Exact Consensus Controllability of Multi-agent Linear Systems

M. ISABEL GARCÍA-PLANAS Universitat Politècnica de Catalunya Departament de Matèmatiques Minería 1, Esc. C, 1-3, 08038 Barcelona **SPAIN** maria.isabel.garcia@upc.edu

Abstract: In this paper we study the exact controllability of multi-agent linear systems, in which all agents have an identical linear dynamic mode that can be in any order.

Key-Words: Multi-agent systems, consensus, controllability, exact consensus controllability.

Introduction

In the last years, the study of dynamic control multiagents systems have attracted considerable interest, because they arise in a great number of engineering situations as for example in distributed control and coordination of networks consisting of multiple autonomous agents. There are many publications as for example ([4], [10], [12], [14]). It is due to the multiagents appear in different fields as for example in consensus problem of communication networks ([10]), or formation control of mobile robots ([2]).

The consensus problem has been studied under different points of view, for example Jinhuan Wang, Daizhan Cheng and Xiaoming Hu in [12], analyze the case of multiagent systems in which all agents have an identical stable linear dynamics system, M.I. García-Planas in [4], generalize this result to the case where the dynamic of the agents are controllable.

Controllability is a fundamental topic in dynamic systems and it is studied under different approaches (see [1],[3],[7], for example). Given a linear system $\dot{x} = Ax$, there are many possible control matrices B making the system $\dot{x} = Ax + Bu$ controllable. The goal is to find the set of all possible matrices B, having the minimum number of columns corresponding to the minimum number $n_D(A)$ of independent controllers required to control the whole network. This minimum number is called exact controllability, that in a more formal manner is defined as follows.

Definition 1 Let A be a matrix. The exact controllability $n_D(A)$ is the minimum of the rank of all possible matrices B making the system $\dot{x} = Ax + Bu$ controllable.

$$n_D(A) = \min \{ \operatorname{rank} B, \forall B \in M_{n \times i} \ 1 \le i \le n \mid (A, B) \text{ controllable} \}.$$

In this paper, we investigate the exact controllability of a class of multiagent systems consisting of k agents with dynamics

$$\dot{x}^1 = Ax^1 + Bu^1$$

$$\vdots$$

$$\dot{x}^k = Ax^k + Bu^k$$

where $A \in M_n(\mathbb{C})$, and B an unknown matrix having n rows and an indeterminate number $1 \leq \ell \leq n$ of columns.

For this study, we need to introduce some basic concepts on Graph theory and matritial algebra.

We consider a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ of order k with the set of vertices $\mathcal{V} = \{1, \dots, k\}$ and the set of edges $\mathcal{E} = \{(i,j) \mid i,j \in \mathcal{V}\} \subset \mathcal{V} \times \mathcal{V}.$

Given an edge (i, j) i is called the parent node and j is called the child node and j is in the neighbor of i, concretely we define the neighbor of i and we denote it by \mathcal{N}_i to the set $\mathcal{N}_i = \{j \in \mathcal{V} \mid (i, j) \in \mathcal{E}\}.$

The graph is called undirected if verifies that $(i,j) \in \mathcal{E}$ if and only if $(j,i) \in \mathcal{E}$. The graph is called connected if there exists a path between any two vertices, otherwise is called disconnected.

Associated to the graph we consider a matrix G = (g_{ij}) called (unweighted) adjacency matrix defined as follows $g_{ii} = 0$, $g_{ij} = 1$ if $(i, j) \in \mathcal{E}$, and $g_{ij} = 0$ otherwise.

In a more general case we can consider that a weighted adjacency matrix is $G = (g_{ij})$ with $g_{ii} = 0$, $g_{ij} > 0$ if $(i, j) \in \mathcal{E}$, and $g_{ij} = 0$ otherwise). The Laplacian matrix of the graph is

$$\mathcal{L} = (l_{ij}) = \begin{cases} |\mathcal{N}_i| & \text{if } i = j \\ -1 & \text{if } j \in \mathcal{N}_i \\ 0 & \text{otherwise} \end{cases}$$

Remark 2 i) If the graph is undirected then the

matrix \mathcal{L} is symmetric, then there exist an orthogonal matrix P such that $P\mathcal{L}P^t = \mathcal{D}$.

