\n” , s t a t u s) ;

// Return f a i l u r e to HDF5

return 0 ;

}

/∗
∗ Beware : In Decompression we must s e t a chunks i z e o f 0 ,

∗ because we cannot know i t be forehand in the case o f HDF5

∗/
s t a t u s = setCommonFapecOpts (fapecOpts , 0 , f a p e c c o p t s [1] ,

f a p e c c o p t s [2] , f a p e c c o p t s [3]) ;

i f (s t a t u s != 0) {
p r i n t f (” Error c o n f i g u r i n g common FAPEC opt ions : %d\n” , s t a t u s) ;

// Return f a i l u r e to HDF5

return 0 ;

}

/∗
∗ Set FAPEC decompression op t i ons

∗/
i f (cd va lue s [0] == STRING TYPE) {

s t a t u s = activateTextFapecOpts (fapecOpts , 3) ;

i f (s t a t u s != 0) {
p r i n t f (” Error c o n f i g u r i n g FAPEC text opt ions : %d\n” , s t a t u s) ;

// Return f a i l u r e to HDF5

return 0 ;

}
} else {

Appendix A. FAPEC filter 53

/∗ Configure ba s i c fapec op t i ons : s i z e , endianness , i n t e r l e a v i n g ∗/
s t a t u s = act ivateBas icFapecOpts (fapecOpts , cd va lue s [1] ,

cd va lue s [3] , cd va lue s [2]) ;

i f (s t a t u s != 0) {
p r i n t f (” Error c o n f i g u r i n g ba s i c fapec opt ions : %d\n” , s t a t u s) ;

// Return f a i l u r e to HDF5

return 0 ;

}
}

/∗
∗ Decompress the chunks

∗/
s t a t u s = fapecChunkDecompression ((unsigned char ∗∗) buf ,

&nbytes , fapecUsrOpts , fapecOpts) ;

f r e e (fapecOpts) ;

return nbytes ;

} else {
/∗ Output ∗/
/∗ NOT AVAILABLE. Return error to HDF5 ∗/
p r i n t f (” Error . Not a v a i l a b l e \n”) ;

return 0 ;

}

#else

return 0 ; /∗ f a i l u r e ∗/
#e n d i f

}

Bibliography

[1] J. Portell, E. Garćıa–Berro, C. Estepa, J. Castaeda, and M. Clotet. Efficient data

storage of astronomical data using hdf5 and pec compression. High-Performance

Computing in Remote Sensing, 1, 2011. doi: 10.1117/12.898203. Prague 2011,

SPIE.

[2] The HDF GROUP. Who uses hdf? HDF web page, January 2016. URL https:

//www.hdfgroup.org/users.html. Last modified on 29 January 2016.

[3] The HDF GROUP. HDF products. HDF web page, March 2016. URL https:

//www.hdfgroup.org/products/. Last modified on 24 March 2016.

[4] The HDF Group. HDF5: API Specification Reference Manual. URL https://www.

hdfgroup.org/HDF5/doc/RM/RM_H5Front.html.

[5] The HDF GROUP. Limits in HDF5. HDF web page, November 2015. URL https:

//www.hdfgroup.org/HDF5/faq/limits.html. Last modified on 19 November

2015.

[6] The HDF GROUP. HDF5 User’s Guide, March 2016. URL https:

//www.hdfgroup.org/HDF5/doc/UG/HDF5_Users_Guide-ResponsiveHTML5/

index.html#t=HDF5_Users_Guide%2FHDF5_UG_Title%2FHDF5_UG_Title.htm.

HDF5 Release 1.10.0.

[7] The HDF GROUP. Filters in HDF5. HDF web page, August 2001. URL https://

www.hdfgroup.org/HDF5/doc/H5.user/Filters.html. Last modified on 2 August

2003.

[8] OpenSSL Cryptography and SSL/TLS Toolkit. URL https://www.openssl.org/.

[9] The HDF GROUP. Filters. HDF web page, June 2016. URL https://www.

hdfgroup.org/services/filters.html. Last modified on 8 June 2016.

[10] Jean loup Gailly. Zlib homepage. URL http://zlib.net/.

[11] Antaeus Feldspar. An Explanation of the Deflate Algorithm. comp.compression

forum, 1997.

55

https://www.hdfgroup.org/users.html
https://www.hdfgroup.org/users.html
https://www.hdfgroup.org/products/
https://www.hdfgroup.org/products/
https://www.hdfgroup.org/HDF5/doc/RM/RM_H5Front.html
https://www.hdfgroup.org/HDF5/doc/RM/RM_H5Front.html
https://www.hdfgroup.org/HDF5/faq/limits.html
https://www.hdfgroup.org/HDF5/faq/limits.html
https://www.hdfgroup.org/HDF5/doc/UG/HDF5_Users_Guide-Responsive HTML5/index.html#t=HDF5_Users_Guide%2FHDF5_UG_Title%2FHDF5_UG_Title.htm
https://www.hdfgroup.org/HDF5/doc/UG/HDF5_Users_Guide-Responsive HTML5/index.html#t=HDF5_Users_Guide%2FHDF5_UG_Title%2FHDF5_UG_Title.htm
https://www.hdfgroup.org/HDF5/doc/UG/HDF5_Users_Guide-Responsive HTML5/index.html#t=HDF5_Users_Guide%2FHDF5_UG_Title%2FHDF5_UG_Title.htm
https://www.hdfgroup.org/HDF5/doc/H5.user/Filters.html
https://www.hdfgroup.org/HDF5/doc/H5.user/Filters.html
https://www.openssl.org/
https://www.hdfgroup.org/services/filters.html
https://www.hdfgroup.org/services/filters.html
http://zlib.net/

56 FAPEC integration as an HDF5 filter

[12] Michael Schindler. Szip homepage. URL http://www.compressconsult.com/

szip/.

