
Available online at www.sciencedirect.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC
ScienceDirect

SoftwareX 3–4 (2015) 32–36
www.elsevier.com/locate/softx

COMP Superscalar, an interoperable programming framework

Rosa M. Badia, Javier Conejero, Carlos Diaz, Jorge Ejarque, Daniele Lezzi∗, Francesc Lordan,
Cristian Ramon-Cortes, Raul Sirvent

Barcelona Supercomputing Center, Spain

Received 6 May 2015; received in revised form 29 October 2015; accepted 29 October 2015

Abstract

COMPSs is a programming framework that aims to facilitate the parallelization of existing applications written in Java, C/C++ and Python
scripts. For that purpose, it offers a simple programming model based on sequential development in which the user is mainly responsible for
(i) identifying the functions to be executed as asynchronous parallel tasks and (ii) annotating them with annotations or standard Python decorators.
A runtime system is in charge of exploiting the inherent concurrency of the code, automatically detecting and enforcing the data dependencies
between tasks and spawning these tasks to the available resources, which can be nodes in a cluster, clouds or grids. In cloud environments,
COMPSs provides scalability and elasticity features allowing the dynamic provision of resources.
c⃝ 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/

by/4.0/).

Keywords: Parallel programming models; Interoperability; Scientific computing
Code metadata

Current code version 1.2
Permanent link to code/repository used of this code version https://gith
Legal Code License Apache 2
Code versioning system used svn
Software code languages, tools, and services used Java, C/C+
Compilation requirements, operating environments & dependencies Linux, OSX
If available Link to developer documentation/manual http://www

documenta
Support email for questions http://comp

1. Motivation and significance

The last years have witnessed unprecedented changes in
parallel and distributed infrastructures. Parallel multi-core
architectures have gained widespread use; the ever-growing
need of scientific applications for computing and storage
capabilities has motivated the appearance of Grids; and Clouds

∗ Corresponding author.
E-mail addresses: rosa.m.badia@bsc.es (R.M. Badia),

francisco.conejero@bsc.es (J. Conejero), carlos.diaz@bsc.es (C. Diaz),
jorge.ejarque@bsc.es (J. Ejarque), daniele.lezzi@bsc.es (D. Lezzi),
francesc.lordan@bsc.es (F. Lordan), cramonco@bsc.es (C. Ramon-Cortes),
raul.sirvent@bsc.es (R. Sirvent).

http://dx.doi.org/10.1016/j.softx.2015.10.004
2352-7110/ c⃝ 2015 The Authors. Published by Elsevier B.V. This is an open acces
ub.com/ElsevierSoftwareX/SOFTX-D-15-00010

+, Python
. Maven used for compilation and resolution of dependencies
.bsc.es/computer-sciences/grid-computing/comp-superscalar/downloads-and-
tion
ss.bsc.es/support-compss

have emerged by combining virtualisation technologies,
service-orientation and business models to deliver IT resources
on demand over the Internet.

The size and complexity of these new infrastructures pose
a significant programming challenge. Some of these difficul-
ties are inherent to concurrent and distributed programming,
e.g. dealing with threading, messaging, data partitioning and
transfer. Other issues, on the other hand, are related to the pe-
culiarities of the particular scenario, such as the risk of ven-
dor lock-in when writing an application for a particular Cloud
provider.

s article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://core.ac.uk/display/46606607?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2015.10.004&domain=pdf
http://www.elsevier.com/locate/softx
http://dx.doi.org/10.1016/j.softx.2015.10.004
http://www.elsevier.com/locate/softx
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-15-00010
http://www.bsc.es/computer-sciences/grid-computing/comp-superscalar/downloads-and-documentation
http://www.bsc.es/computer-sciences/grid-computing/comp-superscalar/downloads-and-documentation
http://compss.bsc.es/support-compss
mailto:rosa.m.badia@bsc.es
mailto:francisco.conejero@bsc.es
mailto:carlos.diaz@bsc.es
mailto:jorge.ejarque@bsc.es
mailto:daniele.lezzi@bsc.es
mailto:francesc.lordan@bsc.es
mailto:cramonco@bsc.es
mailto:raul.sirvent@bsc.es
http://dx.doi.org/10.1016/j.softx.2015.10.004
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


