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Modelling and control for bounded synchronization
in multi-terminal VSC-HVDC transmission networks

Arnau Dòria-Cerezo, Josep M. Olm,Member, IEEE, Mario di Bernardo,Fellow, IEEE, and Emmanuel Nũno

Abstract—The extension and size of the power grid is ex-
pected to increase in the near future. Managing such a system
presents challenging control problems that, so far, have been
approached with classical control techniques. However, large scale
systems of interconnected nodes fall within the framework of the
emerging field of complex networks. This paper models multi-
terminal VSC-HVDC systems as a complex dynamical network,
and derives conditions ensuring bounded synchronization of its
trajectories for a family of controllers. The obtained results are
validated via numerical simulations.

Keywords—HVDC transmission, complex networks, bounded
synchronization, droop control.

I. I NTRODUCTION

Achieving efficient energy transport and distribution has
emerged as an important problem for the future. New tech-
nologies, most of them related to renewable energies, have
changed the structure and methods of generation, management
and power consumption.

The potential of High Voltage Direct Current (HVDC)
transmission has been lately boosted by the development of
Voltage-Source Converters (VSC) based on HVDC systems.
Indeed, among the advantages of VSC technology with respect
to classical current-fed line-commutated converters are:an
independent control of the reactive and active power consumed
or generated by the converter, smaller filter size due to a faster
dynamic response, and no need of transformers to assist the
commutation process [1], [2].

In turn, technical, economical and environmental reasons
make HVDC lines a feasible alternative to High Voltage
Alternating Current (HVAC) lines, if not the only option, for
long distance bulkpower dispatch, power transmission in asyn-
chronous interconnection situations, or long submarine cable
crossings. This guarantees grid access to renewable sources
such as large-scale wind farms, hydro-electric facilities, or
mine-mouth power plants in remote areas. In particular, the
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Fig. 1: Multi-terminal HVDC transmission scheme.

use of HVDC links in offshore wind farms improves voltage
and frequency responses independently of the wind turbine
type, and alleviates the effect of grid faults [3], [4].

Different power plants are connected to the power grid side
stations through a meshed DC grid. In such schemes, known
as Multi-terminal HVDC (M-HVDC) networks [2], terminals
are power generation plants and grid connection stations, as
illustrated in Fig. 1. Nevertheless, although M-HVDC grids
are undoubtedly a much more efficient alternative to point-
to-point connections, they also present many challenges from
the control perspective. For example, a primary goal for an
M-HVDC power grid is to ensure power balance and to
keep voltages in a certain range under faulty conditions. This
requirement is met in recent designs by using droop control [5].
For instance, droop control is used in [6] as a decentralized
voltage regulator, while in [7] it is exploited to ensure both
stability and an acceptable performance in an M-VSC HVDC
transmission system for offshore wind power plants. The anal-
ysis carried out in [5] is based on linearization, thus providing
local results. Instead, [7], [8] studies global stability through a
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static output feedback approach based on anL2 optimization
criterion solved through Linear Matrix Inequalities (LMIs).
This technique shows three main drawbacks: firstly, it neglects
constant or quasi-constant signals, for which theL2 space
is not an appropriate framework; secondly, the computational
burden associated to LMI solving prevents its application to M-
HVDC systems with a high number of terminals; and, thirdly,
it does not provide error bounds for the state variables.

To overcome these problems, a different approach is re-
quired. Specifically, a strategy needs to be devised to deal
with a large ensemble of interconnected nodes coupled through
a given topological structure and guarantee that they exhibit
some desired macroscopic properties. This is precisely the
type of problem studied innetwork control. Indeed,complex
networkshave been attracting much research interest since the
end of last century, and many cooperative problems arising
in natural, engineering and social sciences have been tackled
within such a framework [9], [10], [11]. A typical example
is synchronization[11], [12], [13], [14], [15]: a specific type
of collective behaviour emerging when the state trajectories
of the nodes asymptotically tend towards each other. Static
synchronization, i.e. asymptotic convergence to a common
equilibrium, is known asconsensus[11], [16], [17]. While
either consensus or synchronization are realistic goals in
networks with identical nodes, such a behavior is in general
impossible in networks with nonidentical nodes. In this case,
an asymptotically bounded mismatch can be achieved between
the states and a certain “reference” trajectory, a regime often
termed asbounded synchronization[18], [13].

