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Abstract 
This paper deals with strategic capacity planning of a single-site manufacturing system. 

We propose a MILP model that includes relevant business aspects and possibilities, 

some of which are only partially or not at all found in the literature. Specifically, we 

consider decisions on expansion, reduction and renewal of production capacity, and 

acquisition of storage capacity. In addition, we model aspects such as a) maintenance 

costs and unit variable costs depending, respectively, on age and characteristics of 

facilities, b) seasonality of the demand, and c) cash flow management, including taxes 

and, therefore, depreciation of assets. The model maximises the after-tax cash balance at 

the end of the planning horizon. We also present a computational experiment with 54 

instances to show that the model can be solved for a wide range of sizes in a reasonable 

computing time using comercial software. 
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1. Introduction 

In this paper, we propose a new deterministic model for strategic capacity planning of a 

single-site manufacturing system. Unlike previously published models, this one 

incorporates the most relevant decisions on strategic capacity planning. 

Our purpose is twofold: to demonstrate that these decisions can be incorporated in a 

MILP model and to establish the ranges of dimensions in which the model can be 

solved within an affordable computing time using commercial software. In this way, it 

is shown that the model could be used as a decision support tool. 
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Production system capacity is sometimes defined as the volume of products that can be 

generated by a system in a given period. However, this definition is valid only when the 

system generates a single product or a set of very homogeneous products. Otherwise, 

the volume of products obtained depends on the product mix. Hence, what generally 

defines capacity is not the volume of outputs that can be generated by a system in a 

given time, but the availability of various types of productive resources. 

Capacity management is very important for an organisation because it affects results 

significantly. Traditionally, the literature on operations management has distinguished 

between tactical and strategic capacity planning. The former, also called aggregate 

planning, refers to medium term, typically one year, and deals with production and 

inventory management considering the possibility of modifying the size of the staff and 

the amount of working time for example, by using overtime, but not equipment. On the 

other hand, strategic capacity planning refers to the variation of facilities in the long and 

medium term, typically several years. However, in our opinion, the essential difference 

between tactical and strategic capacity planning does not lie in the length of the time 

horizon, but in the consideration of assets as given or as the object of decisions, 

respectively. Classifying a time interval as medium or long term depends not only on its 

duration, but also on the pace of changes in technology and demand, e.g., in the TFT-

LCD and semiconductor manufacturing industries, strategic decisions concerning the 

number of machines and their technology may have to be taken within a horizon of only 

a few months (Geng et al., 2009; Chen et al., 2013). 

Decisions involved in strategic capacity planning usually have a strong impact on an 

organisation and its results since they tend to be associated with considerable 

investments. Moreover, once implemented, decisions are difficult to reverse, and if you 

do reverse them, it is at a high cost. Therefore, there is a need for efficient tools to deal 

with them. 

Many mathematical programming models have been proposed with this purpose, as 

briefly shown in Section 2. Analysis of these models reveals that, although they all take 

into account some of the relevant factors, none incorporates all the desirable 

characteristics. 

The types of decisions and aspects to consider in strategic planning capacity are diverse 

and their importance depends on the specific case under consideration. Martínez-Costa 
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et al. (2014) identified up to nine kinds of decisions and nine external factors 

considering strategic capacity planning of sigle-site and multi-site manufacturing 

systems. However, we believe that those discussed below are among the most 

significant. 

All models consider the possibility of acquiring additional equipment throughout the 

planning horizon to replace obsolete equipment, introduce new technologies or satisfy a 

growing demand (Çathay et al., 2003). However, some authors (e.g., Olhager et al., 

2001; Geng and Jiang, 2009) point out that decisions to be made concern expansion and 

reduction of equipment as a result of a fall in demand caused by an economic recession 

or a product being at the end of its life cycle. A modification in the characteristics of 

equipment involves changes in unit fixed and variable costs. However, the latter are 

usually negligible because these costs are regarded as data. The age of equipment also 

generally has a major impact on its maintenance costs. 

Seasonality of demand is overlooked in many strategic capacity planning models 

because the time horizon is divided into years and for each period a global forecast of 

demand is used, regardless of its distribution throughout the year. In high seasonality 

scenarios, this approach cannot provide optimum production and storage capacities and 

may even result in configurations unable to meet the expected demand. Thus, as noted 

in Bradley and Glynn (2002), decisions about capacity must involve production and 

inventory management. 

Indeed, financial constraints affect strategic planning capacity policies substantially. It 

is generally assumed that the organisation finances its plans with its own funds and that 

the use of net present value as a decision criterion is acceptable. Clearly, this is not the 

case in many real situations, especially those concerning projects involving significant 

investments. Moreover, taxes on profits can be an important component of cash flows, 

with the consequent impact on finances. And when they are considered, depreciation of 

assets must be calculated. 

All these elements, i.e., expansion and reduction, maintenance costs and unit variable 

costs depending, respectively, on the age and characteristics of facilities, seasonality of 

demand, cash flow management, including taxes and, therefore, depreciation of assets, 

may be incorporated in a single mathematical program which, unless very large, can 

currently be solved within a reasonable computing time.  
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The layout of the rest of the paper is as follows. The next section provides a brief review 

of the literature on mathematical models for strategic capacity planning of single-site 

manufacturing systems. Section 3 sets the adopted assumptions and proposes the 

corresponding mixed-integer linear program. Section 4 describes a computational 

experiment, including the generation of data sets. The paper ends with Section 5, which 

contains the conclusions and future lines of research. 

2. Literature review 

This section is a review of literature on mathematical programming dealing with 

strategic capacity planning problems of single-site manufacturing companies. Capacity 

Planning in Operations Management has been an important research topic for many 

years. Luss (1982) was the first literature review on capacity expansion. Van Mieghem 

(2003), Wu et al. (2005), Julka et al. (2007) and Geng and Jiang (2009) also provided 

literature reviews on this topic. The most recent review is Martínez-Costa et al. (2014), 

which describes the major decisions and conditioning factors involved in strategic 

capacity planning, and outlines the mathematical programming models proposed in the 

literature to deal with the above problems.  

With regard to capacity-size decisions, most deterministic single-site models consider 

capacity expansion as the only option to adapt capacity to demand, assuming non 

decreasing market demand over time (the most recent are Rajagopalan & Swaminathan, 

2001; Wang & Lin, 2002; Çatay et al., 2003; Wang & Hou, 2003; Zhang et al., 2012; 

Lim et al., 2013). Atamtürk & Hochbaum (2001) highlights the opportunity of 

outsourcing as another way to meet a growing demand. 

However, in certain economic environments, companies are forced to reduce production 

and consider disinvestment in capacity. Rajagopalan & Soteriou (1994), Rajagopalan 

(1998), Wang et al. (2007a) and Yang et al. (2009) present deterministic models that 

include the possibility of capacity expansion and reduction. 

A few studies address the problem of capacity expansion and replacement of equipment 

due to physical deterioration over time and availability of new technology (e.g., 

Rajagopalan, 1992; Chand et al., 2000; Wang et al., 2007b; Mitra et al., 2014). 

Although the depreciation of assets is considered in relation with the expansion and 

replacement decisions, maintenance costs depending on the age of the assets have not 

been considered in the previous literature. 
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When capacity planning involves multiple resources and several products sharing some 

capacity resources, capacity and allocation decisions must be made simultaneously. 

Some examples of models that jointly address these decisions are proposed by Wang et 

al. (2007a), Yang et al. (2009), Zhang et al. (2012) and Lim et al. (2013), among others. 

The joint consideration of capacity investment decisions and production and inventory 

decisions is addressed only in a few publications (e.g.¸ Thomas & Bollapragada, 2010; 

Zhang et al., 2012; Lim et al., 2013; Mitra et al., 2014). However, in some industries 

the interaction between capacity and inventory decisions is significant. In this situation, 

storage and production capacity should be considered jointly (as in the model by Mitra 

et al., 2014). 

Closely related to investment in capacity are financial decisions. Companies may 

require huge investments in capacity expansion, and so they must make decisions on 

how to finance these investments, e. g., increment of equity by means of loans and 

bonds, etc.. Traditional capacity planning models implicitly assume that all investment 

is financed by equity. Other models (found in Wang et al., 2007b; Yang et al., 2009, 

among others) investigated the capacity expansion problem under budget constraints. 

Despite their relevance, there is a lack of research on single-site deterministic models 

that integrate financial and capacity decisions in their formulation.  

Investment and financial decisions have an impact on cash flow, operating income, 

costs and taxes (Martínez-Costa et al., 2014). Corporate taxes should be included in the 

cash flow formulation while studying a capacity planning problem because they 

represent a real significant expenditure for the company. Paying taxes reduces the 

budget for new assets. Despite this, only a few capacity planning models include tax in 

profits (e.g., Thomas & Bollapragada, 2010). 

As can be seen, several studies consider some of the above aspects. However, none of 

them integrates all the decisions and conditioning factors (Martínez-Costa et al., 2014). 

This paper proposes a discrete-time finite horizon mathematical programming model for 

optimising capacity decisions under deterministic demand for multiple resource types 

and multi-product manufacturing systems. At the best of our knowledge, our model is 

the first to simultaneously address capacity, production and inventory decisions to meet 

demand over a multiperiod horizon and cash flow management. Since the objective 

function maximises the cash flow at the end of the planning horizon, the model 
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incorporates several economic and financial variables, depreciation of assets and 

corporate tax considerations. 

