Exact Consensus Controllability of Multi-agent Linear Systems

M. ISABEL GARCÍA-PLANAS
Universitat Politècnica de Catalunya
Departament de Matèmatiques
Minería 1, Esc. C, 1-3, 08038 Barcelona
SPAIN
maria.isabel.garcia@upc.edu

Abstract

In this paper we study the exact controllability of multi-agent linear systems, in which all agents have an identical linear dynamic mode that can be in any order.

Key-Words: Multi-agent systems, consensus, controllability, exact consensus controllability.

1 Introduction

In the last years, the study of dynamic control multiagents systems have attracted considerable interest, because they arise in a great number of engineering situations as for example in distributed control and coordination of networks consisting of multiple autonomous agents. There are many publications as for example ([4], [10], [12], [14]). It is due to the multiagents appear in different fields as for example in consensus problem of communication networks ([10]), or formation control of mobile robots ([2]).

The consensus problem has been studied under different points of view, for example Jinhuan Wang, Daizhan Cheng and Xiaoming Hu in [12], analyze the case of multiagent systems in which all agents have an identical stable linear dynamics system, M.I. GarcíaPlanas in [4], generalize this result to the case where the dynamic of the agents are controllable.

Controllability is a fundamental topic in dynamic systems and it is studied under different approaches (see [1],[3],[7], for example). Given a linear system $\dot{x}=A x$, there are many possible control matrices B making the system $\dot{x}=A x+B u$ controllable. The goal is to find the set of all possible matrices B, having the minimum number of columns corresponding to the minimum number $n_{D}(A)$ of independent controllers required to control the whole network. This minimum number is called exact controllability, that in a more formal manner is defined as follows.

Definition 1 Let A be a matrix. The exact controllability $n_{D}(A)$ is the minimum of the rank of all possible matrices B making the system $\dot{x}=A x+B u$ controllable.

$$
\begin{aligned}
& n_{D}(A)= \\
& \min \left\{\operatorname{rank} B, \forall B \in M_{n \times i} 1 \leq i \leq n \mid\right. \\
& \quad(A, B) \text { controllable }\} .
\end{aligned}
$$

In this paper, we investigate the exact controllability of a class of multiagent systems consisting of k agents with dynamics

$$
\begin{aligned}
\dot{x}^{1} & =A x^{1}+B u^{1} \\
\vdots & \\
\dot{x}^{k} & =A x^{k}+B u^{k}
\end{aligned}
$$

where $A \in M_{n}(\mathbb{C})$, and B an unknown matrix having n rows and an indeterminate number $1 \leq \ell \leq n$ of columns.

For this study, we need to introduce some basic concepts on Graph theory and matritial algebra.

We consider a graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ of order k with the set of vertices $\mathcal{V}=\{1, \ldots, k\}$ and the set of edges $\mathcal{E}=\{(i, j) \mid i, j \in \mathcal{V}\} \subset \mathcal{V} \times \mathcal{V}$.

Given an edge $(i, j) i$ is called the parent node and j is called the child node and j is in the neighbor of i, concretely we define the neighbor of i and we denote it by \mathcal{N}_{i} to the set $\mathcal{N}_{i}=\{j \in \mathcal{V} \mid(i, j) \in \mathcal{E}\}$.

The graph is called undirected if verifies that $(i, j) \in \mathcal{E}$ if and only if $(j, i) \in \mathcal{E}$. The graph is called connected if there exists a path between any two vertices, otherwise is called disconnected.

Associated to the graph we consider a matrix $G=$ $\left(g_{i j}\right)$ called (unweighted) adjacency matrix defined as follows $g_{i i}=0, g_{i j}=1$ if $(i, j) \in \mathcal{E}$, and $g_{i j}=0$ otherwise.

In a more general case we can consider that a weighted adjacency matrix is $G=\left(g_{i j}\right)$ with $g_{i i}=0$, $g_{i j}>0$ if $(i, j) \in \mathcal{E}$, and $g_{i j}=0$ otherwise).

The Laplacian matrix of the graph is

$$
\mathcal{L}=\left(l_{i j}\right)= \begin{cases}\left|\mathcal{N}_{i}\right| & \text { if } i=j \\ -1 & \text { if } j \in \mathcal{N}_{i} \\ 0 & \text { otherwise }\end{cases}
$$

Remark 2 i) If the graph is undirected then the
matrix \mathcal{L} is symmetric, then there exist an orthogonal matrix P such that $P \mathcal{L} P^{t}=\mathcal{D}$.
ii) If the graph is undirected then 0 is an eigenvalue of \mathcal{L} and $\mathbf{1}_{k}=(1, \ldots, 1)^{t}$ is the associated eigenvector.
iii) If the graph is undirected and connected the eigenvalue 0 is simple.