Large-scale M-HVDC transmission systems can be regarded
as complex dynamical networks [9], [10], so can the power grid
itself [19]. The terminals, each one with its own dynamics, can
be modelled as the nodes of the network, and the connecting
lines as the coupling edges. However, most papers in the
literature dealing with power grids using a complex network
approach [19] focus on frequency synchronization in AC
grids [20], [21], [22], [23], [24], [25]. A recent work dealing
with voltage synchronization of coupled power electronics
inverters [26] was further extended to more general classes
of nonlinear oscillators [27], but networks of identical nodes
were considered in both cases. It is also worth mentioning
that a cooperative droop control strategy for DC microgrids,
which could fall within complex networks protocols, was
proposed in [28]; nevertheless, the stability analysis is again
based on LMIs. Finally, a decentralized PI passivity-based
controller that renders global asymptotic stability for VSC-
HVDC transmission networks has been recently presented in
[29]; however, current and voltage saturation effects are not
considered.

This paper models an M-VSC HVDC transmission system
as a complex network with nonidentical nodes, where a current
source (for power generating terminals) or sink (for power
consuming terminals) in each node acts as the control action.
Then, the problem of ensuring power balance and maintaining
bounded voltages during faults is reformulated as that of
achieving bounded synchronization. In so doing, the occur-
rence of bounded synchronization in resistive and Resistive-
Capacitive-Inductive (RLC) transmission lines is ensuredfor

a family of controllers which encompass droop control laws
while taking into account saturation constraints; explicit error
bounds are also computed. Numerical results on a realistic
scenario with power availability and power demand varying in
time validate the theoretical predictions.

The remainder of the paper is organized as follows. A
basic background in complex networks is given in Section II.
Section III includes a mathematical model of M-VSC HVDC
transmission systems and is cast into a complex network
fashion. Sections IV and V contain, respectively, the bounded
synchronization analysis for the resistive and RLC case. Nu-
merical results are shown in Section VI, and conclusions are
drawn in Section VII.

II. COMPLEX NETWORKS

We summarize next some preliminary results on complex
networks that are mostly taken from [9], [18].

We consider undirected, complex dynamical networks of
n non-identical, one-dimensional nodes with linear diffusive
coupling, modeled by:

ẋk = fk(xk, t) +

n∑

l=1

akl(xl − xk), k = 1, . . . , n (1)

wherexk ∈ R is the state of thek-th node,fk : R×R → R is
a piecewise continuous map, andakl is the coefficient of the
weighted adjacency matrix, that is,akl > 0 if nodesk and l
are coupled.

The weighted Laplacian matrixΛ = (Λkl) ∈ Mn (R),
defined via the weighted adjacency matrix as

Λkl =

{ ∑n

l=1 akl k = l
−akl k 6= l,

(2)

allows to write (1) in matrix form as:

ẋ = f(x, t)− Λx, (3)

with x = (x1, . . . , xn)
⊤ andf = (f1, . . . , fn)

⊤.
The Laplacian matrix satisfies the following properties:

P1 It has zero row-sum:
∑

l Λkl = 0, k = 1, . . . , n.
P2 1n = (1, . . . , 1)

⊤ ∈ R
n is a right eigenvector ofΛ with

eigenvalue0, i.e. Λ1n = 0.

Let now r(t) = (r1(t), . . . , rn(t))
⊤, with ri : R≥0 −→ R,

i = 1, . . . , N , denote a certain reference trajectory.
Definition 1: Network (1) is said to achieve bounded syn-

chronization with respect to some reference trajectoryr if there
existsǫ > 0 such that

lim
t→+∞

‖x(t)− r(t)‖ ≤ ǫ. (4)

III. M ULTI -TERMINAL VSC-HVDC TRANSMISSION
SYSTEMS

A. Control architecture

An M-VSC HVDC transmission system is composed of a
number of power plants connected to a main AC power grid
through a meshed DC grid, with VSC converters transforming
the DC electrical power into an AC waveform, or vice-versa.
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Fig. 2: Control scheme.