3. Problem statement and model formulation 

3.1. Problem statement 

We consider a system that must satisfy the demand for various types of products 

throughout a finite time horizon. To do this, the system has a single-site facility and 

may acquire various types of production equipment to manufacture the products. This 

equipment determines the production capacity of the system. The system also has a 

storage capacity, which can be extended throughout the planning horizon. To carry out 

operations, the system has a limited borrowing capacity and a bank account where 

payments and receipts are recorded. 

The problem consists in making production and storage capacity decisions that optimise 

system performance within a discrete time and finite horizon considering the most 

relevant flows: logistic flow (defined by production, storage and sale of products), cash 

flow (collections and payments), and acquisition, replacement and reduction of 

production equipment. Note that, although the aim is to optimise strategic rather than 

tactical decisions, some of the latter are to be considered because of their relationship to  

production and storage capacity decisions. The problem is defined under the following 

assumptions: 

Initial conditions assumption: 

The system may have had business activity before the beginning of the planning 

horizon. That is, the system may have acquired productive equipment and storage 

capacity before the starting period, and may have collections and payments pending at 

the beginning of the starting period. 

Demand assumption: 

The demand in each period is known, is totally satisfied by the production system and 

cannot be deferred.  

Manufacturing and storage capacity assumptions: 

The manufacturing system consists of several types of production equipment. In this 

context, production equipment refers to any machinery, production line, installation or 

facility such that acquisition of any of those leads to an increase in production capacity. 
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Production capacity can increase or decrease in each period by buying or selling 

production equipment.  

Storage capacity is limited and can be expanded by adding new facilities to existing 

ones. Increasing storage capacity requires a payment. There are a finite number of 

possible storage capacities and they are numbered in the increasing order of their values. 

Acquisitions of production equipment and storage facilities are paid when they are 

available for use. Part of the cost of acquisition is assigned to lengthening the useful life 

of each asset using a straight-line depreciation method. 

Production and storage maintenance costs are paid each period. The former depend on 

the type, quantity and age of production equipment whereas the latter depend on the 

existing storage capacity and age of equipment. These payments increase with capacity 

and age of equipment. Thanks to the maintenance tasks, the assets preserve the original 

properties. 

In view of the above, we can assume that variable production and storage costs depend 

on current capacities regardless of age of equipment. 

Financial and tax assumptions:  

The company has a bank account to make and receive payments. At the end of each 

period, the account generates an interest income or an interest charge depending on 

whether the account balance is positive or negative. 

Borrowing capacity is limited. Flows into and out of bank account are the following: 

collections such as bank interest, product and production equipment sales; and 

payments such as bank interest, operating costs, purchase of production equipment and 

storage capacity, maintenance and variable costs, and taxes. 

Taxable income is calculated annually from the profit and loss account. The profit and 

loss account includes the most significant revenues and expenses, such as revenues, 

bank interest incomes and charges, fixed costs, fixed and variable operating costs, non-

amortisable costs of new production equipment and storage capacity acquisition, 

depreciation of assets, profit or loss from production equipment sales, and product 

inventory value. Negative taxable income for a year can be carried forward to reduce 

future taxable income as long as the company has future positive taxable profits to 

offset losses. VAT repercussions are not considered in the cash flow model. 
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We make no specific assumptions about how fixed cost increases with capacity (note 

that more restrictive assumptions could simplify the model). 

Optimisation criteria and decision variables assumptions: 

The ultimate objective is to maximise the cash balance at the end of the planning 

horizon after making and receiving all payments and selling all assets for their residual 

value. The problem consists in determining, for each period, the quantity to be produced 

(tactical decisions) and production and storage capacities (strategic decisions) that 

maximise the cash balance. Production amounts (tactical decisions) can have real 

values. Although they could be integer, the real value assumption might improve the 

performance of the resolution without introducing significant errors in the solutions. 

The number of units of production equipment (strategic decision) must be integer. 

3.2. Model formulation 

Data: 

Let N be the number of types of product to be manufactured by the company within a 

planning horizon divided into T periods. As a result of the tax liabilities of the company, 

the planning horizon is also divided into Y years, each one of them comprising an 

integer number of periods; let Γk be the first period of year k. Let νM be the number of 

types of production equipment that can be acquired by the company to manufacture the 

products. Every i 𝜖𝜖 {1,…,νM} may represent one or a set of machines, production lines, 

installations or facilities and limits the production capacity of the system. Table 1 lists 

the dimensional parameters of the model. The rest of parameters are shown in Tables 2-

4, grouped by investment and cost data, financial and tax parameters, and miscelaneous 

parameters. 

 

Table 1 Dimensional parameters 

Symbol Definition 

T Number of periods of the planning horizon. 
Y Number of years of the planning horizon. 
Γk First period of year k (k = 1,…,Y). 
N Number of types of products. 
νM Number of types of production equipment. 
νW Number of levels of storage capacities. 
B The period in which the oldest equipment still available at the beginning of 

the planning horizon was acquired. The first period of the planning horizon 
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is period 1. If no production equipment was acquired before the beginning 
of the planning horizon, B = 1. 

 

Table 2 Investment and cost data 

Symbol Definition 
CMit Non-amortisable cost required to set up one unit of production equipment of 

type i in period t (i = 1,…, νM; t = 1,…,T). 
CWjit Non-amortisable cost required to increase storage capacity from Wj to Wi in 

period t (i = 1,…, νW; j = 0,…, i - 1; t = 1,…,T). 
MMiτ t Maintenance cost for period t, corresponding to one unit of production 

equipment of type i, acquired in period τ (i = 1,…, νM; t = 1,…,T, τ = 
B,…,t). 

MW0t Maintenance cost for period t, corresponding to initial storage capacity W0 (t 
= 1,…,T). 

MWiτ t Maintenance cost for period t, corresponding to storage capacity Wi, 
acquired in period τ (i = 1,…, νW; t = 1,…,T, τ = 1,…,  t). 

IMit Investment required to acquire one unit of production equipment of type i in 
period t (i = 1,…, νM; t = B,…,T). 

IWjit Investment required to increase storage capacity from Wj to Wi in period t (i 
= 1,…, νW; j = 0,…, i - 1; t = 1,…,T). 

M
nitv  Variable cost of one unit of  product n produced by production equipment of 

type i in period t (n = 1,…, N; i = 1,…, νM; t = 1,…,T). 
W
ntv  Variable storage costs of one unit of product n in period t (n = 1,…, N; t = 

1,…,T). 
γnk Inventory value of one unit of product n at the end of year k. It also includes 

γn0 defined as the inventory value at the beginning of year 1 (n = 1,…, N; k = 
0,…, Y). 

FCt Fixed costs (costs that are independent of capacity and level of activity) for 
period t (t = 1,…,T). 

FPt Difference between fixed payments (payments that are independent of 
capacity and level of activity) and fixed income for period t (t = 1,…,T). 

 

Table 3 Financial and tax data 

Symbol Definition 

τ s
 Number of periods between a sale and reception of collection. 

τ p
 Number of periods between the acquisition of variable-cost resources and 

the corresponding payment. 
τ b Period in the year in which corporate tax is paid (payments would be 

made in periods Γ1 + τ b - 1, Γ2 + τ b - 1,…). 
d
t

b
t ii ,  Respectively, interest rates applicable to negative and positive balances in 

the debit/credit bank account in period t (t = 1,…,T). 



10/28 

r Corporate tax rate. 
h0 Initial cash balance. 

−
maxh  Maximum negative cash balance (expressed as an absolute value). 

τdM Integer number of periods to amortise production equipment. 
τdW Integer number of periods to amortise a storage capacity asset. 
kmax Compensation period for tax liabilities from previous periods expressed 

in years (integer positive value). 
Pmxk, Lmxk Respectively, upper bounds on profit and loss before tax for year k (k = 

1,…,Y). 
 

 

Table 4 Miscelaneous data 

Symbol Definition 
dnt Demand for product n in period t (n = 1,…, N; t = 1,…,T). 
PSt Income from product sales in period t (t = max(B, 1-τs),…,T). 
PSIt Collection in period t of product sold in previous periods, equal to 𝑃𝑃𝑃𝑃𝑡𝑡−𝜏𝜏𝑠𝑠  for 

t = max(B+τs,1),…,T, and 0 for  ∀𝑡𝑡|(𝑡𝑡 ≥ 1) ∧ (𝑡𝑡 ≤ 𝐵𝐵 + 𝜏𝜏𝑠𝑠 − 1). 
αn Manufacturing capacity required to manufacture one unit of product n (n = 

1,…, N). 
βn Storage capacity required to store one unit of product n (n = 1,…, N). 
s0n Initial inventory level of product n (n = 1,…, N). 
z0iτ Number of units of production equipment of type i acquired in period τ 

which are available in period 1 (i = 1,…, νM; τ = B,…,0). 
Mi Manufacturing capacity of one unit of equipment of type i (i = 1,…, νM). 
Wi Storage capacity of capacity level i (i = 0,…, νW) where W0 is the initial 

storage capacity (at the beginning of period 1).  
𝜏𝜏𝑖𝑖𝑀𝑀 Period in which equipment of type i is available to be purchased (i = 1,…, 

νM). 
SMitτ Sale price of a unit of production equipment of capacity Mi acquired in 

period τ and sold at the beginning of period t (i = 1,…, νM;, τ = B,…, T; t = 
max(1,τ +1),…,T+1). Period T+1 is the end of the plannig horizon. 

SD0t Amount of amortisation corresponding to investment in the initial storage 
capacity attributable to period t (t = 1,…,T). SD0t = 0 for t > τ0dW. 