For more details about graph theory see (D. West, 2007).

With respcet Kronecker product, remember that $A=\left(a_{i j}\right) \in M_{n \times m}(\mathbb{C})$ and $B=\left(b_{i j}\right) \in M_{p \times q}(\mathbb{C})$ the Kronecker product is defined as follows.

Definition 3 Let $A=\left(a_{j}^{i}\right) \in M_{n \times m}(\mathbb{C})$ and $B \in$ $M_{p \times q}(\mathbb{C})$ be two matrices, the Kronecker product of A and B, write $A \otimes B$, is the matrix
$A \otimes B=\left(\begin{array}{cccc}a_{1}^{1} B & a_{2}^{1} B & \ldots & a_{m}^{1} B \\ a_{1}^{2} B & a_{2}^{2} B & \ldots & a_{m}^{2} B \\ \vdots & \vdots & & \vdots \\ a_{1}^{n} B & a_{2}^{n} B & \ldots & a_{m}^{n} B\end{array}\right) \in M_{n p \times m q}(\mathbb{C})$
Among the properties that verifies the product of Kronecker we will make use of the following

1) $(A+B) \otimes C=(A \otimes C)+(B \otimes C)$
2) $A \otimes(B+C)=(A \otimes B)+(A \otimes C)$
3) $(A \otimes B) \otimes C=A \otimes(B \otimes C)$
4) If $A \in G l(n ; \mathbb{C})$ and $B \in G l(p ; \mathbb{C}))$, then $A \otimes$ $B \in G l(n p ; \mathbb{C}))$ and $(A \otimes B)^{-1}=A^{-1} \otimes B^{-1}$
5) If the products $A C$ and $B D$ are possible, then $(A \otimes B)(C \otimes D)=(A C) \otimes(B D)$

See [9] for more information and properties.
Given a square matrix $A \in M_{n}(\mathbb{C})$, it can be reduced to a canonical reduced form (Jordan form):

$$
\begin{gather*}
J=\left(\begin{array}{ccc}
J\left(\lambda_{1}\right) & & \\
& \ddots & \\
& & J\left(\lambda_{r}\right)
\end{array}\right), J\left(\lambda_{i}\right)=\left(\begin{array}{llll}
J_{1}\left(\lambda_{i}\right) & & \\
& \ddots & \\
& & & J_{n_{i}}\left(\lambda_{i}\right)
\end{array}\right), \\
 \tag{1}\\
J_{j}\left(\lambda_{i}\right)=\left(\begin{array}{ccccc}
\lambda_{i} & \lambda_{i} & & \\
& \ddots & \ddots & & \\
& & & 1 & \lambda_{i}
\end{array}\right) .
\end{gather*}
$$

See [5] for more information and properties.

2 Consensus

The consensus problem can be introduced as a collection of processes such that each process starts with an initial value, where each one is supposed to output the same value and there is a validity condition that relates outputs to inputs. It is a canonical problem that appears in the coordination of multi-agent systems. The objective is that Given initial values (scalar or vector) of agents, establish conditions under which through local interactions and computations, agents asymptotically agree upon a common value, that is to say: to reach a consensus.

The dynamic of each agent defining the system considered, is given by the following manner.

$$
\begin{align*}
\dot{x}^{1} & =A x^{1}+B u^{1} \\
\vdots & \tag{2}\\
\dot{x}^{k} & =A x^{k}+B u^{k}
\end{align*}
$$

$x^{i} \in \mathbb{R}^{n}, u^{i} \in \mathbb{R}^{\ell}, 1 \leq i \leq k$. Where matrices $A \in M_{n}(\mathbb{R})$ and $B \in M_{n \times \ell}(\mathbb{R}), 1 \leq \ell \leq n$.

The communication topology among agents is defined by means the undirected graph \mathcal{G} with
i) Vertex set: $\mathcal{V}=\{1, \ldots, k\}$
ii) Edge set: $\mathcal{E}=\{(i, j) \mid i, j \in \mathcal{V}\} \subset \mathcal{V} \times \mathcal{V}$.
an in a more specific form, we have the following definition.