The control strategy for these networks is based on a
hierarchical, three control level architecture [6], see Fig. 2.
This scheme consists of: a supervisor algorithm that sets the
required voltages,E∗

k , to all VSC converters; a voltage control
scheme that regulates the voltages of each VSC capacitor;
and a current controller providing the switching policy to
inject/extract the required current,Ik, to/from the capacitor,
Cv

k . Such a current is obtained from the voltage controller,
which is the focus of this paper.

B. Mathematical model

A VSC converter can be modeled as a current source in
parallel with a capacitor [6], [7], see Fig. 3. The current in
terminal k, Ik, takes positive values when power is being
injected into the DC grid, and negative values otherwise.Ik is
typically positive in power generating terminals and negative
in power consuming terminals, though changes of role, and
therefore, of the current sign, are allowed when required for
power balance.

The current supplied by each VSC,Ik(Ek, t), is used to
regulate the corresponding DC voltage,Ek(t), taking into
account the power supplied (or consumed) by the power plant
(or AC grid). During operation, the characteristic curveφE

k :=
(Ek(t), Ik(Ek, t)) must remain within an admissibility region
in the (Ek, Ik) state plane, denoted asIE

k , corresponding
to the area limited by the maximum and minimum allowed
voltages,Emax

k andEmin
k , respectively, the rated power of the

power converter,Pmax
kI (injecting) andPmin

kC (consuming), and
the boundary values for the current,Imax

k andImin
k , see Fig. 4.

As mentioned above, the most common control technique
for the VSC in an HVDC network is droop voltage control,

EkCv
kIk

ik

Fig. 3: Equivalent circuit of a VSC.
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Fig. 4: Admissibility region forφE
k := (Ek, Ik(Ek)). Blue

area: power injection; red area: power consumption.

which basically consists of a static curveIk(Ek) that maintains
maximum power (normal operation in power plants) for a
certain range ofEk, and switches to proportional gain when
required (normal operation in AC grid side converters), see
the example in [7]. However, here we assume that a generic,
nonlinear, static control current,Ik = Ik(Ek), is employed.

A lumped parameter transmission line model is used to
describe the link between two nodes,k and l, see Fig. 5.

The dynamics of both VSC and DC transmission lines are
obtained from Kirchhoff’s Currents Law (KCL) and Kirch-
hoff’s Voltages Law (KVL). Applying KCL to Fig. 3, the
dynamics of each VSC is given by

Ck

dEk

dt
= Ik(Ek) + ik, (5)

where Ek is the voltage at the capacitorCv
k , Ck is the

equivalent capacity at nodek, i.e.

Ck = Cv
k +

1

2

n∑

l=1

Ckl, (6)

andIk(Ek) is the current injected (or consumed) by the power
converter. As mentioned above, theIk value is used to regulate

Ek
Ckl

2

Rklikl

Ckl

2 El

Lkl

Fig. 5: Equivalent circuit of a transmission line.
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the voltageEk within an appropriate range, andIk(Ek) is
assumed to be a nonlinear static relationship. The incoming
current into thek-th VSC node,ik, can be computed as

ik =
n∑

l=1

aklikl (7)

where ikl is the current flowing from nodel to nodek (see
Fig. 5), and

akl =

{
1 if l andk are connected
0 if l andk are not connected. (8)

From Fig. 5, and using KVL, the dynamics of a transmission
line connecting nodesk and l can be derived as

El = Ek +Rklikl + Lkl

dikl
dt

, (9)

whereRkl andLkl are the resistance and inductance of each
line, respectively. Notice thatikl = −ilk.

C. M-VSC HVDC transmission systems as complex dynamical
networks

A multi-terminal HVDC transmission system can then be
seen as a complex dynamical network where the nodes are
the VSC of each power plant (or power grid connection) and
the communication protocol is given by the topology of the
transmission line.