- ii) If the graph is undirected then 0 is an eigenvalue of \mathcal{L} and $\mathbf{1}_k = (1, \dots, 1)^t$ is the associated eigenvector.
- iii) If the graph is undirected and connected the eigenvalue 0 is simple.

For more details about graph theory see (D. West, 2007).

With respect Kronecker product, remember that $A=(a_{ij})\in M_{n\times m}(\mathbb{C})$ and $B=(b_{ij})\in M_{p\times q}(\mathbb{C})$ the Kronecker product is defined as follows.

Definition 3 Let $A = (a_j^i) \in M_{n \times m}(\mathbb{C})$ and $B \in M_{p \times q}(\mathbb{C})$ be two matrices, the Kronecker product of A and B, write $A \otimes B$, is the matrix

$$A \otimes B = \begin{pmatrix} a_1^1 B & a_2^1 B & \dots & a_m^1 B \\ a_1^2 B & a_2^2 B & \dots & a_m^2 B \\ \vdots & \vdots & & \vdots \\ a_1^n B & a_2^n B & \dots & a_m^n B \end{pmatrix} \in M_{np \times mq}(\mathbb{C})$$

Among the properties that verifies the product of Kronecker we will make use of the following

1)
$$(A+B) \otimes C = (A \otimes C) + (B \otimes C)$$

2)
$$A \otimes (B + C) = (A \otimes B) + (A \otimes C)$$

3)
$$(A \otimes B) \otimes C = A \otimes (B \otimes C)$$

- 4) If $A \in Gl(n;\mathbb{C})$ and $B \in Gl(p;\mathbb{C})$, then $A \otimes B \in Gl(np;\mathbb{C})$ and $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$
- 5) If the products AC and BD are possible, then $(A \otimes B)(C \otimes D) = (AC) \otimes (BD)$

See [9] for more information and properties. Given a square matrix $A \in M_n(\mathbb{C})$, it can be reduced to a canonical reduced form (Jordan form):

$$J = \begin{pmatrix} J(\lambda_1) & & & \\ & \ddots & & \\ & & J(\lambda_r) \end{pmatrix}, J(\lambda_i) = \begin{pmatrix} J_1(\lambda_i) & & & \\ & \ddots & & \\ & & J_{n_i}(\lambda_i) \end{pmatrix},$$
$$J_j(\lambda_i) = \begin{pmatrix} \lambda_i & & & \\ 1 & \lambda_i & & \\ & \ddots & \ddots & \\ & & 1 & \lambda_i \end{pmatrix}. \tag{1}$$

See [5] for more information and properties.

2 Consensus

The consensus problem can be introduced as a collection of processes such that each process starts with an initial value, where each one is supposed to output the same value and there is a validity condition that relates outputs to inputs. It is a canonical problem that appears in the coordination of multi-agent systems. The objective is that Given initial values (scalar or vector) of agents, establish conditions under which through local interactions and computations, agents asymptotically agree upon a common value, that is to say: to reach a consensus.

The dynamic of each agent defining the system considered, is given by the following manner.

$$\dot{x}^1 = Ax^1 + Bu^1
\vdots
\dot{x}^k = Ax^k + Bu^k$$
(2)

 $x^i \in \mathbb{R}^n$, $u^i \in \mathbb{R}^\ell$, $1 \le i \le k$. Where matrices $A \in M_n(\mathbb{R})$ and $B \in M_{n \times \ell}(\mathbb{R})$, $1 \le \ell \le n$.

The communication topology among agents is defined by means the undirected graph $\mathcal G$ with

- i) Vertex set: $V = \{1, \dots, k\}$
- ii) Edge set: $\mathcal{E} = \{(i, j) \mid i, j \in \mathcal{V}\} \subset \mathcal{V} \times \mathcal{V}$.

an in a more specific form, we have the following definition.