Definition 4 Consider the system 2. We say that the consensus is achieved using local information if there exists a state feedback

$$
u^{i}=K_{i} \sum_{j \in \mathcal{N}_{i}}\left(x^{i}-x^{j}\right), 1 \leq i \leq k
$$

such that

$$
\lim _{t \rightarrow \infty}\left\|x^{i}-x^{j}\right\|=0,1 \leq i, j \leq k
$$

$$
z^{i}=\sum_{j \in \mathcal{N}_{i}}\left(x^{i}-x^{j}\right), 1 \leq i \leq k
$$

$$
\dot{\mathcal{X}}=\left(I_{k} \otimes A\right) \mathcal{X}+\left(I_{k} \otimes B\right) \mathcal{U}
$$

$$
\mathcal{Z}=(\mathcal{L} \otimes I) \mathcal{X}
$$

$$
\mathcal{U}=\left(I_{k} \otimes K\right) \mathcal{Z}
$$

Then, and taking into account that

$$
\begin{aligned}
& \left(I_{k} \otimes B\right)\left(I_{k} \otimes K\right)\left(\mathcal{L} \otimes I_{n}\right) \mathcal{X}= \\
& (\mathcal{L} \otimes B K) \mathcal{X}=(\mathcal{L} \otimes B)\left(I_{k} \otimes K\right) \mathcal{X}
\end{aligned}
$$

The system is equivalent to

$$
\begin{align*}
& \dot{\mathcal{X}}=\left(I_{k} \otimes A\right) \mathcal{X}+(\mathcal{L} \otimes B) \overline{\mathcal{U}} \\
& \overline{\mathcal{U}}=\left(I_{k} \otimes K\right) \mathcal{X} \tag{3}
\end{align*}
$$

3 Exact Consensus Controllability

We are interested in study the exact controllability of the obtained system 3. In our particular setup
Definition 5 Let A be a matrix. The exact controllability $n_{D}\left(I_{k} \otimes A\right)$ is the minimum of the rank of all possible matrices B making the system 3 controllable.

$$
\begin{aligned}
& n_{D}\left(I_{k} \otimes A\right)= \\
& \min \left\{\operatorname{rank} B, \forall B \in M_{n \times i} 1 \leq i \leq n \mid\right. \\
& \left.\qquad\left(I_{k} \otimes A, \mathcal{L} \otimes B\right) \text { controllable }\right\}
\end{aligned}
$$

The controllability character can be analyzed using the Hautus criteria
Proposition 6 The system is controllable if and only if

$$
\operatorname{rank}\left(s I_{n k}-\left(I_{k} \otimes A\right) \quad \mathcal{L} \otimes B\right)=k n
$$

The controllability condition depends directly on the structure of the matrix L.
Proposition 7 Let J be the Jordan reduced of the matrix \mathcal{L} and P such that $\mathcal{L}=P^{-1} J P$. Then, the system 3 is controllable if and only if

$$
\operatorname{rank}\left(s I_{n k}-\left(I_{k} \otimes A\right) \quad J \otimes B\right)=k n
$$

Proof. Suppose that there exist S such that $P^{-1} J P=$ \mathcal{L} and

$$
\begin{aligned}
& \operatorname{rank}\left(s I_{k n}-\left(I_{k} \otimes A\right) \quad \mathcal{L} \otimes B\right)= \\
& \left.\operatorname{rank}\left(P^{-1} \otimes I_{n}\right)\left(s I_{k} \otimes I_{n}\right)-\left(I_{k} \otimes A\right) \quad J \otimes B\right)
\end{aligned}
$$

$$
\operatorname{rank}\left(s I_{k n}-\left(I_{k} \otimes A\right) \quad J \otimes B\right)
$$

Corollary 8 Suppose that the matrix \mathcal{L} can be reduced to the Jordan form (1), with non-zero eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$. Then, the system 3 is controllable if and only if each agent is controllable.

Proof. Let $\lambda_{i} \neq 0, i=1, \ldots r$ be the eigenvalues of \mathcal{L}.
with $k_{1}+\ldots+k_{r}=k, k_{i_{1}}+\ldots k_{i_{n_{i}}}=k_{i}$.

Corollary 9 A necessary condition for controllability of the system 3 is that the matrix \mathcal{L} has full rank.