R.M. Badia et al. / SoftwareX 3–4 (2015) 32–36 33
In the face of such a challenge, programming productivity
has become crucial. There is a strong need for high-productivity
programming models and languages that provide a simple
means for writing parallel and distributed applications, in order
to improve programmer productivity on current infrastructures
without sacrificing performance.

In that sense, COMPSs [1] provides a programming model
and runtime system that aims to solve the above-mentioned is-
sues, by easing application development (for, e.g. parallel appli-
cations, business or scientific workflows, and compositions of
services mixing services and code) and their execution on dis-
tributed environments. The framework implements a task-based
programming model that allows applications to be written fol-
lowing a sequential paradigm, without the need for a specific
API. The COMPSs runtime detects data dependencies, and ex-
ecutes the code, while exploiting the parallelism that is inherent
in the sequential code.

The other important feature of the COMPSs programming
framework is the ability to execute the applications transpar-
ently with regards to the underlying infrastructure. A key aspect
of providing an infrastructure-unaware programming model is
that programs can be developed once and run on multiple back-
ends, without having to change the implementation. This is im-
portant when portability between clouds must be achieved. In
COMPSs, the programmer is freed from having to deal with
the details of the specific cloud, since these details are han-
dled transparently by the runtime. The availability of differ-
ent connectors, each implementing the specific provider API
(e.g Cloud providers), makes it possible to run computational
loads on multiple backend environments without the need of
code adaptation. In cloud environments, COMPSs provides
scaling and elasticity features that allow the number of utilized
resources to be dynamically adapted to the actual execution
needs.

2. Software description

The COMPSs runtime has been implemented using the Java
language, so the most natural programming language for new
COMPSs applications is Java. Nevertheless, to simplify the
porting of existing applications written in other languages,
COMPSs has support also for C/C++ and Python applications.

When the sequential code is executed, the COMPSs runtime
intercepts the methods invocations and replaces them with calls
to the runtime that create new asynchronous tasks. Accesses to
task data within the main code are also instrumented, so that
the runtime can fetch the correct data values if necessary from
the remote resource where the task was generated (synchroniza-
tion).

Fig. 1 depicts an example of a COMPSs application, written
in Java, together with the definition of an Orchestrator that
includes calls to remote methods. The COMPSs runtime is
in charge of creating the tasks, managing data dependencies
and executing tasks using the available infrastructure. Further
details about task detection, data dependency management and
task scheduling can be found in [2].

Fig. 2(a) contains an example application written using
the Python implementation of COMPSs, which is known as
PyCOMPSs [3]. In PyCOMPSs, the tasks are identified using
Python decorators, which are part of the standard Python.
Fig. 2(b) shows the task dependency graph built on the fly by
the COMPSs runtime.

In addition to the programming model and runtime,
COMPSs provides a set of platform tools that ease: (a) im-
plementation of COMPSs applications using an Integrated De-
velopment Environment (IDE), (b) application deployment in
distributed infrastructures using the Programming Model En-
actment Service (PMES) [4], and (c) execution monitoring
using the Monitoring and Tracing tools. The IDE directly
invokes PMES to deploy virtual appliances related to a new pro-
grammed service in the appropriate infrastructures, thus acting
as a single contact point to deal with heterogeneity in the under-
lying platform middlewares. The COMPSs runtime provides in-
formation and usage records at execution time, so the user can
follow the progress of the application. It does this through a
web interface that shows real-time information on the tasks be-
ing executed, as well as indicating resource usage. When the
application has finished executing, this information can be pro-
cessed and visualized using tools such as Paraver [5], in order
to detect bottlenecks and unbalanced parts of the application,
which could be fixed to increase application performance.