SW0 Sale price of the initial storage capacity W0 sold at the end of time horizon. 
SWjit Sale price of the increase of  storage capacity from Wi  to Wj put into service 

in period t and sold at the end of time horizon (i = 0,…, νW; j = 1,…, i - 1; t = 
1,…,T). 

 

Variables: 
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The variables are grouped in Tables 5, 6 and 7 according to their relationship to 

strategic or tactical decisions, or to whether they are auxiliary variables.  

 

Table 5 Strategic decision variables 

Symbol Definition 

𝑧𝑧𝑖𝑖𝑡𝑡𝜏𝜏𝑀𝑀 ∈ ℤ+ Number of units of production equipment of type i acquired in period 
τ  which are available in period t (i = 1,…, νM; t = 1,…,T, τ = B,…, t). 

𝑦𝑦0𝑖𝑖1𝑊𝑊 ,𝑦𝑦𝑗𝑗𝑖𝑖𝑡𝑡𝑊𝑊

∈ {0,1} 

1 if storage capacities in periods t-1 and t are, respectively, Wj and Wi (i = 
0,…, νW; j = 0,…, i; t = 2,…,T); 0 otherwise. 

 

These variables do not express directly the acquisition and sale of production equipment 

or expansion of storage capacity. However, there are simple relations between these 

decisions and the variables of Table 5, as follows: 

• Acquiring production equipment of type i in period t: 𝑧𝑧𝑖𝑖𝑡𝑡𝑡𝑡𝑀𝑀 . The value of the 

variable is the number of units of production equipment acquired. 

• Selling production equipment of type i acquired in period τ in period t,:  𝑧𝑧𝑖𝑖,𝑡𝑡−1,𝜏𝜏
𝑀𝑀 −

𝑧𝑧𝑖𝑖𝑡𝑡𝜏𝜏𝑀𝑀 . The value of the expression is the number of units of production equipment 

sold. 

• Expanding storage capacity up to Wj in period t: ∑ 𝑦𝑦𝑖𝑖𝑗𝑗𝑡𝑡𝑊𝑊
𝑗𝑗−1
𝑖𝑖=0 . The value of the 

expression is 1 if the decision is taken. 

The variables 𝑧𝑧𝑖𝑖𝑡𝑡𝜏𝜏𝑀𝑀  and 𝑦𝑦𝑗𝑗𝑖𝑖𝑡𝑡𝑊𝑊  facilitate the modelling of several constraints that depend on 

strategic decisions such as capacity constraints (constraints 2), calculation of capacity 

maintenance costs CMPt and VCPt, and calculation of the amortisation of production 

equipment and storage capacities EDitτ and SDt. It would have been more complicated 

to model these constraints using other variables. 

 

Table 6 Tactical decision variables 

Symbol Definition 
𝑞𝑞𝑛𝑛𝑖𝑖𝑡𝑡 ∈ ℝ+

 Amount of product n manufactured by production equipment i in period t 
(n = 1,…, N; i = 1,…, νM; t = 1,…,T). 

𝑠𝑠𝑛𝑛𝑡𝑡 ∈ ℝ+
 Inventory level of product n in period t (n = 1,…, N; t = 1,…,T). 
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Table 7 Auxiliary variables 

Symbol Definition 
ℎ𝑡𝑡+,ℎ𝑡𝑡− ∈ ℝ+ Absolute values of positive and negative bank balance, respectively, at 

the end of period t (t = 1,…,T). 
𝜃𝜃𝑘𝑘𝑘𝑘 ∈ ℝ+ Income tax liability for year k offset in year k+l (k = 1,…,Y; l = 1,…, 

kmax). 
𝐼𝐼𝐼𝐼𝐵𝐵𝑘𝑘 ∈ ℝ+ Income tax base for year k (k = 1,…,Y). 
𝑃𝑃𝐵𝐵𝐼𝐼𝑘𝑘, 𝐿𝐿𝐵𝐵𝐼𝐼𝑘𝑘
∈ ℝ+  

Absolute values of profit and loss before tax for year k (k = 1,…,Y), 
respectively.  

𝑦𝑦𝑘𝑘𝑅𝑅 ∈ {0,1} 1 if profit before tax for year k is positive; 0 if loss before tax for year k 
is positive (k = 1,…,Y). 

𝑃𝑃𝐵𝐵𝑡𝑡 ∈ ℝ+ Cash balance at the beginnig of period t (t = 1,…,T). 
𝐸𝐸𝑃𝑃𝐼𝐼𝑡𝑡 ∈ ℝ+ Income from production equipment sales in period t (t = 1,…,T). 
𝐸𝐸𝐸𝐸𝑃𝑃𝑡𝑡 ∈ ℝ+ Payments for acquiring production equipment in period t (t = 1,…,T). 
𝑃𝑃𝐸𝐸𝑃𝑃𝑡𝑡 ∈ ℝ+ Payments for changing storage capacity in period t (t = 1,…,T). 
𝐶𝐶𝐶𝐶𝑃𝑃𝑡𝑡 ∈ ℝ+ Payments for capacity maintenance in period t (t = 1,…,T). 
𝑉𝑉𝐶𝐶𝑃𝑃𝑡𝑡 ∈ ℝ+ Payments of manufacturing and storage variable costs in period t (t = 

1,…,T). 
𝐼𝐼𝑃𝑃𝑡𝑡 ∈ ℝ+ Corporate tax payments in period t (t = 1,…,T). 
𝑁𝑁𝐸𝐸𝐶𝐶𝑡𝑡 ∈ ℝ+ Non-amortisable cost of production equipment and storage capacities 

acquired in period t (t = 1,…,T). 
𝑉𝑉𝐶𝐶𝑡𝑡 ∈ ℝ+ Variable costs of product manufacture and storage in period t (t = 

1,…,T). 
𝐸𝐸𝐸𝐸𝑖𝑖𝑡𝑡𝜏𝜏 ∈ ℝ+

 Amount of amortisation attributable to period t of production 
equipment i acquired in period τ (i = 1,…, νM; t = 1,…,T, τ = B,…,t). 

𝑃𝑃𝐸𝐸𝑡𝑡 ∈ ℝ+ Amount of amortisation corresponding to investment in storage 
capacity attributable to period t for assets acquired in that period and in 
previous τd -1periods (t = 1,…,T). 

𝑃𝑃𝐿𝐿𝐸𝐸𝑃𝑃𝑖𝑖𝑡𝑡𝜏𝜏 ∈ ℝ+ Profit/loss from production equipment i acquired in period τ, sold in 
period t (i = 1,…, νM; t = 1,…,T,τ = B,…,t-1). 

𝑉𝑉𝐼𝐼𝑉𝑉 ∈ ℝ+ Variation of inventory level value in period t (t = 1,…,T). 
 

Objective function: 

The objective function is the cash balance at the end of the planning horizon considering 

final cash balance, sales income in the last τ s periods (account receivable), payments for 

variable costs for the last τ p periods (account payable), corporate tax payment for the 

last year, and income from production and storage asset sales. 
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maximise 𝑍𝑍 =  ℎ𝑇𝑇+ − ℎ𝑇𝑇− + ∑ 𝑃𝑃𝑃𝑃𝑡𝑡𝑇𝑇
𝑡𝑡=𝑇𝑇−𝜏𝜏𝑠𝑠+1 + ∑ ∑ 𝑃𝑃𝐶𝐶𝑖𝑖,𝑇𝑇+1,𝜏𝜏 · 𝑧𝑧𝑖𝑖,𝑇𝑇,𝜏𝜏

𝑀𝑀𝑇𝑇
𝜏𝜏=𝐵𝐵

𝜈𝜈𝑀𝑀
𝑖𝑖=1 + 𝑃𝑃𝑆𝑆0 +

∑ ∑ ∑ 𝑃𝑃𝑆𝑆𝑗𝑗𝑖𝑖𝑡𝑡 · 𝑦𝑦𝑗𝑗𝑖𝑖𝑡𝑡𝑊𝑊𝑖𝑖−1
𝑗𝑗=0

𝑇𝑇
𝑡𝑡=1

𝜈𝜈𝑊𝑊
𝑖𝑖=1 −  ∑ ∑ ∑ 𝜈𝜈𝑛𝑛𝑖𝑖𝑡𝑡𝑀𝑀 · 𝑞𝑞𝑛𝑛𝑖𝑖𝑡𝑡𝑁𝑁

𝑛𝑛=1
𝜈𝜈𝑀𝑀
𝑖𝑖=1

𝑇𝑇
𝑡𝑡=𝑇𝑇−𝜏𝜏𝑝𝑝+1 +

∑ ∑ 𝜈𝜈𝑛𝑛𝑡𝑡𝑊𝑊 · 𝑠𝑠𝑛𝑛𝑡𝑡𝑁𝑁
𝑛𝑛=1

𝑇𝑇
𝑡𝑡=𝑇𝑇−𝜏𝜏𝑝𝑝+1 − 𝑟𝑟 · 𝐼𝐼𝐼𝐼𝐵𝐵𝑌𝑌  

where 

� 𝑃𝑃𝑃𝑃𝑡𝑡

𝑇𝑇

𝑡𝑡=𝑇𝑇−𝜏𝜏𝑠𝑠+1

 

is the sales income for the last τs previous periods,  

��𝑃𝑃𝐶𝐶𝑖𝑖,𝑇𝑇+1,𝜏𝜏 · 𝑧𝑧𝑖𝑖,𝑇𝑇,𝜏𝜏
𝑀𝑀

𝑇𝑇

𝜏𝜏=𝐵𝐵

𝜈𝜈𝑀𝑀

𝑖𝑖=1

 