However the DC power network will probably contain star
nodes, i.e. nodes not corresponding to power terminals but to
points where two or more transmission lines are connected, as
in the example depicted in Fig. 6a. To resolve this problem
Kron’s reduction [30], [31] can be used, which allows to
obtain an equivalent network with all nodes corresponding to
power terminals or grid connections. As pointed out in [31],
Kron’s reduction is applicable to pure resistive networks and
also to homogeneous RLC networks, i.e. networks satisfying
RklL

−1
kl = RklC

−1
kl = c, for all (k, l) such thatakl 6= 0. Notice

that this constraint may be overcome using transmission lines
with the same resistance, inductance, and capacitance per unit
length. Finally, it is worth pointing out that homogeneity is
required because the analysis encompasses not only steady-
state but also transient behavior [31].

Hence, the M-VSC HVDC transmission system model con-
sidered here consists of a set of nodes (plants and power
grid converters) connected through a point-to-point undirected
protocol (power transmission lines). This yields an undirected
complex dynamical network as shown in Fig. 6b [9].

Let us now derive the network dynamics model. Lettingm ∈
N stand for the total number of transmission lines, we define
the line currents vectori = (ikl) ∈ R

m, wherek, l = 1, . . . , n

with k < l and akl 6= 0. It is immediate thatm ≤ n(n−1)
2 .

Then, from (5) the network node dynamics can be written in
a matrix form as

C
dE
dt

= −Ai+ I(E), (10)

where E = (E1, . . . , EN )⊤ ∈ R
N is the voltage vector,

I(E) = (I1(E1), . . . , IN (EN ))
⊤ ∈ R

N is the control currents

(a) (b)

Fig. 6: M-HVDC transmission system (a) with star nodes;
(b) mesh-transformed. Power plants and grid side stations are
represented by circles and squares, respectively.

vector,C = diag(Ci) ∈ R
n×n, andA = (Akj) ∈ R

n×m is
the incidence matrix:

Akj =

{
1 if line j is outgoing from nodek,

−1 if line j incoming into nodek,
0 otherwise.

Equivalently, defining theMm (R) inductance and resistance
matricesL = diag(Lkl), R = diag(Rkl), respectively, the
transmission lines dynamics (9) can be written as:

L
di
dt

= −Ri+A⊤E. (11)

Furthermore,R being a non-singular matrix one can isolate
i in (11) and substitute it into (10). Thus, the overall system
dynamics is given by

C
dE
dt

= I(E)+AR−1L
di
dt

−GE, (12)

L
di
dt

= −Ri+A⊤E, (13)

with G := AR−1A⊤ being the conductance matrix.
Assume that the voltage reference for nodek is set toE∗

k ,
obviously with

Emin
k < E∗

k < Emax
k , (14)

and define the error gap as:

ek = Ek − E∗
k . (15)

We also assumeE∗ := (E∗
k)

⊤
/∈ span{1n} so as to avoid

setting all nodes to the same voltage, where there is no power
flow. Hence, (12)-(13) become:

C
de
dt

= I(e)+AR−1L
di
dt

−GE∗ −Ge, (16)

L
di
dt

= −Ri+A⊤e+A⊤E∗, (17)

with I(e) = (I1(e1), . . . , IN (eN ))
⊤ ∈ R

N .
Notice that the node equation (16) matches the generic

model (3) of an undirected network, with

f(e, t) = C−1I(e)+C−1AR−1L
di
dt

− C−1GE∗,

Λ = G,
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Fig. 7: Grey area: thek-th control admissibility region.

G being a weighted Laplacian, while (17) stands for the edge
dynamics. Hence, the M-HVDC grid has in fact dynamic
interconnections [27], and can be modelled as an adaptive
network, see [32], [33] for further details.

Finally, recall from Section III-B that the current at every
node,Ik(Ek), must be such that the characteristic curveφE

k

belongs to an admissible setIE
k of the plane(Ek, Ik); we

denote asφe
k := (ek(t), Ik(t)) and Ie

k the corresponding
characteristic curve and admissible region, respectively, in the
(ek, Ik) plane. Let us now introduce a second admissibility
region forφe

k:

J e
k :=

{
(ek, Ik) ;

(
Ik ≥ −dkek if ek ≤ 0,
Ik ≤ −dkek if ek > 0

)}
, (18)

with
dk ≥ d∗k > 0, ∀k. (19)

Definition 2: A current control vectorI(e) for network
(16)-(17) is said to be admissible if it is such that, for every
nodek, the characteristic curveφe

k belongs toIe
k∩J e

k , ∀t ≥ 0.
In turn, Ie

k ∩ J e
k is termed as thek-th control admissibility

region.
Thek-th control admissibility regionIe

k ∩J e
k is depicted in

Fig. 7.