3. Illustrative examples

In this section we provide two examples of PyCOMPSs ap-
plications evaluated using the MareNostrum supercomputer at
BSC: DimSweep and NeuronCorr. DimSweep performs a clus-
ter architecture exploration using the Dimemas simulator via a
parameter sweep of several configuration values, including Fab-
ric Interconnection Network latency and bandwidth, number of
nodes, CPU speed, and intranode latency and bandwidth. This
example is implemented in COMPSs using two different task
types: one executes a Dimemas [6] simulation and the other
accumulates the results. While the simulation tasks are inde-
pendent, the accumulation tasks are serialized by a chain of
dependencies. To avoid a long chain of these tasks at the end
of the execution, these tasks are prioritized so that they are ex-
ecuted between simulation tasks. The experimental evaluation
used a real execution tracefile and a combination of parameter
configurations that generated 2,304 tasks. Fig. 3 shows the re-
sults obtained when the number of cores used for PyCOMPSs
workers was varied between 16 and 512. The time on the y-axis
is the total elapsed time and the speedup is computed relative to
16 workers. The results show good scaling up to 128 workers,
with diminishing returns for larger processor counts.

NeuronCorr is a neuroscience data processing example that
computes all mutual cross-correlations between all pairs of a set
of spike data [7]. The original example was written in Parallel
Python and it has been translated to PyCOMPSs. This example
has two task types: one computes the cross-correlations for a
block of data and the other gathers the results in a data structure.
Since the gather tasks create a chain of tasks as before, they
are prioritized to avoid a long serial chain at the end of the
execution. The evaluation in Fig. 4 was performed using a data
set that generates 2,048 tasks.



34 R.M. Badia et al. / SoftwareX 3–4 (2015) 32–36
Fig. 1. Sample application code written in Java.
Fig. 2. Example of a sequential Python script parallelized with PyCOMPSs: (a) main program of the script, (b) task definition. On the right, the corresponding task
dependency graph.
Fig. 3. Performance of DimSweep. The chart shows elapsed time and speed-up
using as baseline the 16 workers case.

4. Impact

The COMPSs framework is developed by the Workflows and
Distributed Computing group in the Computer Sciences Depart-
ment of the BSC. An important impact of COMPSs is the adop-
tion by BSC internal users, such as Life Sciences, Earth Sci-
ences and Computer Applications in Science and Engineering
who, in turn, offer services developed using COMPSs within
their communities. A clear example is the Life Sciences depart-
ment, which is linked to the Spanish National Bioinformatics
Fig. 4. Performance of NeuronCorr. The chart shows ellapsed time and speed-
up using as baseline the 16 workers case.

Institute (INB) to develop solutions for special requirements
emerging from the development and execution of national re-
search projects. COMPSs has been installed as production soft-
ware on MareNostrum, for the last eight years, and is also used
by the other nodes of the Spanish Supercomputing Network
(RES) and by the PRACE network. There is a dedicated training
programme for COMPSs in the context of PRACE Advanced
Training Centres (PATCs) and COMPSs is a basic component
in the activities of the BSC Severo Ochoa excellence research



R.M. Badia et al. / SoftwareX 3–4 (2015) 32–36 35
program [8], where the runtime is being extended to support
BSC Big Data technologies. The aim is to provide COMPSs as
a high-level tool that hides the complexity of the specific frame-
work. A relevant result is a new tool that has been developed by
the BSC genomics group that constitutes the first complete and
integrated solution for efficient and accurate large-scale impu-
tation and genome-wide association analyses across multiple
centers with different parallel computing environments includ-
ing supercomputers and clouds [9]. COMPSs is also adopted
in the Human Brain Project Flagship [10], where BSC is in-
volved in the development of the HPC Platform, leading the
activities on parallel programming models, workflows and dis-
tributed programming models, especially related to the provi-
sioning of environments for data-intensive supercomputing.