is the income from production equipment sales at the end of time horizon, 

���𝑃𝑃𝑆𝑆𝑗𝑗𝑖𝑖𝑡𝑡 · 𝑦𝑦𝑗𝑗𝑖𝑖𝑡𝑡𝑊𝑊
𝑖𝑖−1

𝑗𝑗=0

𝑇𝑇

𝑡𝑡=1

𝜈𝜈𝑊𝑊

𝑖𝑖=1

 

is the income from storage capacity sales at the end of time horizon, 

� ��𝜈𝜈𝑛𝑛𝑖𝑖𝑡𝑡𝑀𝑀 · 𝑞𝑞𝑛𝑛𝑖𝑖𝑡𝑡

𝑁𝑁

𝑛𝑛=1

𝜈𝜈𝑀𝑀

𝑖𝑖=1

𝑇𝑇

𝑡𝑡=𝑇𝑇−𝜏𝜏𝑝𝑝+1

+ � �𝜈𝜈𝑛𝑛𝑡𝑡𝑊𝑊 · 𝑠𝑠𝑛𝑛𝑡𝑡

𝑁𝑁

𝑛𝑛=1

𝑇𝑇

𝑡𝑡=𝑇𝑇−𝜏𝜏𝑝𝑝+1

 

is the payment of variable costs for the last τp periods. Finally, 𝑟𝑟 · 𝐼𝐼𝐼𝐼𝐵𝐵𝑌𝑌 is the corporate 

tax payment at the end of planning horizon. 

 

Constraints: 

1. Inventory balance constraints : 

𝑠𝑠0𝑛𝑛 + �𝑞𝑞𝑛𝑛𝑖𝑖1

𝜈𝜈𝑀𝑀

𝑖𝑖=1

= 𝑑𝑑𝑛𝑛1 + 𝑠𝑠𝑛𝑛1 ∀𝑛𝑛

�𝑞𝑞𝑛𝑛𝑖𝑖𝑡𝑡

𝜈𝜈𝑀𝑀

𝑖𝑖=1

+ 𝑠𝑠𝑛𝑛,𝑡𝑡−1 = 𝑑𝑑𝑛𝑛𝑡𝑡 + 𝑠𝑠𝑛𝑛𝑡𝑡 ∀𝑛𝑛, 𝑡𝑡 = 2, … ,𝐼𝐼

 

2. Manufacturing and storage capacity constraints ensure that production and storage 

capacities are not exceeded: 
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�𝛼𝛼𝑛𝑛 · 𝑞𝑞𝑛𝑛𝑖𝑖𝑡𝑡

𝑁𝑁

𝑛𝑛=1

≤ 𝐶𝐶𝑖𝑖 · �𝑧𝑧𝑖𝑖𝑡𝑡𝜏𝜏𝑀𝑀
𝑡𝑡

𝜏𝜏=𝐵𝐵

∀𝑖𝑖, 𝑡𝑡

�𝛽𝛽𝑛𝑛 · 𝑠𝑠𝑛𝑛𝑡𝑡

𝑁𝑁

𝑛𝑛=1

≤��𝑆𝑆𝑖𝑖 · �𝑦𝑦𝑗𝑗𝑖𝑖𝑡𝑡𝑊𝑊
𝑖𝑖

𝑗𝑗=0

�
𝜈𝜈𝑊𝑊

𝑖𝑖=0

∀𝑡𝑡

 

3. Bank account balance: 

ℎ𝑡𝑡+ − ℎ𝑡𝑡− =  𝑃𝑃𝐵𝐵𝑡𝑡 + 𝑖𝑖𝑡𝑡𝑑𝑑 · ℎ𝑡𝑡+ − 𝑖𝑖𝑡𝑡𝑏𝑏 · ℎ𝑡𝑡− + 𝑃𝑃𝑃𝑃𝐼𝐼𝑡𝑡 + 𝐸𝐸𝑃𝑃𝐼𝐼𝑡𝑡 − 𝐹𝐹𝑃𝑃𝑡𝑡 −  𝐸𝐸𝐸𝐸𝑃𝑃𝑡𝑡 − 𝑃𝑃𝐸𝐸𝑃𝑃𝑡𝑡 − 𝐶𝐶𝐶𝐶𝑃𝑃𝑡𝑡 − 𝑉𝑉𝐶𝐶𝑃𝑃𝑡𝑡
− 𝐼𝐼𝑃𝑃𝑡𝑡 

The expression of the bank account balance varies from one period t to another. Listed 

below is each of the relevant entries and its expression for each period t: 

𝑃𝑃𝐵𝐵𝑡𝑡 = �
ℎ0 𝑡𝑡 = 1
ℎ𝑡𝑡−1+ − ℎ𝑡𝑡−1− 𝑡𝑡 = 2, … ,𝐼𝐼 

𝐸𝐸𝑃𝑃𝐼𝐼𝑡𝑡 =

⎩
⎪
⎨

⎪
⎧ ��𝑃𝑃𝐶𝐶𝑖𝑖1𝜏𝜏 · (𝑧𝑧0𝑖𝑖𝜏𝜏 − 𝑧𝑧𝑖𝑖1𝜏𝜏𝑀𝑀 )

0

𝜏𝜏=𝐵𝐵

𝜈𝜈𝑀𝑀

𝑖𝑖=1

 

��𝑃𝑃𝐶𝐶𝑖𝑖𝑡𝑡𝜏𝜏 · �𝑧𝑧𝑖𝑖,𝑡𝑡−1,𝜏𝜏
𝑀𝑀 − 𝑧𝑧𝑖𝑖𝑡𝑡𝜏𝜏𝑀𝑀 �

𝑡𝑡−1

𝜏𝜏=𝐵𝐵

𝜈𝜈𝑀𝑀

𝑖𝑖=1

𝑡𝑡 = 2, … ,𝐼𝐼

 

 

𝐸𝐸𝐸𝐸𝑃𝑃𝑡𝑡 = �(𝐼𝐼𝐶𝐶𝑖𝑖𝑡𝑡 + 𝐶𝐶𝐶𝐶𝑖𝑖𝑡𝑡) · 𝑧𝑧𝑖𝑖𝑡𝑡𝑡𝑡𝑀𝑀
𝜈𝜈𝑀𝑀

𝑖𝑖=1

𝑡𝑡 = 1, … ,𝐼𝐼 

𝑃𝑃𝐸𝐸𝑃𝑃𝑡𝑡 = ���𝐼𝐼𝑆𝑆𝑗𝑗𝑖𝑖𝑡𝑡 + 𝐶𝐶𝑆𝑆𝑗𝑗𝑖𝑖𝑡𝑡� · 𝑦𝑦𝑗𝑗𝑖𝑖𝑡𝑡𝑊𝑊
𝑖𝑖−1

𝑗𝑗=0

𝜈𝜈𝑊𝑊

𝑖𝑖=1

𝑡𝑡 = 1, … ,𝐼𝐼 

𝐶𝐶𝐶𝐶𝑃𝑃𝑡𝑡 = ��𝐶𝐶𝐶𝐶𝑖𝑖𝜏𝜏𝑡𝑡 · 𝑧𝑧𝑖𝑖𝑡𝑡𝜏𝜏𝑀𝑀
𝑡𝑡

𝜏𝜏=𝐵𝐵

𝜈𝜈𝑀𝑀

𝑖𝑖=1

+ 𝐶𝐶𝑆𝑆0𝑡𝑡 + ���𝐶𝐶𝑆𝑆𝑖𝑖𝜏𝜏𝑡𝑡 · 𝑦𝑦𝑗𝑗𝑖𝑖𝜏𝜏𝑊𝑊
𝑖𝑖−1

𝑗𝑗=0

𝑡𝑡

𝜏𝜏=1

𝜈𝜈𝑊𝑊

𝑖𝑖=1

𝑡𝑡 = 1, … ,𝐼𝐼 

𝑉𝑉𝐶𝐶𝑃𝑃𝑡𝑡 = �

0 𝑡𝑡 = 1, … , 𝜏𝜏𝑝𝑝

��𝜈𝜈𝑛𝑛𝑖𝑖,𝑡𝑡−𝜏𝜏𝑝𝑝
𝑀𝑀 · 𝑞𝑞𝑛𝑛𝑖𝑖,𝑡𝑡−𝜏𝜏𝑝𝑝

𝑁𝑁

𝑛𝑛=1

𝜈𝜈𝑀𝑀

𝑖𝑖=1

+ �𝜈𝜈𝑛𝑛,𝑡𝑡−𝜏𝜏𝑝𝑝
𝑊𝑊 · 𝑠𝑠𝑛𝑛,𝑡𝑡−𝜏𝜏𝑝𝑝

𝑁𝑁

𝑛𝑛=1

𝑡𝑡 = 𝜏𝜏𝑝𝑝 + 1, … ,𝐼𝐼 

𝐼𝐼𝑃𝑃𝑡𝑡 = �0 𝑡𝑡 ≠ Γ𝑘𝑘 − 1 + 𝜏𝜏𝑏𝑏 ,   𝑘𝑘 = 2, … ,𝑌𝑌 
𝑟𝑟 · 𝐼𝐼𝐼𝐼𝐵𝐵𝑘𝑘−1 𝑡𝑡 = Γ𝑘𝑘 − 1 + 𝜏𝜏𝑏𝑏 ,   𝑘𝑘 = 2, … ,𝑌𝑌

 

4. Financial capacity constraints ensure that the negative bank account balance does 

not exceed the established limit: 