Example We consider 3 identical agents with the following dynamics of each agent

$$
\begin{align*}
\dot{x}^{1} & =A x^{1}+B u^{1} \\
\dot{x}^{2} & =A x^{2}+B u^{2} \tag{4}\\
\dot{x}^{3} & =A x^{3}+B u^{3}
\end{align*}
$$

with $A=\left(\begin{array}{cc}0 & 1 \\ 0 & 0\end{array}\right)$ and $B \in M_{2 \times \ell}(\mathbb{C}), 1 \leq 2$.
The communication topology is defined by the undirected graph $(\mathcal{V}, \mathcal{E})$:

$$
\begin{aligned}
& \mathcal{V}=\{1,2,3\} \\
& \mathcal{E}=\{(i, j) \mid i, j \in \mathcal{V}\}=\{(1,2),(1,3)\} \subset \mathcal{V} \times \mathcal{V}
\end{aligned}
$$ and the adjacency matrix:

$$
G=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

The neighbors of the parent nodes are $\mathcal{N}_{1}=$ $\{2,3\}, \mathcal{N}_{2}=\{1\}, \mathcal{N}_{3}=\{1\}$.

The Laplacian matrix of the graph is

$$
\mathcal{L}=\left(\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right)
$$

$$
\left(\begin{array}{ll}
P \otimes I_{n} & \\
& P \otimes I_{n}
\end{array}\right)=
$$

with eigenvalues $\lambda_{1}=0, \lambda_{2}=1, \lambda_{3}=3$.

In fact, for all matrix $B \in M_{2 \times \ell}(\mathbb{C})$ for all $\ell \geq 0$

$$
\begin{aligned}
& \operatorname{rank}\left(s I_{6}-(I \otimes A) \quad \mathcal{L} \otimes B\right)= \\
& \left\{\begin{array}{l}
6 \text { for all } s \neq 0 \\
5 \text { for } s=0
\end{array}\right.
\end{aligned}
$$

If the matrix \mathcal{L} has full rank, then the number of columns for exact controllability of matrix $I_{k} \otimes A$ depends on the multiplicity of the eigenvalues of the matrix A and we have the following result.

$$
\begin{aligned}
& \begin{aligned}
& \operatorname{rank}\left(s I_{6}-(I \otimes A)\right. \\
&\operatorname{rank} \otimes B)= \\
&\left(\begin{array}{cccccccccccc}
s & -1 & 0 & 0 & 0 & 0 & 2 a & 2 c & -a & -c & -a & -c \\
0 & s & 0 & 0 & 0 & 0 & 2 b & 2 d & -b & -d & -b & -d \\
0 & 0 & s & -1 & 0 & 0 & -a & -c & a & c & 0 & 0 \\
0 & 0 & 0 & s & 0 & 0 & -b & -d & b & d & 0 & 0 \\
0 & 0 & 0 & 0 & s & -1 & -a & -c & 0 & 0 & a & c \\
0 & 0 & 0 & 0 & 0 & s & -b & -d & 0 & 0 & b & d
\end{array}\right)
\end{aligned} \\
& =\left\{\begin{array}{l}
6 \text { for all } s \neq 0 \\
5 \text { for } s=0
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{rank}\left(s\left(I_{k_{i j}} \otimes I_{n}\right)-\left(I_{k_{i j}} \otimes A\right) \quad J_{j}\left(\lambda_{i}\right) \otimes B\right)=
\end{aligned}
$$

$$
\begin{aligned}
& k \cdot \operatorname{rank}\left(s I_{n}-A \quad B\right)
\end{aligned}
$$

Proposition 10 Let \mathcal{L} be the Laplacian matrix of a graph having full rank. Then, the exact controllability $n_{D}\left(I_{k} \otimes A\right)$ for the system $\dot{\mathcal{X}}=\left(I_{k} \otimes A\right) \mathrm{X}+(\mathcal{L} \otimes B) \overline{\mathcal{U}}$ coincides with the exact controllability $n_{D}(A)$ for the system $\dot{x}=A x+B u$.