IV. RESISTIVE M-HVDC TRANSMISSION SYSTEMS

A purely resistive model is obtained by settingCkl = 0 in
(6) andLkl = 0 in (9). Hence, (16)-(17) boil down to:

C
de
dt

= I(e)−Ge−GE∗. (20)

Let us define the parametere∗ as:

e∗ :=
1

2
E∗⊤GE∗. (21)

It has been assumed in Section III-C that the voltage references
are not the same for every node, i.e.E∗ /∈ span{1n}; this,

together with the weighted Laplacian character ofG, yields
e∗ ∈ R

+. Finally, let Ω be a hyperellipsoid of then-th
dimensional error space centered ine = 0 ∈ R

n and defined
as:

Ω :=
{
e ∈ R

n; e⊤Ce ≤ s∗2
}
, (22)

with

s∗ :=

√
e∗ max

{
Ck

dk
, k = 1, . . . , N

}
. (23)

As shown below sufficient conditions can be established to
ensure that the terminal voltages evolve within or towardsΩ.

Theorem 1:Assume that the control current vectorI(e) in
(20) is admissible. Ife(0) ∈ Ω, then e(t) ∈ Ω, ∀t ≥ 0;
otherwise, if e(0) ∈ R

n \ Ω, then e(t) approachesΩ as
t → +∞.

Proof: Let us consider the following positive definite
auxiliary function:

V (e) =
1

2
e⊤Ce.

Its derivative over the system trajectories is:

V̇ (e) = e⊤Cė = e⊤I(e)− e⊤Ge− e⊤GE∗. (24)

The positive semidefiniteness ofG entails:

0 ≤ (e+ E∗)
⊤
G (e+ E∗) = e⊤Ge+ E∗⊤GE∗ + 2e⊤GE∗;

hence, taking into account (21) yields:

−e⊤GE∗ ≤ 1

2
e⊤Ge+

1

2
E∗⊤GE∗ =

1

2
e⊤Ge+ e∗.

Moreover, it is immediate from the definition ofJ e
k in (18)

that, ∀k ∈ {1, . . . , n}, φe
k ⊂ J e

k =⇒ Ike
2
k ≤ −dke

2
k.

Therefore, definingD := diag(dk) ∈ Mn (R), one has that

e⊤I(e) ≤ −e⊤De,

with D positive definite ande∗ > 0. Consequently, from (24)
it follows:

V̇ (e) ≤ −e⊤De− e⊤Ge+
1

2
e⊤Ge+ e∗ =

= −e⊤De− 1

2
e⊤Ge+ e∗ ≤ −e⊤De+ e∗. (25)

Let us now define the hyperellipsoid

Ω̂ :=
{
e ∈ R

n; e⊤De ≤ e∗
}
. (26)

Notice thate = 0 ∈ Ω̂, and also thaṫV ≤ 0 in ∂Ω̂ and V̇ < 0
in R

n \ Ω̂. Moreover, under the change of coordinates

e :=
1√
2
C

1

2 e,

with C
1

2 = diag
(√

Ck

)
being the principal square root ofC,

Ω̂ becomes a hyperellipsoid in thee-state space, its maximum
semi-axis beings∗√

2
, with s∗ defined in (23). As the surfaces

of thee-state space with constantV (e) are now hyperspheres,
the one with radiuss∗√

2
is the smallest one enclosinĝΩ; in

the e-state space, such anRn subset is preciselyΩ, defined
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in (22). Thus,Ω is a closed set whereV (∂Ω) is constant,
V̇ (∂Ω) ≤ 0, and V̇ (Rn \ Ω) < 0. Hence, the result follows.