[13] R.F. Rice. Some practical universal noiseless codin techniques. JPL Tech Rep.,

pages 22–79, 1979. Jet Propulsion Laboratory.

[14] Consultative Committee for Space Data Systems. Lossless Data Compression, Blue

Book. Technical Report CCSDS 121.0-B-1, CCSDS, 1993.

[15] Pen-Shu Yeh, Wei Xia-Serafino, Lowell Miles, Ben Kobler, and Daniel Menasce.

Implementation of CCSDS lossless data compression in HDF. In Earth Science

Technology Conference-2002, 2002. URL http://esto.nasa.gov/conferences/

estc-2002/Papers/A3P2(Yeh).pdf.

[16] Julian Seward. Bzip2 user manual. URL http://www.bzip.org/1.0.5/

bzip2-manual-1.0.5.html.

[17] Francesc Alted. Blosc homepage. URL http://www.blosc.org/blosc-in-depth.

html.

[18] Francesc Alted. Why modern CPU’s are starving and what can be done about it.

IEEE computing now, 2010.

[19] Dapcom Data Services. URL http://www.dapcom.es/fapec_core_2016_0.html.

[20] J. Portell, A. G. Villafranca, and E. Garćıa–Berro. Quick outlier-resilient entropy

coder for space missions. Journal of Applied Remote Sensing, 4:339–363, 2010. doi:

10.1051/0004-6361:20010085.

[21] DAPCOM Data Services. FAPEC Core 2016.0 API Reference, April 2016. DDS-

HARC-UM-02.

[22] M. A. C. Perryman, K. S. de Boer, G. Gilmore, E. Høg, M. G. Lattanzi, L. Linde-

gren, X. Luri, F. Mignard, O. Pace, and P. T. de Zeeuw. GAIA: Composition,

formation and evolution of the Galaxy. Astron. & Astrophys., 369:339–363, Apr

2001. doi: 10.1051/0004-6361:20010085.

[23] P. Diamond. The Square Kilometre Array: A Physics Machine for the 21st Century.

SPIE Newsroom, July 2014. doi: 10.1117/2.3201407.12.

[24] M. Abrams. The Advanced Spaceborne Thermal Emission and Reflection Ra-

diometer (ASTER): Data products for the high spatial resolution imager on NASA’s

Terra platform. International Journal of Remote Sensing, 21:847–859, 2010. doi:

10.1080/014311600210326.

http://www.compressconsult.com/szip/
http://www.compressconsult.com/szip/
http://esto.nasa.gov/conferences/estc-2002/Papers/A3P2(Yeh).pdf
http://esto.nasa.gov/conferences/estc-2002/Papers/A3P2(Yeh).pdf
http://www.bzip.org/1.0.5/bzip2-manual-1.0.5.html
http://www.bzip.org/1.0.5/bzip2-manual-1.0.5.html
http://www.blosc.org/blosc-in-depth.html
http://www.blosc.org/blosc-in-depth.html
http://www.dapcom.es/fapec_core_2016_0.html

Appendix A. FAPEC filter 57

[25] David A. Patterson and John L. Hennessey. Computer Organization and Design:

the Hardware/Software Interface. Morgan Kaufmann Publishers, Inc., 2nd edition

edition. San Francisco, California, 1998, p.751.

	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Background
	1.2 State of the art
	1.3 Motivation
	1.4 Structure and plan of this project

	2 The HDF5 file format
	2.1 Overview
	2.2 HDF5
	2.3 File structure
	2.4 Datasets
	2.5 Datatypes
	2.6 Filters
	2.6.1 The data pipeline
	2.6.2 Registering a third-party filter

	2.7 Available compression filters in HDF5
	2.7.1 Deflate or gzip
	2.7.2 Szip
	2.7.3 Bzip2
	2.7.4 Blosc

	3 FAPEC
	3.1 Overview
	3.2 PEC and its Fully Adaptive layer
	3.3 Configuration and modes
	3.4 The FAPEC API

	4 Integration
	4.1 Feasibility study
	4.1.1 Astro Observation File Structure
	4.1.2 ASCII procedures and results
	4.1.3 Binary procedures and results
	4.1.4 Reassembling the Astro Observation file

	4.2 Identification of data formats
	4.3 Integration approach and description
	4.3.1 Writer or Compression
	4.3.2 Reader or Decompression

	4.4 Implementation and code structure

	5 Tests and results
	5.1 Test case description
	5.2 Results
	5.3 Discussion

	6 Conclusions
	6.1 Conclusions
	6.2 Future work

	A MD5 filter
	A.1 Filter definition

	B FAPEC filter
	B.1 Filter definition for FAPEC Core 2016.0 Release

	Bibliography