Sustainability of the COMPSs framework is promoted
through a large number of projects and collaborations with
user communities. COMPSs has been adopted and extended in
many projects, and has been offered as a tool for the devel-
opment of scientific applications and optimization of their ex-
ecution on distributed infrastructures, including in VENUS-C
[11], Optimis [12] and EUBrazilOpenBio [13], and it is now
leveraged in the European Grid Infrastructure (EGI) [14] as
a high-level tool for porting applications to the production
Federated Cloud. In EGI Federated Cloud, COMPSs repre-
sents, on the one hand, the enabling technology to transpar-
ently access the cloud infrastructure, and, on the other hand,
to easily implement parallel workflows that can efficiently scale
across the available resources. Examples of successful adoption
of COMPSs include services offered to the biodiversity com-
munities [15,16], implementation of pipelines for calibration,
analysis and modeling for radio-astronomy data into a cloud in-
frastructure for the users of the LOFAR radio-telescope and the
AMIGA4GAS community [17,18]. The resulting components
of the latter collaboration will be part of the Square Kilome-
ter Array (SKA) Science Data Processor (SDP) project [19].
The COMPSs group is collaborating with the BSC Life Sci-
ences department to develop a transnational infrastructure for
plant genomic science [20], in which the COMPSs framework
is used to implement computational services to provide trans-
parent access to applications and genomic data to thousands of
researchers. These services are now being integrated into the
technological infrastructure of the INB Spanish ELIXIR node.

In the EUBrazilCloudConnect [21] project COMPSs and
PMES are used to deploy applications on the federated cloud
infrastructure across Europe and Brazil. A relevant output of
the adoption of COMPSs in this context is development of
a new cardiovascular simulation service that allows a combi-
nation of low-definition parametric studies automatically pro-
cessed in the cloud and a single high-resolution instance of
the same COMPSs application in a HPC cluster. In the AS-
CETiC project [22] the COMPSs programming model is be-
ing extended so that it can be integrated in the framework, with
identified energy efficiency parameters and metrics for Cloud
services.

Between January 2015 and September 2015, the COMPSs
binary packages in the BSC repository, which supports multiple
Linux distributions, were downloaded more than 100 times. The
same packages are also available through the EGI Marketplace,
together with the customized virtual appliances that are
deployed at the sites of the production infrastructure.

5. Related work

Related work includes (a) programming models for
computing-intensive workloads, (b) workflow managers and
(c) programming models for big data. The first group, com-
prising programming models for compute-intensive work-
loads includes frameworks for programming and execution of
high-throughput applications, such as Ibis [23]. Unlike
COMPSs, porting an application to Ibis requires the user has to
explicitly implement an API corresponding to the specific pat-
tern and then compile the code using specific scripts. Swift [24]
is a scripting language oriented to scientific computing, which
can automatically parallelize the execution of scripts and dis-
tribute tasks to various resources, exploiting implicit paral-
lelism in a similar way to COMPSs. Unlike COMPSs, cloud
deployment of a Swift application requires virtual machines to
be manually provisioned before execution, and no elasticity fea-
tures are provided. In the second group, comprising workflow
managers, Taverna is a workflow language and computational
model designed to support the automation of complex, service-
based and data-intensive processes. It automatically detects
tasks that are free of data-dependences, and it executes them in
parallel. Deployment of cloud resources is delegated to the user,
and no elasticity is provided. Pegasus [25] is another work-
flow manager that automatically maps high-level workflow de-
scriptions, provided as XML files, onto distributed resources as
clouds. Execution in the cloud is not straight-forward using Pe-
gasus, because the user is forced to manually pre-deploy and
configure several nodes as Condor workers. COMPSs, instead,
automatically spawns the applications on dynamically-created
virtual machines. In contrast to these approaches, the workflow
of a COMPSs application (the dependency graph) is not defined
graphically, but dynamically created as the main program runs,
so that the programmer requires no knowledge of multithread-
ing, parallel and distributed programming or service invocation.
The last group of related work, comprising programming mod-
els for big data, includes models and frameworks related to
the processing and generation of large data sets. The MapRe-
duce programming model, together with frameworks based on
Hadoop [26], are widely used and implemented. These frame-
works provide good performance on cloud architectures, above
all for data analytics applications on large data collections. Re-
garding the expressiveness of the models, COMPSs is more
flexible than MapReduce because its applications can generate
any arbitrary task graph.