Remark 1:According to (22), the lengths of the semi-axes
of the hyperellipsoidΩ, sk, are given by

sk :=
s∗√
Ck

=

√
e∗

Ck

max

{
Cl

dl
, l = 1, . . . , n

}
. (27)

Therefore, the size of the subset ofR
n where the evolution

of the system is confined in (or towards which it approaches),
depends on the slopes,dk, on the capacitor values,Ck, and
on the voltage setpoint references,E∗

k (see (21)): higher slopes
and capacitors, and closer (but not identical) voltage references
correspond to smaller hyperellipsoids, and vice-versa. Notice,
finally, that restriction (19) ensures thatΩ has a bounded size.

Corollary 1: Assume that the control current vectorI(e)
in (20) is admissible. Then, network (20) achieves bounded
synchronization with respect tor(t) = 0. Specifically,

lim
t→+∞

‖e(t)‖ ≤ ǫ = max{sk, k = 1, . . . , n}. (28)

V. RLC M-HVDC TRANSMISSION SYSTEMS

In this case the edge dynamics are not neglected, so the
overall network dynamics is given by (16)-(17).

Let ΩRLC be the following hyperellipsoid of the(n+m)-th
dimensional error space, centered in(e⊤, i⊤)⊤ = 0 ∈ R

n+m

and defined as:

ΩRLC :=
{
(e⊤, i⊤)⊤ ∈ R

n+m; e⊤Ce+ i⊤Li ≤ s∗2RLC

}
,

(29)
where

s∗RLC := max
{
s∗,

√
2s∗L

}
, (30)

with s∗ defined in (23) and

s∗L :=

√
e∗ max

{
Lk

Rk

, k = 1, . . . ,m

}
, (31)

e∗ being that defined in (21).
The analogous result of Theorem 1 for the RLC case is as

follows:
Theorem 2:Assume that the control current vectorI(e)

in (16)-(17) is admissible. If
(
e⊤(0), i⊤(0)

)⊤ ∈ ΩRLC ,

then
(
e⊤(t), i⊤(t)

)⊤ ∈ ΩL, ∀t ≥ 0; otherwise, if(
e⊤(0), i⊤(0)

)⊤ ∈ R
N \ ΩRLC , then

(
e⊤(t), i⊤(t)

)⊤
ap-

proachesΩRLC as t → +∞.
Proof: Let us consider the following auxiliary function:

V (e, i) =
1

2
e⊤Ce+

1

2
i⊤Li.

Using (16)-(17), the time derivative ofV (e, i) over the system
trajectories can be written as:

V̇ (e, i) = e⊤I(e)− i⊤Ri+ i⊤A⊤E∗.

Now, lettingR
1

2 stand for the principal square root ofR, one
has that

0 ≤
(
R

1

2 i−R− 1

2A⊤E∗
)⊤ (

R
1

2 i−R− 1

2A⊤E∗
)
=

= i⊤Ri− 2i⊤A⊤E∗ + E∗⊤AR−1A⊤E∗;

hence, taking again into account the definition of the conduc-
tance matrix,G, and (21) gives:

i⊤A⊤E∗ ≤ 1

2
i⊤Ri+ e∗.

Therefore,

V̇ (e, i) ≤ e⊤I(e)− 1

2
i⊤Ri+ e∗.

Finally, recalling from the proof of Theorem 1 that∀k ∈
{1, . . . , n}, φe

k ⊂ J e
k =⇒ e⊤I(e) ≤ −e⊤De, one has that

V̇ (e, i) ≤ −e⊤De− 1

2
i⊤Ri+ e∗.

The proof then follows similar steps to those of Theorem 1,
with

Ω̂RLC :=

{
(e⊤, i⊤)⊤ ∈ R

n+m; e⊤De+
1

2
i⊤Ri ≤ e∗

}

playing the role ofΩ̂, ands∗RLC andΩRLC standing, respec-
tively, for s∗ andΩ.