ℎ𝑡𝑡− ≤ ℎ𝑚𝑚𝑚𝑚𝑚𝑚− 𝑡𝑡 = 1, … ,𝐼𝐼 
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5. Profit/loss before tax calculation 

𝑃𝑃𝐵𝐵𝐼𝐼𝑘𝑘 − 𝐿𝐿𝐵𝐵𝐼𝐼𝑘𝑘 = 

� �𝑃𝑃𝑃𝑃𝑡𝑡 + 𝑖𝑖𝑡𝑡𝑑𝑑 · ℎ𝑡𝑡+ − 𝑖𝑖𝑡𝑡𝑏𝑏 · ℎ𝑡𝑡− − 𝐹𝐹𝐶𝐶𝑡𝑡 − 𝑁𝑁𝐸𝐸𝐶𝐶𝑡𝑡 − 𝐶𝐶𝐶𝐶𝑃𝑃𝑡𝑡 − 𝑉𝑉𝐶𝐶𝑡𝑡 −��𝐸𝐸𝐸𝐸𝑖𝑖𝑡𝑡𝜏𝜏

𝑡𝑡

𝜏𝜏=𝐵𝐵

𝜈𝜈𝑀𝑀

𝑖𝑖=1

𝛤𝛤𝑘𝑘+1−1

𝑡𝑡=𝛤𝛤𝑘𝑘

− 𝑃𝑃𝐸𝐸0𝑡𝑡 − 𝑃𝑃𝐸𝐸𝑡𝑡 + ��𝑃𝑃𝐿𝐿𝐸𝐸𝑃𝑃𝑖𝑖𝑡𝑡𝜏𝜏

𝑡𝑡−1

𝜏𝜏=𝐵𝐵

𝜈𝜈𝑀𝑀

𝑖𝑖=1

+ 𝑉𝑉𝐼𝐼𝑉𝑉𝑡𝑡� 

𝑃𝑃𝐵𝐵𝐼𝐼𝑘𝑘 ≤ 𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘 · 𝑦𝑦𝑘𝑘𝑅𝑅

𝐿𝐿𝐵𝐵𝐼𝐼𝑘𝑘 ≤ 𝐿𝐿𝑃𝑃𝑃𝑃𝑘𝑘 · (1 − 𝑦𝑦𝑘𝑘𝑅𝑅)
 

 

where k = 1,…,Y. The last two sets of constraints ensure that either PBTk or LBTk equals 

zero; without them, this condition cannot be fulfilled, as can be seen in the following 

case: suppose that in year k-kmax there were losses that can be offset in year k, i.e., year k 

is the last year to compensate for them, and suppose that the profit of year k is less than 

the losses to compensate for. In this case, PBTk will be increased to compensate for all 

the losses and LBTk will be increased by PBTk - LBTk such that it equals the profit of 

year k. 

 

The items in the profit/loss before tax expression are detailed as follows: 

𝑁𝑁𝐸𝐸𝐶𝐶𝑡𝑡 = �𝐶𝐶𝐶𝐶𝑖𝑖𝑡𝑡 · 𝑧𝑧𝑖𝑖𝑡𝑡𝑡𝑡𝑀𝑀
𝜈𝜈𝑀𝑀

𝑖𝑖=1

+ ��𝐶𝐶𝑆𝑆𝑗𝑗𝑖𝑖𝑡𝑡 · 𝑦𝑦𝑗𝑗𝑖𝑖𝑡𝑡𝑊𝑊
𝑖𝑖−1

𝑗𝑗=0

𝜈𝜈𝑊𝑊

𝑖𝑖=1

𝑡𝑡 = 1, … ,𝑌𝑌 · 𝐼𝐼 

𝑉𝑉𝐶𝐶𝑡𝑡 = ��𝜈𝜈𝑛𝑛𝑖𝑖𝑡𝑡𝑀𝑀 · 𝑞𝑞𝑛𝑛𝑖𝑖𝑡𝑡

𝑁𝑁

𝑛𝑛=1

𝜈𝜈𝑀𝑀

𝑖𝑖=1

+ �𝜈𝜈𝑛𝑛𝑡𝑡𝑊𝑊 · 𝑠𝑠𝑛𝑛𝑡𝑡

𝑁𝑁

𝑛𝑛=1

𝑡𝑡 = 1, … ,𝑌𝑌 · 𝐼𝐼 

𝐸𝐸𝐸𝐸𝑖𝑖𝑡𝑡𝜏𝜏 = �
1
𝜏𝜏𝑑𝑑𝑀𝑀

· 𝐼𝐼𝐶𝐶𝑖𝑖𝜏𝜏 · 𝑧𝑧𝑖𝑖𝑡𝑡𝜏𝜏𝑀𝑀 𝑡𝑡 = max(1, 𝜏𝜏) , … , min (𝐼𝐼, 𝜏𝜏𝑑𝑑𝑀𝑀 + 𝜏𝜏 − 1)

0 𝑡𝑡 = 1 + min (𝐼𝐼, 𝜏𝜏𝑑𝑑𝑀𝑀 + 𝜏𝜏 − 1), … ,𝐼𝐼
 

  𝑖𝑖 = 1, … , 𝜈𝜈𝑀𝑀, 𝜏𝜏 = 𝐵𝐵, … ,𝐼𝐼 

𝑃𝑃𝐸𝐸𝑡𝑡 =

⎩
⎪
⎨

⎪
⎧���

1
𝜏𝜏𝑑𝑑𝑊𝑊

· 𝐼𝐼𝑆𝑆𝑗𝑗𝑖𝑖𝜏𝜏 · 𝑦𝑦𝑗𝑗𝑖𝑖𝜏𝜏𝑊𝑊
𝑖𝑖−1

𝑗𝑗=0

𝑡𝑡

𝜏𝜏=1

𝜈𝜈𝑊𝑊

𝑖𝑖=1

𝑡𝑡 = 1, … , min (𝐼𝐼, 𝜏𝜏𝑑𝑑𝑊𝑊)

� � �
1
𝜏𝜏𝑑𝑑𝑊𝑊

· 𝐼𝐼𝑆𝑆𝑗𝑗𝑖𝑖𝜏𝜏 · 𝑦𝑦𝑗𝑗𝑖𝑖𝜏𝜏𝑊𝑊
𝑖𝑖−1

𝑗𝑗=0

𝑡𝑡

𝜏𝜏=1+𝑡𝑡−𝜏𝜏𝑑𝑑𝑊𝑊

𝜈𝜈𝑊𝑊

𝑖𝑖=1

𝑡𝑡 = 1 + min (𝐼𝐼, 𝜏𝜏𝑑𝑑𝑊𝑊), … ,𝐼𝐼

 

PLESitτ = 
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• 𝑃𝑃𝐶𝐶𝑖𝑖1𝜏𝜏 · (𝑧𝑧0𝑖𝑖𝜏𝜏 − 𝑧𝑧𝑖𝑖1𝜏𝜏𝑀𝑀 ) − �1 − 1−𝜏𝜏
𝜏𝜏𝑑𝑑𝑀𝑀

� · 𝐼𝐼𝐶𝐶𝑖𝑖𝜏𝜏 · (𝑧𝑧0𝑖𝑖𝜏𝜏 − 𝑧𝑧𝑖𝑖1𝜏𝜏𝑀𝑀 ) 

𝑖𝑖 = 1, … , 𝜈𝜈𝑀𝑀 , 𝜏𝜏 = 𝐵𝐵, … ,0 

• 𝑃𝑃𝐶𝐶𝑖𝑖𝑡𝑡𝜏𝜏 · �𝑧𝑧𝑖𝑖,𝑡𝑡−1,𝜏𝜏
𝑀𝑀 − 𝑧𝑧𝑖𝑖𝑡𝑡𝜏𝜏𝑀𝑀 � − �1 − 𝑡𝑡−𝜏𝜏

𝜏𝜏𝑑𝑑𝑀𝑀
� · 𝐼𝐼𝐶𝐶𝑖𝑖𝜏𝜏 · �𝑧𝑧𝑖𝑖,𝑡𝑡−1,𝜏𝜏

𝑀𝑀 − 𝑧𝑧𝑖𝑖𝑡𝑡𝜏𝜏𝑀𝑀 � 

𝑖𝑖 = 1, … , 𝜈𝜈𝑀𝑀 , 𝜏𝜏 = 𝐵𝐵, … ,𝐼𝐼, 𝑡𝑡 = 2, … , min (𝐼𝐼, 𝜏𝜏𝑑𝑑𝑀𝑀 + 𝜏𝜏 − 1) 

• 𝑃𝑃𝐶𝐶𝑖𝑖𝑡𝑡𝜏𝜏 · �𝑧𝑧𝑖𝑖,𝑡𝑡−1,𝜏𝜏
𝑀𝑀 − 𝑧𝑧𝑖𝑖𝑡𝑡𝜏𝜏𝑀𝑀 � 

𝑖𝑖 = 1, … , 𝜈𝜈𝑀𝑀 , 𝜏𝜏 = 𝐵𝐵, … ,𝐼𝐼, 𝑡𝑡 = 1 + min (𝐼𝐼, 𝜏𝜏𝑑𝑑𝑀𝑀 + 𝜏𝜏 − 1), … ,𝐼𝐼 

𝑉𝑉𝐼𝐼𝑉𝑉𝑡𝑡 =

⎩
⎪
⎨

⎪
⎧�𝛾𝛾𝑛𝑛1 · 𝑠𝑠𝑛𝑛,1

𝑁𝑁

𝑛𝑛=1

−�𝛾𝛾𝑛𝑛0 · 𝑠𝑠0𝑛𝑛

𝑁𝑁

𝑛𝑛=1

𝑡𝑡 = 1

�𝛾𝛾𝑛𝑛𝑡𝑡 · 𝑠𝑠𝑛𝑛𝑡𝑡

𝑁𝑁

𝑛𝑛=1

−�𝛾𝛾𝑛𝑛,𝑡𝑡−1 · 𝑠𝑠𝑛𝑛,𝑡𝑡−1

𝑁𝑁

𝑛𝑛=1

𝑡𝑡 = 2, … ,𝐼𝐼

 

6. Income tax base calculation: 

Determine the corporate tax base in year k taking into account year end results and 

offsetting of tax liabilities from previous years. 