6. Conclusions

COMPSs is a framework for the development, deployment
and execution of parallel applications, business and scientific
workflows and compositions of services, mixing services and
code on distributed infrastructures. COMPSs provides users
with a simple sequential programming model that does not re-
quire the use of APIs to modify the original user applications
and it enables the execution of the same code on different back-



36 R.M. Badia et al. / SoftwareX 3–4 (2015) 32–36
ends. The COMPSs runtime is designed to provide interoper-
ability with different offerings through the implementation of
connectors, using standards as much as possible, enabling the
developed services to run on hybrid deployments.

COMPSs is part of the BSC Computer Science department’s
research activities on programming models for novel architec-
tures and distributed platforms, and it is constantly being devel-
oped and extended through the analysis of the requirements of
scientific communities.

The COMPSs software is open source and distributed under
the Apache 2 License.

Acknowledgments

This work has been supported by the following institutions:
the Spanish Government with grant SEV-2011-00067 of the
Severo Ochoa Program and contract Computacion de Altas
Prestaciones VI (TIN2012-34557); by the SGR programme
(2014-SGR-1051) of the Catalan Government; by the project
The Human Brain Project, funded by the European Commis-
sion under contract 604102; by the ASCETiC project funded
by the European Commission under contract 610874; by the
EUBrazilCloudConnect project funded by the European Com-
mission under contract 614048; and by the Intel-BSC Exascale
Lab collaboration.

References

[1] Lordan F, Tejedor EE, Ejarque J, Rafanell R, Álvarez J, Marozzo F,
Lezzi D, Sirvent R, Talia D, Badia RM. ServiceSs: An interoperable
programming framework for the cloud. J Grid Comput 2014;12(1):67–91.

[2] Tejedor E, Ejarque J, Lordan F, Rafanell R, Álvarez J, Lezzi D, et al. A
Cloud-unaware programming model for easy development of composite
services. In: Proceedings of the 3rd IEEE international conference on
cloud computing technology and science, CloudCom’11. 2011.

[3] Tejedor E, Becerra Y, Alomar G, Queralt A, Badia RM, Torres J, et al.
PyCOMPSs: Parallel computational workflows in Python. Int J High
Perform Comput Appl 2015 [in press]. Published online before print
August 19, 2015, http://dx.doi.org/10.1177/1094342015594678.

[4] Lezzi D, Rafanell R, Carrión A, Espert IB, Hernández V, Badia RM. En-
abling e-science applications on the cloud with COMPSs. In: Proceedings
of the 2011 international conference on parallel processing, Euro-Par’11.
Heidelberg: Springer; 2012. p. 25–34.

[5] Giménez J, Labarta J, Pegenaute FX, Wen H-F, Klepacki D, Chung I-
H, et al. Guided performance analysis combining profile and trace tools.
In: Proceedings of the 2010 conference on parallel processing, Euro-Par
2010. Berlin, Heidelberg: Springer-Verlag; 2011. p. 513–21.