Corollary 2: Assume that the control current vectorI(e) in
(16)-(17) is admissible. Then, the network (16)-(17) achieves
bounded synchronization with respect tor(t) = 0. Specifically,

lim
t→+∞

‖
(
e⊤(t), i⊤(t)

)⊤ ‖ ≤ ǫRLC = s∗RLC ·max{ 1

Ci

,
1

Lj

},
(32)

with i = 1, . . . , n, j = 1, . . . ,m.
Remark 2: i) The stability condition for the RLC case is

very similar to the one previously obtained for the resistive
case. Therefore, the discussion of Remark 1 is also applicable
to the present situation if one includesLkl

Rkl
in the discussion:

higherRkl’s and lowerLkl’s also reduce the size ofΩRLC .
ii) Bounded synchronization is proved both for node voltages,
with respect to a reference, and for the transmission line
currents, with respect to0.
iii) It is worth emphasizing that the results obtained for
resistive and RLC systems are applicable to any admissible
control law, i.e. according to Definition 2, to any current
control vector that places the characteristic curves of every
node of the HVDC system within its correspondingk-th
control admissibility region. It is shown in the next section
that this can be fulfilled by means of droop controllers.

VI. A PPLICATION

The numerical simulations presented in this Section consider
the RLC case. An example of the resistive case can be found
in [34].

An M-VSC HVDC network is considered connecting several
wind farms (WF) to grid side (GS) converters located at
DC/AC stations in the mainland. The topology is a simplified,
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Fig. 8: Scheme of the M-HVDC network representing the
North Sea offshore wind integration network used as appli-
cation example.

meshed version of the offshore wind integration grid in the
North Sea [35] with 14 lines and 14 nodes. The network
structure is shown in Fig. 8. In each node, a droop control
strategy is adopted. As indicated in Subsection III-B, the droop
control consists of a nonlinear static relationship between the
current provided by the VSC,Ik, and the voltage across each
capacitor,Ek (see also the example in [7]).

The droop control in each agent can be generalized as

Ik =





Imax
k if Ek ≤ PkII

max
k

Ek

PkI
if PkII

max
k < Ek < El

k

−dck(Ek − E∗
k) if El

k < Ek < Eh
k

Ek

PkC
if El

k < Ek

(33)

where PkI > 0 is the power generated by a WF (or the
maximum power that can be delivered by a GS converter in
case of supplying energy to the DC network), andPkC < 0 is
the maximum power that can be consumed by a GS node.

Ek

Ik

I
max
k

I
min
k

E
min
k

E
max
k

P
max
kI

P
min
kC

Ek

Ik

I
max
k

I
min
k

E
min
k

E
max
k

P
max
kI

P
min
kC

Fig. 9: Droop control curves and control admissibility regions:
WF (blue), GS (red).

TABLE I: Simulation node parameters.

Node Name Type Pmax
k E∗

k

N1 UK1 WF 600MW 265kV
N2 UK2 WF 400MW 265kV
N3 UK GS 850MW 245kV
N4 BE1 WF 200MW 265kV
N5 BE GS 140MW 245kV
N6 NL1 WF 400MW 265kV
N7 NL2 WF 200MW 265kV
N8 NL GS 540MW 245kV
N9 DE1 WF 400MW 265kV
N10 DE2 WF 400MW 265kV
N11 DE GS 640MW 245kV
N12 DK1 WF 200MW 265kV
N13 DK2 WF 200MW 265kV
N14 DK GS 240MW 245kV

TABLE II: Simulation line parameters.

Line Length [km] Line Length [km]
L1,3 100 L12,14 40
L2,3 120 L13,14 50
L4,5 100 L3,5 300
L6,8 100 L5,8 120
L7,8 40 L12,14 250
L9,11 40 L12,14 120
L10,11 70 L12,14 380

The slope of the droop control is denoted bydck, and E∗
k

is the voltage value for zero injected current. The lower and
higher threshold values of the droop region,El

k andEh
k , can

be obtained as

El,h
k =

1

2

(
E∗

k±
√
E∗

k
2 − 4PkI,kC

dck

)
(34)

Notice that for WF power plants the consumed power is zero.
Then, for WF nodes,PkC = 0 which, taking into account (34),
impliesEh

k = E∗
k .

Notice also that, by construction, droop control laws are
admissible in the sense of Definition 2: the curve described
by (33) in the(Ik, Ek) plane and the corresponding control
admissibility regionIe

k ∩ J e
k are depicted in Fig. 9.