𝐿𝐿𝐵𝐵𝐼𝐼𝑘𝑘 ≥ � 𝜃𝜃𝑘𝑘𝑘𝑘

𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

𝑘𝑘=1

𝑘𝑘 = 1, … ,𝑌𝑌

𝐼𝐼𝐼𝐼𝐵𝐵𝑘𝑘 = 𝑃𝑃𝐵𝐵𝐼𝐼𝑘𝑘 −�𝜃𝜃𝑘𝑘−𝑘𝑘,𝑘𝑘

𝑘𝑘−1

𝑘𝑘=1

𝑘𝑘 = 1, … ,𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

𝐼𝐼𝐼𝐼𝐵𝐵𝑘𝑘 = 𝑃𝑃𝐵𝐵𝐼𝐼𝑘𝑘 − � 𝜃𝜃𝑘𝑘−𝑘𝑘,𝑘𝑘

𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

𝑘𝑘=1

𝑘𝑘 = 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 + 1, … ,𝑌𝑌

 

7. Production equipment acquisition constraints ensure that the number of units of 

production equipment acquired in period τ and available in period t is not greater 

than that available in the previous period t - 1 ≥ max(1,τ): 

𝑧𝑧𝑖𝑖1𝜏𝜏𝑀𝑀 ≤ 𝑧𝑧0𝑖𝑖𝜏𝜏 𝑖𝑖 = 1, … , 𝜈𝜈𝑀𝑀       𝜏𝜏 = 𝐵𝐵, … ,0 

𝑧𝑧𝑖𝑖𝑡𝑡𝜏𝜏𝑀𝑀 ≤ 𝑧𝑧𝑖𝑖,𝑡𝑡−1,𝜏𝜏
𝑀𝑀 𝑖𝑖 = 1, … , 𝜈𝜈𝑀𝑀      𝑡𝑡 = 2, … ,𝐼𝐼    𝜏𝜏 = 𝐵𝐵, … ,0 

𝑧𝑧𝑖𝑖𝑡𝑡𝑡𝑡𝑀𝑀 = 0        𝑖𝑖 = 1, … , 𝜈𝜈𝑀𝑀      𝑡𝑡 = 1, . . . , 𝜏𝜏𝑖𝑖𝑀𝑀 − 1  

𝑧𝑧𝑖𝑖𝑡𝑡𝜏𝜏𝑀𝑀 ≤ 𝑧𝑧𝑖𝑖,𝑡𝑡−1,𝜏𝜏
𝑀𝑀 𝑖𝑖 = 1, … , 𝜈𝜈𝑀𝑀      𝑡𝑡 = min (2, 𝜏𝜏𝑖𝑖𝑀𝑀), … ,𝐼𝐼    𝜏𝜏 = 𝜏𝜏𝑖𝑖𝑀𝑀 , … , 𝑡𝑡 − 1 

8. Storage capacity acquisition constraints ensure that changes in storage capacity are 

for expansion purposes: 
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�𝑦𝑦0𝑘𝑘1𝑊𝑊

𝜈𝜈𝑊𝑊

𝑘𝑘=0

= 1  

�𝑦𝑦𝑗𝑗𝑘𝑘2𝑊𝑊
𝜈𝜈𝑊𝑊

𝑘𝑘=𝑗𝑗

= 𝑦𝑦0𝑗𝑗1𝑊𝑊  𝑗𝑗 = 1, … , 𝜈𝜈𝑊𝑊

�𝑦𝑦𝑗𝑗𝑘𝑘𝑡𝑡𝑊𝑊
𝜈𝜈𝑊𝑊

𝑘𝑘=𝑗𝑗

= �𝑦𝑦𝑖𝑖𝑗𝑗,𝑡𝑡−1
𝑊𝑊

𝑗𝑗

𝑖𝑖=0

𝑗𝑗 = 0, … , 𝜈𝜈𝑊𝑊   𝑡𝑡 = 3, … ,𝐼𝐼

 

4. Computational experiment 

In this section, our model is evaluated for computational efficiency of solving the 

problem. A computational experiment was conducted where the model was 

implemented in OPL and solved with ILOG CPLEX 12.6 in Intel Core 3.33 GHz 

workstations with 4 Gigabytes of RAM operating under Windows-7 (64 bits). We 

solved 54 instances with the following values: Y = 5, 10, 20 with 4, 6, 12 periods per 

year; N = 1, 10, 30; νM = 4; νW = 3, 5. The files with the input data of each instance can 

be found at 

http://www.ioc.upc.edu/EOLI/research/S-SSCPlanning/instances/ 

Each instance was defined by a great amount of data generated from a few parameters. 

The expressions and parameters used to generate the instances can be seen in the 

Appendix. 

Undoubtedly, the scale of real world problems shows a great variety concerning the 

number of periods of the planning horizon, the number of products and the number of 

types of resources.  However, few papers specify the values of these parameters in real 

applications. In Bermon and Hood (1999) they are equal, respectively, to 20 (however, 

as the model is solved independently for each period, in fact it is equivalent to 20 

models of 1 period),  50 and 3; in Rajagopalan & Swaminathan (2001), to 16, 10 and 3; 

in Wang and Lin (2002) the number of periods is 4 and the number of types of resources 

is 8 (the role of products is played by 20 testing orders, each one of them assigned 

previously to a type of resource). Therefore, our instances, compared to this three real 

cases, include very high values of the number of periods (up to 240), and numbers of 

products (up to 30) and of types of resources (5 plus the storage capacity) of the same 

order that those reported in the mentioned papers. Note, moreover, that the number of 

products does not have a great influence on the computational behaviour of the model 
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and that reducing the number of periods allows dealing with a greater number of 

products. 

The number of model variables were 3511 (630 integer, 204 binary and 2677 real 

variables) for the smaller instances and 468281 (86760 integer, 5059 binary and 376462 

real variables) for the larger instances. The number of constraints was 3379 and 445635 

for the smaller and larger instances, respectively.  

The computing time was limited to 3600 s per instance. Although a longer resolution 

time could also be reasonable (as in this type of problem resolution time is not critical), 

the time limit was set to 3600 s in order not to unnecessarily extend the length of the 

experiment. Table 8 shows the computing time (column t) and relative gap 

corresponding to the best feasible solution obtained for all instances. Note that, although 

some instances are not solved within the specified time, the relative gap is small. 

Table 8. Resolution times for instances solved within 3600 s and relative gaps for 

instances not solved within 3600 s. 

Y T N νW t  Y T N νW t Relative 
gap (%) 

5 20 1 3 0,6 
 

5 60 30 3 3600,3 0,79 
5 20 1 5 0,7 

 
5 60 30 5 3600,3 2,33 

5 20 10 3 1,9 
 

10 120 1 3 3600,4 4,79 
5 20 10 5 1,9 

 
10 120 1 5 3601,2 3,97 

5 20 30 3 7,1 
 

10 120 10 3 3600,9 1,93 
5 20 30 5 7,4 

 
10 120 10 5 3601,7 1,83 

5 30 1 3 1,9 
 

10 120 30 3 3600,4 2,13 
5 30 1 5 2,9 

 
10 120 30 5 3600,4 1,66 

5 30 10 3 5,5 
 

20 80 1 3 3600,5 1,75 
5 30 10 5 6,1 

 
20 80 1 5 3600,6 1,94 

5 30 30 3 19,4 
 

20 80 10 3 3600,6 1,52 
5 30 30 5 24,5 

 
20 80 10 5 3600,7 1,40 

5 60 1 3 35,6 
 

20 80 30 3 3600,8 1,85 
5 60 1 5 36,7 

 
20 80 30 5 3600,4 2,29 

5 60 10 3 461,7 
 

20 120 1 3 3601,0 2,29 
5 60 10 5 338,9 

 
20 120 1 5 3601,2 2,57 

10 40 1 3 38,8 
 

20 120 10 3 3600,9 2,04 
10 40 1 5 31,8 

 
20 120 10 5 3601,0 2,07 

10 40 10 3 12,9 
 

20 120 30 3 3600,5 2,85 
10 40 10 5 12,5 

 
20 120 30 5 3600,7 3,05 

10 40 30 3 15,7 
 

20 240 1 3 3601,3 3,80 
10 40 30 5 15,8 

 
20 240 1 5 3600,7 3,71 

10 60 1 3 345,8 
 

20 240 10 3 3600,4 3,21 
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10 60 1 5 368,6 
 

20 240 10 5 3600,5 3,36 
10 60 10 3 188,1 

 
20 240 30 3 3600,6 4,10 

10 60 10 5 249,1 
 

20 240 30 5 3600,7 4,11 
10 60 30 3 109,3 

       10 60 30 5 87,9 
        

Instances not solved within 3600 s were executed again but now the computing time 

was limited to 43200 s (12 hours). Table 9 summarises the results. Note that, although 

the computing time was increased from 1 hour to 12 hours, the new relative gaps were 

very similar to those obtained within 3600 s.  