[6] Labarta J, Girona S, Pillet V, Cortes T, Gregoris L. DiP: A
parallel program development environment. In: Bouge L, Fraigniaud P,
Mignotte A, Robert Y, editors. Euro-Par’96 parallel processing. Lecture
notes in computer science, vol. 1124. Berlin, Heidelberg: Springer; 1996.
p. 665–74. http://dx.doi.org/10.1007/BFb0024763.
[7] Denker M, Wiebelt B, Fliegner D, Diesmann M, Morrison A. Practically
trivial parallel data processing in a neuroscience laboratory. In: Grn S,
Rotter S, editors. Analysis of parallel spike trains. Springer series in
computational neuroscience, vol. 7. US: Springer; 2010. p. 413–36.

[8] Severo Ochoa Center of Excellence. http://www.bsc.es/en/severo-
ochoa/home.

[9] GWImp-COMPSs: An Integrated Framework for Large-scaleGenome-
wide Imputation and Association Testing. http://www.bsc.es/sites/default/
files/public/u242/ds2105-boav12.pdf.

[10] Human Brain Project. https://www.humanbrainproject.eu/es/discover/the-
project/overview.

[11] Lezzi D, Rafanell R, Lordan F, Tejedor E, Badia RM, COMPSs in the
VENUS-C Platform: enabling e-Science applications on the Cloud. In:
Proceedings of 4th iberian grid infrastructure conference. 2011. p. 73–84.

[12] Ferrer A, et al. OPTIMIS: A holistic approach to cloud ser-
vice provisioning. Future Gener Comput Syst 2012;28(1):66–77.
http://dx.doi.org/10.1016/j.future.2011.05.022. January 2012.

[13] Amaral R, Badia RM, Blanquer I, Braga-Neto R, Candela L, Castelli D,
et al. Supporting biodiversity studies with the EUBrazilOpenBio
Hybrid Data Infrastructure. Concu Comput: Practice Exp 2014;
http://dx.doi.org/10.1002/cpe.3238.

[14] Lezzi D, Lordan F, Rafanell R, Badia RM, Execution of scientific
workflows on federated multi-cloud infrastructures. In: Euro-Par 2013:
Parallel processing workshops lecture notes in computer science, vol.
8374; 2014. p. 136–145.

[15] Lezzi D, Rafanell R, Torser E, De Giovanni R, Blanquer I, Badia
RM, Programming ecological niche modeling workflows in the
cloud. In: Proceedings of the 27th IEEE international conference on
advanced information networking and applications (AINA-2013). 2013.
http://dx.doi.org/10.1109/WAINA.2013.6.

[16] EGI Biodiversity use case.
https://wiki.egi.eu/wiki/FedCloudOPENMODELLER.

[17] Sanchez Exposito S, Martin P, Ruiz JE, Verdes-Montenegro L, Garrido J,
Pardell RS, et al. Web services as building blocks for science gateways
in astrophysics. In: Science gateways (IWSG), 2015 7th International
workshop on, vol., no., p. 80–84, 3–5 June; 2015. http://dx.doi.org/10.
1109/IWSG.2015.7.

[18] EGI Radio Astronomy use case. https://wiki.egi.eu/wiki/FedCloudLOFAR.
[19] Science Data Processor in the SKA project. https://www.skatelescope.org/

sdp/.
[20] transPLANT project. http://www.transplantdb.eu/project.
[21] EUBrazil Cloud Connect project. http://www.eubrazilcloudconnect.eu.
[22] K. Djemame, D. Armstrong, R. Kavanagh, A.J. Ferrer, D.G. Perez, D.

Antona, et al. Energy efficiency embedded service lifecycle: Towards
an energy efficient cloud computing architecture. In: CEUR Workshop
Proceedings. vol. 1203; 2014. p. 1–6. CEUR Workshop Proceedings.

[23] Bal HE, Maassen J, van Nieuwpoort RV, Drost N, Kemp R, van Kessel T,
et al. Real-world distributed computer with ibis. IEEE Computer 2010;
23(8):54–62.

[24] Wilde M, Hategan M, Wozniak JM, Clifford B, Katz DS, Foster I. Swift:
A language for distributed parallel scripting. Parallel Comput 2011;24(9):
633–52.