Definition 4 Consider the system 2. We say that the consensus is achieved using local information if there exists a state feedback

$$u^i = K_i \sum_{j \in \mathcal{N}_i} (x^i - x^j), \ 1 \le i \le k$$

such that

$$\lim_{t \to \infty} ||x^i - x^j|| = 0, \ 1 \le i, j \le k.$$

$$z^{i} = \sum_{j \in \mathcal{N}_{i}} (x^{i} - x^{j}), \ 1 \le i \le k.$$

$$\dot{\mathcal{X}} = (I_k \otimes A)\mathcal{X} + (I_k \otimes B)\mathcal{U}
\mathcal{Z} = (\mathcal{L} \otimes I)\mathcal{X}
\mathcal{U} = (I_k \otimes K)\mathcal{Z}$$

Then, and taking into account that

$$(I_k \otimes B)(I_k \otimes K)(\mathcal{L} \otimes I_n)\mathcal{X} = (\mathcal{L} \otimes BK)\mathcal{X} = (\mathcal{L} \otimes B)(I_k \otimes K)\mathcal{X}$$

The system is equivalent to

$$\dot{\mathcal{X}} = (I_k \otimes A)\mathcal{X} + (\mathcal{L} \otimes B)\bar{\mathcal{U}}
\bar{\mathcal{U}} = (I_k \otimes K)\mathcal{X}$$
(3)

3 **Exact Consensus Controllability**

We are interested in study the exact controllability of the obtained system 3. In our particular setup

Definition 5 Let A be a matrix. The exact controllability $n_D(I_k \otimes A)$ is the minimum of the rank of all possible matrices B making the system 3 controllable.

$$n_D(I_k \otimes A) = \min \{ \operatorname{rank} B, \forall B \in M_{n \times i} \ 1 \leq i \leq n \mid (I_k \otimes A, \mathcal{L} \otimes B) \text{ controllable} \}.$$

The controllability character can be analyzed using the Hautus criteria

Proposition 6 The system is controllable if and only

$$\operatorname{rank} \left(sI_{nk} - (I_k \otimes A) \quad \mathcal{L} \otimes B \right) = kn$$

The controllability condition depends directly on the structure of the matrix L.

Proposition 7 Let J be the Jordan reduced of the matrix \mathcal{L} and P such that $\mathcal{L} = P^{-1}JP$. Then, the system 3 is controllable if and only if

$$\operatorname{rank} \left(sI_{nk} - (I_k \otimes A) \quad J \otimes B \right) = kn$$

Proof. Suppose that there exist S such that $P^{-1}JP =$ \mathcal{L} and

$$\begin{array}{l} \operatorname{rank} \, \left(s I_{kn} - \left(I_k \otimes A \right) \, \, \mathcal{L} \otimes B \right) = \\ \operatorname{rank} \left(P^{-1} \otimes I_n \right) \left(s I_k \otimes I_n \right) - \left(I_k \otimes A \right) \quad J \otimes B \right) \\ \left(\begin{smallmatrix} P \otimes I_n \\ & P \otimes I_n \end{smallmatrix} \right) = \\ \operatorname{rank} \, \left(s I_{kn} - \left(I_k \otimes A \right) \, \, J \otimes B \right) \\ \end{array}$$

Corollary 8 Suppose that the matrix \mathcal{L} can be reduced to the Jordan form (1), with non-zero eigenvalues $\lambda_1, \ldots, \lambda_r$. Then, the system 3 is controllable if and only if each agent is controllable.

Proof. Let $\lambda_i \neq 0$, $i = 1, \dots r$ be the eigenvalues of \mathcal{L} .

$$\operatorname{rank} \left(s(I_{k_{ij}} \otimes I_n) - (I_{k_{ij}} \otimes A) \quad J_j(\lambda_i) \otimes B \right) = \\ \operatorname{rank} \left(sI_{n-A} \quad SI_{n-A} \quad B \quad \lambda_i B \\ \vdots \quad \vdots \quad \vdots \quad \vdots \\ sI_{n-A} \quad B \quad \lambda_i B \right) = \\ \operatorname{rank} \left(sI_{n-A} \quad SI_{n-A} \quad B \\ \vdots \quad \vdots \quad \vdots \\ sI_{n-A} \quad B \right) = \\ \operatorname{rank} \left(sI_{n$$

with
$$k_1 + \ldots + k_r = k$$
, $k_{i_1} + \ldots k_{i_{n_r}} = k_i$.