Table 9. Resolution times for instances solved within 43200 s and relative gaps for 

instances not solved within 3600 s. 

Y T N νW t Realitive 
gap (%) 

5 60 30 3 3728,7 
 5 60 30 5 7579,6 
 10 120 1 3 43203,9 2,93 

10 120 1 5 26165,9 
 10 120 10 3 13749,2 
 10 120 10 5 13796,3 
 10 120 30 3 11908,2 
 10 120 30 5 10047,3 
 20 80 1 3 43203,9 1,21 

20 80 1 5 43203,3 1,28 
20 80 10 3 43203,5 1,14 
20 80 10 5 43203,4 1,01 
20 80 30 3 43203,6 1,31 
20 80 30 5 43203,6 1,56 
20 120 1 3 43201,9 1,81 
20 120 1 5 43202,0 2,20 
20 120 10 3 43202,3 1,68 
20 120 10 5 43202,1 1,54 
20 120 30 3 43202,3 2,05 
20 120 30 5 43202,6 2,02 
20 240 1 3 43206,7 3,17 
20 240 1 5 43210,9 3,46 
20 240 10 3 43206,8 2,50 
20 240 10 5 43216,9 2,46 
20 240 30 3 43209,9 3,27 
20 240 30 5 43227,6 3,20 
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Linear relaxation of each instance was also solved to check its resolution time and 

integrality gap. Computing times were less than 49 s and the values of the 

corresponding objective function were 2.4% to 7.7 % higher than the best integer 

solution found. 

Because of the financial capacity constraints (constraints 4), the solutions of the 

problem are always bounded. Given that the demand in each period must be fully 

satisfied (constraints 1), the problem might not be feasible, for example, when the 

maximum negative cash balance is not sufficient for the acquisition of necessary 

production equipment to supply the demand. In our experiment, all instances have 

feasible solutions. 

Our model can be used to study the influence of some factors on results. For example, 

many models in the literature consider a small number of periods per year in order to 

reduce model size. The instances in our computational experiment may be used to 

determine the impact of the number of periods per year on the solution. Figure 1 

summarises the results for instances with Y = 10, N = 1 and νW = 5. In the solution of the 

instance with T = 40, the investment in storage capacity is in period 3 (0.75 years) while 

in the instances with T = 60 and T =120, the same decision is taken, respectively, in 

periods 6 (0.83 years) and 8 (0.66 years). 

 

Figure 1: Demand, production and storage capacities, products manufactured and 

inventory levels for the results of instances with Y = 10, N = 1 and νW = 5. 

The results obtained with our model can be used to analyse some characteristics of the 

solution. For example, we can answer some managerial questions such as: What are the 

dominant costs? Or, is it optimal to use a single type of equipment? The answer to this 

type of questions obviously depends on the data sets used and cannot be extrapolated 

when other data sets are used. Regarding the first question, the results of our 

computational experiment show that the dominant costs correspond to the variable cost 

of manufacturing and storage products. However, in other settings the dominant role 
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may be played by financial or variable production costs. Regarding the second question, 

again, no general behaviour can be expected to this respect. Of course, if more 

productive technologies are supposed to be available within the planning horizon, the 

optimal policy will involve more than one type of equipment. Even without 

technological progress, it may be convenient to use a diversity of equipment because 

this way production capacity can fit better to the demand. With our data, equipment 

types 1 and 2 are always used and for some instances type 3 is used too. 

5. Conclusions and further research 

In this article, we proposed a mixed-integer linear programming model for strategic 

capacity planning of a single-site manufacturing system which includes the major 

factors in a strategic capacity planning decision process. It is a deterministic model with 

discrete time and finite horizon. The model takes into account the most important issues 

in a productive system and integrates the production and cash flows.   

In the production flow, acquisition, renewal and sale of production equipment are 

modelled, and so are acquisition and expansion of storage capacity, as well as the 

detailed production plan. In the cash flow, the model considers the financial income of 

deposits and cost of credit accounts, maintenance costs of production equipment and 

storage capacities, variable cost of manufacturing, accounts payable and receivable, and 

corporate tax.  

We solved the model with CPLEX using instances of several dimensions. Resolution 

time was less than 1 hour for instances with a time horizon of 60 periods and up to 30 

types of products. For larger instances, with a time horizon of 120 and 240 periods, the 

optimal solution was not achieved within the allowed computing time, but the relative 

gap was not greater than 4.1%.  

Traditional models that deal with strategic capacity decisions in production systems 

include only some of the relevant issues in our model, and often only partially. For 

example, many do not to consider storage capacities or borrowing capacity, which 

limits their use when decisions based on their solutions must be made. Our model, on 

the other hand, provides more realistic solutions that can be useful from the point of 

view of strategic management. Since it includes all the above aspects and is solved in a 

reasonable time, our model may be used as a tool for supporting strategic capacity 

planning decision making. 
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We propose as future work to enhance the model by including more relevant business 

flows and improving the treatment of already incorporated flows. An example of a new 

flow is the reverse logistics flow. The treatment of financial flows can be enhanced by 

incorporating more financial options. Likewise, the treatment of the production flow can 

be improved by considering working time organisation. Finally, the model can serve as 

a basis of a scenario-based stochastic model. 
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Appendix 
In this appendix, we describe how data for the computational experiment instances were 

obtained by showing the expressions and parameters used to calculate them. Tables A.1, 

A.2 and A.3 show the expressions whereas Tables A.4, A.5 and A.6 show the 

parameters. 

Table A.1  Expressions used to calculate dimensional data 
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Symbol Expression/Value 

𝑃𝑃 𝐼𝐼/𝑌𝑌 

Γ𝑘𝑘 1 + k · (P - 1) 

B 1 

 

Table A.2  Expressions used to calculate investment and cost data 

Symbol Expression/Value 

𝐶𝐶𝐶𝐶𝑖𝑖,𝑘𝑘·𝑃𝑃+𝑡𝑡  𝐶𝐶𝐶𝐶0𝑖𝑖 · 𝐶𝐶𝑖𝑖 · 𝑃𝑃 · 𝑝𝑝01 · (1 + ∆𝑐𝑐)𝑘𝑘 

𝐶𝐶𝑆𝑆𝑖𝑖𝑗𝑗,𝑘𝑘·𝑃𝑃+𝑡𝑡  𝐶𝐶𝑆𝑆0𝑖𝑖𝑗𝑗 · 𝑝𝑝01 · �𝑆𝑆𝑗𝑗 −𝑆𝑆𝑖𝑖� · (1 + ∆𝑐𝑐)𝑘𝑘 

𝐼𝐼𝐶𝐶𝑖𝑖,𝑘𝑘·𝑃𝑃+𝑡𝑡 𝐼𝐼𝐶𝐶0𝑖𝑖 · 𝐶𝐶𝑖𝑖 · 𝑃𝑃 · 𝑝𝑝01 · (1 + ∆𝑐𝑐)𝑘𝑘 

𝐼𝐼𝑆𝑆𝑖𝑖𝑗𝑗,𝑘𝑘·𝑃𝑃+𝑡𝑡 𝐼𝐼𝑆𝑆0𝑖𝑖𝑗𝑗 · 𝑝𝑝01 · �𝑆𝑆𝑗𝑗 −𝑆𝑆𝑖𝑖� · (1 + ∆𝑐𝑐)𝑘𝑘 

𝐶𝐶𝐶𝐶𝑖𝑖𝜏𝜏𝑡𝑡 𝐶𝐶𝐶𝐶0
𝑃𝑃

· 𝐼𝐼𝐶𝐶𝑖𝑖𝑡𝑡 · (1 + ∆𝐶𝐶)
𝑡𝑡−𝜏𝜏
𝑃𝑃  

𝐶𝐶𝑆𝑆0𝑡𝑡 0 

𝐶𝐶𝑆𝑆𝑖𝑖𝜏𝜏𝑡𝑡 𝐶𝐶𝑆𝑆00
𝑃𝑃

· 𝐼𝐼𝑆𝑆1𝑖𝑖𝑡𝑡 · (1 + ∆𝑆𝑆)
𝑡𝑡−𝜏𝜏
𝑃𝑃  

𝑣𝑣𝑛𝑛𝑖𝑖,𝑘𝑘·𝑃𝑃+𝑡𝑡
𝑀𝑀  𝑣𝑣0𝑛𝑛𝑖𝑖𝑀𝑀 · 𝑝𝑝0𝑛𝑛 · (1 + ∆𝑐𝑐)𝑘𝑘 

𝑣𝑣𝑛𝑛,𝑘𝑘·𝑃𝑃+𝑡𝑡
𝑊𝑊  𝑣𝑣0𝑛𝑛𝑊𝑊

𝑃𝑃
· 𝑝𝑝0𝑛𝑛 · (1 + ∆𝑐𝑐)𝑘𝑘 

𝛾𝛾𝑛𝑛𝑘𝑘  0.6 · 𝑝𝑝0𝑛𝑛 · (1 + ∆𝑝𝑝𝑛𝑛)𝑘𝑘 

𝐹𝐹𝐶𝐶𝑘𝑘·𝑃𝑃+𝑡𝑡 𝐹𝐹𝐶𝐶0
𝑃𝑃

· (1 + ∆𝑐𝑐)𝑘𝑘 

𝐹𝐹𝑃𝑃𝑘𝑘·𝑃𝑃+𝑡𝑡 𝐹𝐹𝑃𝑃0
𝑃𝑃

· (1 + ∆𝑐𝑐)𝑘𝑘 

 
Table A.3  Expressions used to calculate financial, tax and miscellaneous data 

Symbol Expression/Value 
 

Symbol Expression/Value 
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𝜏𝜏𝑆𝑆 𝑖𝑖𝑛𝑛𝑡𝑡(𝜏𝜏0𝑆𝑆 · 𝑃𝑃 + 0.5)  
𝑃𝑃𝑃𝑃𝑘𝑘·𝑃𝑃+𝑡𝑡 