The node parameters are summarized in Table I. In all
nodes the capacitances are set toCv

k = 75mF, and the
droop control slopes have been set todck = 2. The available
power in wind farms has been randomly assigned taking a
Weibull distribution. For the sake of simplicity, we assume
that Pmax

k = PkC = −PkI for GS converters, andPmax
k = PkI

for WF nodes. The line lengths are shown in Table II and the
resistance and inductance per kilometer are set, from [35],to
Ru = 0.2Ω/km, Lu = 19.1mH/km, andCu = 220nF/km. The
simulation test takes 1000s and also considers a fault in the
GS converter N11 att = 500s, when the power is suddenly
reduced to 320MW for 100s.

In Fig. 10, the available power is displayed at the WF
resulting from the random process. It is worth noticing that
some nodes (N1, N2, N6 and N10) are underloaded, some are
fully loaded (N4 and N7) at all times, and the loads of some
other nodes vary with time. The effect of the GS failure is
evident in nodes N9 and N10 (the neighbors) and can be also
noticed in N12 and N13.
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Fig. 10: Instantaneous power at the WF: available (blue) and
delivered (green) powers.

The resulting node voltages,Ek, are displayed in Fig. 11.
Notice that, in general, WF nodes (in blue) show higher
voltages than GS converters (in red), so that energy flows from
generation to consumption/distribution points. It is noticeable
that all voltages are bounded by max(Ek) and min(Ek). As
we will show next, the numerical result is less conservative
than the analytical bounds derived in the previous section.

The injected and consumed powers in each WF and GS
nodes, respectively, are shown in Fig. 12. Due to wind vari-
ability and to the droop control strategy, power in each nodeis
continuously changing to keep the power network within the
admissible voltage range.

Fig. 13 shows the droop control strategy for each node.
Notice that during the simulations, some nodes are drooping
for a certain time while some are kept at the maximum
power (N4, N7 and N14)). One can also identify WF and
GS nodes because their characteristic curves belong to the
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Fig. 11: Node voltages: WF (blue), GS (red).
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Fig. 12: Instantaneous power: WF (blue), GS (red).

second and fourth quadrant, respectively. The red and black
lines correspond to the droop control slope,dck, and to the
slopesdk used in the definition of the control admissibility
regionsIe

k ∩ J e
k .

Finally, Fig. 14 portrays trajectories projected in some
(ei, ej) planes, together with the projection of the correspond-
ing hyperellipsiodΩRLC . As the initial conditions are inside
ΩRLC trajectories remain there for all time, as predicted by
Theorem 2. Bounded synchronization is therefore achieved,
and the bound fore(t) given in equation (32) of Corollary 2
amounts toǫ = 73.0kV; this corresponds, approximately, to
25% of the nominal value.

Summarizing, this numerical test not only validates the
theoretical results derived in Section V, but also shows that, in
accordance with them, the droop control strategy bounds the
DC voltages in VSC-HVDC networks.

VII. C ONCLUSIONS

In this paper we presented a complex networks-based ap-
proach to study multi-terminal VSC-HVDC resistive and RLC
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Fig. 13: Droop control action in the(ek, Ik) plane for each
node. Red straight line: droop control slope,dck; black dotted
line: minimum value fordk that defines thek-th control
admissibility region.

transmission lines using a complex network approach. Firstly,
the system was modelled as a complex dynamical network, the
currents of the VSC converters of each terminal being control
variables. Then, bounded synchronization of the node voltages
was proved to occur for a family of admissible controllers,
i.e. control laws able to place the characteristic curve of each
node in a certain region, and explicit synchronization bounds
were computed as well. The commonly used droop control
strategy was also shown to be an admissible control. Finally,
the analytical results were successfully validated via numerical
simulations.

The fact that the derivations were made for a generic family
of controllers yielded conservative synchronization bounds.
Hence, further research should address design issues, namely,
the obtaining of control laws that place the system in a
pre-assigned, thus more convenient from the synchronization
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Fig. 14: Projected trajectories andΩRLC in some (ei, ej)
planes.

bounds side, control admissibility region. Also of interest is to
take into account the current controller dynamics (see Fig.2):
a first order model of it [7] would result in a complex network
with two-dimensional nodes and state variables(Ek, Ik).
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