Corollary 9 A necessary condition for controllability of the system 3 is that the matrix \mathcal{L} has full rank.

Example We consider 3 identical agents with the following dynamics of each agent

$$\dot{x}^{1} = Ax^{1} + Bu^{1}
\dot{x}^{2} = Ax^{2} + Bu^{2}
\dot{x}^{3} = Ax^{3} + Bu^{3}$$
(4)

П

with
$$A=\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right)$$
 and $B\in M_{2\times \ell}(\mathbb{C}),\, 1\leq 2.$

The communication topology is defined by the undirected graph $(\mathcal{V}, \mathcal{E})$:

$$\mathcal{V} = \{1,2,3\}$$

$$\mathcal{E} = \{(i,j) \mid i,j \in \mathcal{V}\} = \{(1,2),(1,3)\} \subset \mathcal{V} \times \mathcal{V}$$
 and the adjacency matrix:

$$G = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}\right)$$

 $G = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ The neighbors of the parent nodes are $\mathcal{N}_1 = 0$ $\{2,3\}, \mathcal{N}_2 = \{1\}, \mathcal{N}_3 = \{1\}.$

The Laplacian matrix of the graph is

$$\mathcal{L} = \left(\begin{array}{ccc} 2 & -1 & -1 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{array} \right)$$

with eigenvalues $\lambda_1 = 0$, $\lambda_2 = 1$, $\lambda_3 = 3$.

$$\begin{aligned} & \operatorname{rank} \; \left(sI_6 - (I \otimes A) \quad \mathcal{L} \otimes B \right) = \\ & \operatorname{rank} \; \begin{pmatrix} s & -1 & 0 & 0 & 0 & 0 & 2a & 2c & -a & -c & -a & -c \\ 0 & s & 0 & 0 & 0 & 0 & 2b & 2d & -b & -d & -b & -d \\ 0 & 0 & s & -1 & 0 & 0 & -a & -c & a & c & 0 & 0 \\ 0 & 0 & 0 & s & 0 & 0 & -b & -d & b & d & 0 & 0 \\ 0 & 0 & 0 & 0 & s & -1 & -a & -c & 0 & 0 & a & c \\ 0 & 0 & 0 & 0 & 0 & s & -b & -d & 0 & 0 & b & d \end{pmatrix} \\ & = \left\{ \begin{array}{c} 6 \text{ for all } s \neq 0 \\ 5 \text{ for } s = 0 \end{array} \right. \end{aligned}$$

In fact, for all matrix $B \in M_{2 \times \ell}(\mathbb{C})$ for all $\ell \geq 0$

rank
$$\left(sI_6 - (I \otimes A) \mid \mathcal{L} \otimes B\right) =$$

$$\begin{cases} 6 \text{ for all } s \neq 0 \\ 5 \text{ for } s = 0 \end{cases}$$

If the matrix $\mathcal L$ has full rank, then the number of columns for exact controllability of matrix $I_k \otimes A$ depends on the multiplicity of the eigenvalues of the matrix A and we have the following result.

Proposition 10 Let \mathcal{L} be the Laplacian matrix of a graph having full rank. Then, the exact controllability $n_D(I_k \otimes A)$ for the system $\dot{\mathcal{X}} = (I_k \otimes A)X + (\mathcal{L} \otimes B)\overline{\mathcal{U}}$ coincides with the exact controllability $n_D(A)$ for the system $\dot{x} = Ax + Bu$.

Example We consider 3 identical agents with the following dynamics of each agent

$$\dot{x}^{1} = Ax^{1} + Bu^{1}
\dot{x}^{2} = Ax^{2} + Bu^{2}
\dot{x}^{3} = Ax^{3} + Bu^{3}$$
(5)

with
$$A=\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 and $B\in M_{2 imes\ell}(\mathbb{C}),\, 1\leq 2.$

The communication topology is defined by the undirected graph $(\mathcal{V}, \mathcal{E})$:

$$G = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

The neighbors of the parent nodes are $\mathcal{N}_1 = \{1, 2\}, \mathcal{N}_2 = \{1, 3\}, \mathcal{N}_3 = \{1\}.$