[25] Deelman E, Vahi K, Juve G, Rynge M, Callaghan S, Maech-
ling PJ, et al. Pegasus, a workflow management system for sci-
ence automation. Future Gener Comput Syst 2015;46C(May):17–35.
http://dx.doi.org/10.1016/j.future.2014.10.008.

[26] Borthakur D. The hadoop distributed file system: Architecture and design.
The Apache Software Foundation; 2007.

http://refhub.elsevier.com/S2352-7110(15)00015-1/sbref1
http://dx.doi.org/10.1177/1094342015594678
http://refhub.elsevier.com/S2352-7110(15)00015-1/sbref4
http://refhub.elsevier.com/S2352-7110(15)00015-1/sbref5
http://dx.doi.org/10.1007/BFb0024763
http://refhub.elsevier.com/S2352-7110(15)00015-1/sbref7
http://www.bsc.es/en/severo-ochoa/home
http://www.bsc.es/en/severo-ochoa/home
http://www.bsc.es/en/severo-ochoa/home
http://www.bsc.es/sites/default/files/public/u242/ds2105-boav12.pdf
http://www.bsc.es/sites/default/files/public/u242/ds2105-boav12.pdf
http://www.bsc.es/sites/default/files/public/u242/ds2105-boav12.pdf
http://www.bsc.es/sites/default/files/public/u242/ds2105-boav12.pdf
http://www.bsc.es/sites/default/files/public/u242/ds2105-boav12.pdf
http://www.bsc.es/sites/default/files/public/u242/ds2105-boav12.pdf
http://www.bsc.es/sites/default/files/public/u242/ds2105-boav12.pdf
http://www.bsc.es/sites/default/files/public/u242/ds2105-boav12.pdf
http://www.bsc.es/sites/default/files/public/u242/ds2105-boav12.pdf
http://www.bsc.es/sites/default/files/public/u242/ds2105-boav12.pdf
http://www.bsc.es/sites/default/files/public/u242/ds2105-boav12.pdf
https://www.humanbrainproject.eu/es/discover/the-project/overview
https://www.humanbrainproject.eu/es/discover/the-project/overview
https://www.humanbrainproject.eu/es/discover/the-project/overview
http://dx.doi.org/10.1016/j.future.2011.05.022
http://dx.doi.org/10.1002/cpe.3238
http://dx.doi.org/10.1109/WAINA.2013.6
https://wiki.egi.eu/wiki/FedCloudOPENMODELLER
http://dx.doi.org/10.1109/IWSG.2015.7
http://dx.doi.org/10.1109/IWSG.2015.7
http://dx.doi.org/10.1109/IWSG.2015.7
http://dx.doi.org/10.1109/IWSG.2015.7
http://dx.doi.org/10.1109/IWSG.2015.7
http://dx.doi.org/10.1109/IWSG.2015.7
http://dx.doi.org/10.1109/IWSG.2015.7
http://dx.doi.org/10.1109/IWSG.2015.7
http://dx.doi.org/10.1109/IWSG.2015.7
https://wiki.egi.eu/wiki/FedCloudLOFAR
https://www.skatelescope.org/sdp/
https://www.skatelescope.org/sdp/
https://www.skatelescope.org/sdp/
https://www.skatelescope.org/sdp/
https://www.skatelescope.org/sdp/
http://www.transplantdb.eu/project
http://www.eubrazilcloudconnect.eu
http://refhub.elsevier.com/S2352-7110(15)00015-1/sbref23
http://refhub.elsevier.com/S2352-7110(15)00015-1/sbref24
http://dx.doi.org/10.1016/j.future.2014.10.008
http://refhub.elsevier.com/S2352-7110(15)00015-1/sbref26

	COMP Superscalar, an interoperable programming framework
	Motivation and significance
	Software description
	Illustrative examples
	Impact
	Related work
	Conclusions
	Acknowledgments
	References