 �𝑝𝑝0𝑛𝑛 · (1 + ∆𝑝𝑝𝑛𝑛)𝑘𝑘
𝑁𝑁

𝑛𝑛=1

· 𝑑𝑑𝑛𝑛𝑡𝑡  

𝜏𝜏𝑝𝑝 𝑖𝑖𝑛𝑛𝑡𝑡(𝜏𝜏0𝑝𝑝 · 𝑃𝑃 + 0.5)  𝛼𝛼𝑛𝑛 0.7 to 1.5 

𝜏𝜏𝑏𝑏 𝑖𝑖𝑛𝑛𝑡𝑡(𝜏𝜏0𝑏𝑏 · 𝑃𝑃 + 0.5)  𝛽𝛽𝑛𝑛 0.7 to 1.5 

𝑖𝑖𝑡𝑡𝑏𝑏  (1 + 𝑖𝑖0𝑏𝑏)
1
𝑃𝑃 − 1  𝑠𝑠0𝑛𝑛 (0, 0, 0) 

𝑖𝑖𝑡𝑡𝑑𝑑  (1 + 𝑖𝑖0𝑑𝑑)
1
𝑃𝑃 − 1  𝐶𝐶𝑖𝑖  𝐶𝐶0𝑖𝑖 ·

∑ 𝛼𝛼𝑛𝑛 · 𝑑𝑑0𝑛𝑛𝑁𝑁
𝑛𝑛=1

𝑃𝑃
 

𝑟𝑟 0.25  𝑆𝑆𝑖𝑖 (0; 200; 500; 1000; 1500; 2000)  

ℎ0 0  𝜏𝜏𝑖𝑖𝑀𝑀 1 

ℎ𝑚𝑚𝑚𝑚𝑚𝑚−  5000000  𝑃𝑃𝐶𝐶𝑖𝑖𝑡𝑡𝜏𝜏 𝑃𝑃𝐶𝐶0 · 𝑒𝑒−𝑆𝑆𝑀𝑀1·𝑡𝑡−𝜏𝜏𝑃𝑃 · 𝐼𝐼𝐶𝐶𝑖𝑖𝑡𝑡

· (1 + ∆𝐶𝐶)
𝑡𝑡−𝜏𝜏
𝑃𝑃  

𝜏𝜏𝑑𝑑𝑀𝑀 5 · 𝑃𝑃  𝑃𝑃𝐸𝐸0𝑡𝑡 0 

𝜏𝜏𝑑𝑑𝑊𝑊 5 · 𝑃𝑃  𝑃𝑃𝑆𝑆0 0 

𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚  4  𝑃𝑃𝑆𝑆𝑗𝑗𝑖𝑖𝑡𝑡 𝑃𝑃𝑆𝑆0 · 𝑒𝑒−𝑆𝑆𝑊𝑊1·𝑌𝑌·𝑇𝑇+1−𝑡𝑡
𝑃𝑃 · 𝐼𝐼𝑆𝑆𝑗𝑗𝑖𝑖𝑡𝑡

· (1 + ∆𝑆𝑆)
𝑌𝑌·𝑇𝑇+1−𝑡𝑡

𝑃𝑃  

𝑑𝑑𝑛𝑛𝑡𝑡 𝑑𝑑0𝑛𝑛 · 𝑓𝑓𝑌𝑌,𝑃𝑃(𝑡𝑡)    

 
Table A.4  Set of parameters used to calculate the data. The parameters depend neither 

on N nor on νW.  

Symbol Value 
 

Symbol Value 

𝐶𝐶𝐶𝐶0𝑖𝑖  0  𝑖𝑖0𝑑𝑑 0.03 

𝐼𝐼𝐶𝐶0𝑖𝑖  (0, 1.00, 0.62)  𝑖𝑖0𝑏𝑏 0.08 

𝐶𝐶𝐶𝐶0 0.15  𝐶𝐶0𝑖𝑖  (0.25, 0.10, 0.50) 

𝐶𝐶𝑆𝑆00 0.04  𝑃𝑃𝐶𝐶0 0.8 

𝐹𝐹𝐶𝐶0 100000  𝑃𝑃𝐶𝐶1 1.0 
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𝐹𝐹𝑃𝑃0 100000  𝑃𝑃𝑆𝑆0 0.8 

𝜏𝜏0𝑆𝑆 2/12  𝑃𝑃𝑆𝑆1 1.0 

𝜏𝜏0𝑝𝑝 2/12  ∆𝑐𝑐 0.02 

𝜏𝜏0𝑏𝑏 6/12  ∆𝐶𝐶 0.0824 

   ∆𝑆𝑆 0.0406 

 
Table A.5  Set of parameters that depend on νW used to calculate the data 

Symbol 
Value 

νW = 3 νW = 5 
𝐶𝐶𝑆𝑆0𝑖𝑖 (0; 0; 0) (0; 0; 0; 0; 0) 

𝐼𝐼𝑆𝑆0𝑖𝑖𝑗𝑗 
- 1.00 0.90 0.85 
- - 0.95 0.90 
- - - 0.95 

 

- 1.00 0.90 0.85 0.85 0.85 
- - 0.95 0.90 0.90 0.90 
- - - 0.95 0.95 0.95 
- - - - 0.95 0.95 
- - - - - 0.95 

 

 
Table A.6  Set of parameters that depend on N used to calculate the data  

Symbol 
Value  

N = 1 N = 10 N = 30 
𝑑𝑑0𝑛𝑛 12000 40 to 1025 150 to 2600 

𝑝𝑝0𝑛𝑛 100 30 to 200 80 to 200 

∆𝑝𝑝𝑛𝑛 0.02 0.02 0.02 

𝑣𝑣0𝑛𝑛𝑊𝑊 0.10 0.09 to 0.15 0.09 to 0.15 

𝑣𝑣0𝑛𝑛1𝑀𝑀  0.60 0.6 0.6 

𝑣𝑣0𝑛𝑛2𝑀𝑀  0.31 0.28 to 0.31 0.28 to 0.31 

𝑣𝑣0𝑛𝑛3𝑀𝑀  0.27 0.24 to 0.27 0.24 to 0.27 

 

The demand pattern 𝑓𝑓𝑌𝑌,𝑃𝑃(𝑡𝑡) is calculated from  

𝑓𝑓𝑌𝑌,𝑃𝑃(𝑡𝑡) = 𝑁𝑁𝑁𝑁𝑟𝑟𝑃𝑃 · 𝑔𝑔𝑌𝑌,𝑃𝑃(𝑡𝑡) · �1 + ∆𝑃𝑃 · sin �
2𝜋𝜋𝑡𝑡
𝑃𝑃
�� 
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where ∆𝑃𝑃 = 0.15, and 

𝑔𝑔𝑌𝑌,𝑃𝑃(𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧25

𝑡𝑡−𝑦𝑦1·𝑃𝑃
𝑦𝑦1·𝑃𝑃 𝑡𝑡 ≤ 𝑦𝑦1 · 𝑃𝑃

2 · [1 + 𝑃𝑃 · log (1 + ∆𝑔𝑔)]𝑡𝑡−𝑡𝑡1 − 25−
𝑡𝑡−𝑦𝑦1·𝑃𝑃
𝑦𝑦1·𝑃𝑃 𝑦𝑦1 · 𝑃𝑃 < 𝑡𝑡 ≤ 𝑦𝑦2 · 𝑃𝑃

𝑔𝑔𝑌𝑌,𝑇𝑇(𝑦𝑦2 · 𝑃𝑃) · �1 − �
𝑡𝑡 − 𝑦𝑦2 · 𝑃𝑃

𝑌𝑌 · 𝐼𝐼 − 𝑦𝑦2 · 𝑃𝑃
�
2

� 𝑦𝑦2 · 𝑃𝑃 < 𝑡𝑡 ≤ 𝑌𝑌 · 𝑃𝑃

 

𝑁𝑁𝑁𝑁𝑟𝑟𝑃𝑃 =
1
𝑌𝑌
�𝑔𝑔𝑌𝑌,𝑃𝑃(𝑡𝑡) · �1 + ∆𝑃𝑃 · sin �

2𝜋𝜋𝑡𝑡
𝑃𝑃
��

𝑌𝑌·𝑃𝑃

𝑡𝑡=1

 

with ∆𝑔𝑔 = −0.05,  𝑦𝑦1 = 1, and 𝑦𝑦2 = 𝑌𝑌 − 2. 

 

𝑓𝑓𝑌𝑌,𝑃𝑃(𝑡𝑡) follows the product life cycle phases with three distinctive stages: introduction (t 

= 1,…,y1·P), maturity (t = y1·P+1,…, y2·P)  and decline (t = y2·P+1,…, Y·P) of the 

product in the market. The stage of maturity has a downward trend in the long term 

given by the term ∆𝑔𝑔 = −0.05. The demand pattern has a seasonal behaviour with 

intensity ∆𝑃𝑃 = 0.15 and periodicity of one year. 

 Figure A.1 is the graph of functions 𝑓𝑓𝑌𝑌,𝑃𝑃(𝑡𝑡). 

 

 

 
Fig. A.1. Graph of functions fY,P(t) showing the demand patterns of the instances. 
 

 