The Laplacian matrix of the graph is

$$\mathcal{L} = \left(\begin{array}{ccc} 2 & -1 & 0 \\ -1 & 2 & -1 \\ -1 & 0 & 1 \end{array} \right)$$

with eigenvalues $\lambda_1 = 0.3820$, $\lambda_2 = 2$, $\lambda_3 = 2.6180$.

$$\operatorname{rank}\begin{pmatrix} s & -1 & 0 & 0 & 0 & 0 & 2a & -a & 0 \\ 0 & s & 0 & 0 & 0 & 0 & 2b & -b & 0 \\ 0 & 0 & s & -1 & 0 & 0 & -a & 2a & -a \\ 0 & 0 & 0 & s & 0 & 0 & -b & 2b & -b \\ 0 & 0 & 0 & 0 & s & -1 & -a & 0 & a \\ 0 & 0 & 0 & 0 & 0 & s & -b & 0 & b \end{pmatrix}$$
 6 for all s and $b \neq 0$.

Obviously the system $\dot{x} = Ax + Bu$ with $B = \begin{pmatrix} a \\ b \end{pmatrix}$ and $b \neq 0$.

4 Conclusions

In this paper, the exact controllability for multi-agent systems where all agents have an identical linear dynamic mode are analyzed. References:

- [1] C.T. Chen, "Introduction to Linear System Theory". Holt, Rinehart and Winston Inc, New York, (1970).
- [2] A. Fax, R. Murray, *Information flow and cooperative control of vehicle formations*, IEEE Trans. Automat. Control. **49**, (9), pp. 1453-1464, (2004).
- [3] M.I. García-Planas, Sensivity and stability of singular systems under proportional and derivative feedback, Wseas Transactions on Mathematics, **8**, (11), pp 635-644, (2009).
- [4] M.I. García-Planas, *Obtaining Consensus of Multi-agent Linear Dynamic Systems*, Advances in Applied and Pure Mathematics, pp. 91-95, (2014)
- [5] M.I. García-Planas, J.L. Domínguez, "Introducción a la teoría de matrices positivas. Aplicaciones". Ed. Iniciativa Digital Politècnica, Barcelona, 2013.
- [6] M.I. García-Planas, M.D. Magret, *Miniversal deformations of linear systems under the full group action*. Systems and control letters, **35**, pp. 279–286, (1998).
- [7] M.I. García-Planas, S. Tarragona, A. Diaz, *Controllability of time-invariant singular linear systems*. From physics to control through an emergent view. pp. 112 -117. World Scientific, 2010.
- [8] A. Jadbabaie, J. Lin, A.S. Morse, *Coordination of groups of mobile autonomous agents using nearest neighbor rules*, IEEE Transaction on Automatic Control. **48** (6), pp. 943-948, (2007).
- [9] P. Lancaster, M. Tismenetsky, "The Thoery of Matrices". Academic Press. San Diego (1985).
- [10] R.O. Saber, R.M. Murray, Consensus Protocols for Networks of Dynamic Agents, Report.
- [11] R.O. Saber, R.M. Murray, *Consensus problems* in networks of agents with switching topology and time-delays, IEEE Trans. Automat. Control. **49**, (9), pp. 1520-1533, (2004).
- [12] J. Wang, D. Cheng, X. Hu, *Consensus of multiagent linear dynamics systems*, Asian Journal of Control **10**, (2), pp. 144-155, (2008).
- [13] D. West "Introduction to Graph Theory" Prentice Hall (3rd Edition), (2007).
- [14] G. Xie, L. Wang, Consensus control for a class of networks of dynamic agents: switching topology, Proc. 2006 Amer. Contro. Conf., pp. 1382-1387, (2007).

- [15] Z.Z. Yuan, C. Zhao, W.X.Wang, Z.R. Di, Y.C. Lai, *Exact controllability of multiplex networks*, New Journal of Physics, **16**, pp. 1-24, (2014).
- [16] Z.Z. Yuan, C. Zhao, W.X.Wang, Z.R. Di, Y.C. Lai, *Exact controllability of complex networks* Nature Communications. **4**, pp. 1-12, (2013).