Example We consider 3 identical agents with the following dynamics of each agent

$$
\begin{align*}
\dot{x}^{1} & =A x^{1}+B u^{1} \\
\dot{x}^{2} & =A x^{2}+B u^{2} \tag{5}\\
\dot{x}^{3} & =A x^{3}+B u^{3}
\end{align*}
$$

with $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and $B \in M_{2 \times \ell}(\mathbb{C}), 1 \leq 2$.
The communication topology is defined by the undirected graph $(\mathcal{V}, \mathcal{E})$:

$$
\mathcal{V}=\{1,2,3\}
$$

$\mathcal{E}=\{(i, j) \quad \mid \quad i, j \quad \in \quad \mathcal{V}\}=$ $\{(1,1),(1,2),(2,1),(2,3),(3,1)\} \subset \mathcal{V} \times \mathcal{V}$
and the adjacency matrix:

$$
G=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

The neighbors of the parent nodes are $\mathcal{N}_{1}=$ $\{1,2\}, \mathcal{N}_{2}=\{1,3\}, \mathcal{N}_{3}=\{1\}$.

The Laplacian matrix of the graph is

$$
\mathcal{L}=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
-1 & 0 & 1
\end{array}\right)
$$

with eigenvalues $\lambda_{1}=0.3820, \lambda_{2}=2, \lambda_{3}=2.6180$.
$\operatorname{rank}\left(\begin{array}{ccccccccc}s & -1 & 0 & 0 & 0 & 0 & 2 a & -a & 0 \\ 0 & s & 0 & 0 & 0 & 0 & 2 b & -b & 0 \\ 0 & 0 & s & -1 & 0 & 0 & -a & 2 a & -a \\ 0 & 0 & 0 & s & 0 & 0 & -b & 2 b & -b \\ 0 & 0 & 0 & 0 & s & -1 & -a & 0 & a \\ 0 & 0 & 0 & 0 & 0 & s & -b & 0 & b\end{array}\right)$
6 for all s and $b \neq 0$.
Obviously the system $\dot{x}=A x+B u$ with $B=$ $\binom{a}{b}$ and $b \neq 0$.

4 Conclusions

In this paper, the exact controllability for multi-agent systems where all agents have an identical linear dynamic mode are analyzed.

References:

[1] C.T. Chen, "Introduction to Linear System Theory". Holt, Rinehart and Winston Inc, New York, (1970).
[2] A. Fax, R. Murray, Information flow and cooperative control of vehicle formations, IEEE Trans. Automat. Control. 49, (9), pp. 1453-1464, (2004).
[3] M.I. García-Planas, Sensivity and stability of singular systems under proportional and derivative feedback, Wseas Transactions on Mathematics, 8, (11), pp 635-644, (2009).
[4] M.I. García-Planas, Obtaining Consensus of Multi-agent Linear Dynamic Systems, Advances in Applied and Pure Mathematics, pp. 91-95, (2014)
[5] M.I. García-Planas, J.L. Domínguez, "Introducción a la teoría de matrices positivas. Aplicaciones". Ed. Iniciativa Digital Politècnica, Barcelona, 2013.
[6] M.I. García-Planas, M.D. Magret, Miniversal deformations of linear systems under the full group action. Systems and control letters, 35, pp. 279-286, (1998).
[7] M.I. García-Planas, S. Tarragona, A. Diaz, Controllability of time-invariant singular linear systems. From physics to control through an emergent view. pp. 112-117. World Scientific, 2010.
[8] A. Jadbabaie, J. Lin, A.S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Transaction on Automatic Control. 48 (6), pp. 943-948, (2007).
[9] P. Lancaster, M. Tismenetsky, "The Thoery of Matrices". Academic Press. San Diego (1985).
[10] R.O. Saber, R.M. Murray, Consensus Protocols for Networks of Dynamic Agents, Report.
[11] R.O. Saber, R.M. Murray, Consensus problems in networks of agents with switching topology and time-delays, IEEE Trans. Automat. Control. 49, (9), pp. 1520-1533, (2004).
[12] J. Wang, D. Cheng, X. Hu, Consensus of multiagent linear dynamics systems, Asian Journal of Control 10, (2), pp. 144-155, (2008).
[13] D. West "Introduction to Graph Theory" Prentice Hall (3rd Edition), (2007).
[14] G. Xie, L. Wang, Consensus control for a class of networks of dynamic agents: switching topology, Proc. 2006 Amer. Contro. Conf., pp. 13821387, (2007).
[15] Z.Z. Yuan, C. Zhao, W.X.Wang, Z.R. Di, Y.C. Lai, Exact controllability of multiplex networks, New Journal of Physics, 16, pp. 1-24, (2014).
[16] Z.Z. Yuan, C. Zhao, W.X.Wang, Z.R. Di, Y.C. Lai, Exact controllability of complex networks Nature Communications. 4, pp. 1-12, (2013).

