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9 ABSTRACT: To understand cellular processes at the
10 molecular level we need to improve our knowledge of
11 protein−protein interactions, from a structural, mechanistic,
12 and energetic point of view. Current theoretical studies and
13 computational docking simulations show that protein dynam-
14 ics plays a key role in protein association and support the need
15 for including protein flexibility in modeling protein inter-
16 actions. Assuming the conformational selection binding
17 mechanism, in which the unbound state can sample bound
18 conformers, one possible strategy to include flexibility in
19 docking predictions would be the use of conformational
20 ensembles originated from unbound protein structures. Here we present an exhaustive computational study about the use of
21 precomputed unbound ensembles in the context of protein docking, performed on a set of 124 cases of the Protein−Protein
22 Docking Benchmark 3.0. Conformational ensembles were generated by conformational optimization and refinement with
23 MODELER and by short molecular dynamics trajectories with AMBER. We identified those conformers providing optimal
24 binding and investigated the role of protein conformational heterogeneity in protein−protein recognition. Our results show that
25 a restricted conformational refinement can generate conformers with better binding properties and improve docking encounters
26 in medium-flexible cases. For more flexible cases, a more extended conformational sampling based on Normal Mode Analysis was
27 proven helpful. We found that successful conformers provide better energetic complementarity to the docking partners, which is
28 compatible with recent views of binding association. In addition to the mechanistic considerations, these findings could be
29 exploited for practical docking predictions of improved efficiency.

30 ■ INTRODUCTION

31 Proteins are key components in the cell and function through
32 intricate networks of interactions1 that are involved in virtually
33 all relevant biological processes, such as gene expression and
34 regulation, enzyme catalysis, immune response, or signal
35 transduction.2,3 Understanding such interactions at the
36 molecular level is essential to target them for therapeutic or
37 biotechnological purposes. X-ray crystallography and NMR
38 techniques have produced a wealth of structural data on
39 protein−protein complexes, which has largely extended our
40 knowledge on molecular recognition and protein association
41 mechanism and has fostered drug discovery. However, such
42 structural data covers only a tiny fraction of the estimated
43 number of protein−protein complexes formed in cell,4 and,
44 therefore, computational approaches that can complement such
45 experimental efforts are strongly needed. In recent years, a
46 variety of protein−protein docking methods have been
47 reported, based either on template modeling5−7 or on ab initio
48 algorithms. Geometry-based methods try to find the best
49 surface complementarity between interacting proteins, using
50 simplified structural models and approximate scoring functions.

51A popular strategy is to discretize the proteins into grids and
52use Fast Fourier Transform (FFT) algorithms8 to accelerate
53search on the translational space, such as in FTDock,9 PIPER,10

54GRAMM-X,11 ZDOCK,12 or on the rotational space, as in
55Hex13 or FRODOCK.14 Another strategy to explore surface
56complementarity is geometric hashing, as used in PatchDock.15

57Docking methods based on energy optimization use a variety of
58sampling strategies based on molecular mechanics, such as
59molecular dynamics in HADDOCK,16 or Monte Carlo
60minimization in RosettaDock17 or ICM-DISCO.18 The
61function used to identify the best orientations is an important
62aspect of docking, and dedicated scoring schemes have been
63developed, based on energy terms, such as in pyDock,19 or on
64statistical potentials as in SIPPER20 or PIE.21 The Critical
65Assessment of PRediction of Interactions (CAPRI; http://
66www.ebi.ac.uk/msd-srv/capri/) experiment has indeed shown
67that accurate models can be produced by docking in many of

Received: February 25, 2016

Article

pubs.acs.org/JCTC

© XXXX American Chemical Society A DOI: 10.1021/acs.jctc.6b00204
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

sls00 | ACSJCA | JCA10.0.1465/W Unicode | research.3f (R3.6.i11:4432 | 2.0 alpha 39) 2015/07/15 14:30:00 | PROD-JCA1 | rq_5677943 | 6/20/2016 15:44:04 | 14 | JCA-DEFAULT

http://www.ebi.ac.uk/msd-srv/capri/
http://www.ebi.ac.uk/msd-srv/capri/
pubs.acs.org/JCTC
http://dx.doi.org/10.1021/acs.jctc.6b00204


68 the cases.22 However, there are other cases in which all docking
69 methods systematically fail, typically the most flexible ones.23,24

70 Thus, one of the major challenges in docking is how to deal
71 with molecular flexibility and conformational changes that
72 happen upon association.23,24 A major hurdle is the computa-
73 tional cost of integrating docking and conformational search,
74 aggravated by our limited knowledge of the protein−protein
75 association mechanism. Different mechanisms for flexible
76 protein−protein binding have been proposed. Perhaps the
77 most widespread view is the induced-fit mechanism, in which
78 the interacting partners are involved in initial encounters that
79 evolve toward the final specific complex by adjusting their
80 interfaces. Most of the reported methods for flexible docking
81 try to mimic this mechanism, typically using an initial rigid-
82 body search followed by a final refinement of the interfaces as
83 in ICM-DISCO,25 HADDOCK,16 RosettaDock,17 or Fiber-
84 Dock26 or by integrating small deformations of the global
85 structures during the sampling based on normal modes as in
86 ATTRACT27,28 or SwarmDock.29

87 An alternative mechanism is conformational selection, which
88 was initially proposed for systems in which the ligand
89 selectively binds one of the conformers of the dynamically
90 fluctuating receptor protein.30,31 This was generalized to the
91 “conformational selection and population shift” concept, which
92 postulated that flexible proteins in solution naturally sample a
93 variety of conformational states, and the ligand protein
94 preferentially binds to a pre-existing subpopulation of such
95 conformers, thus adjusting the equilibrium in favor of
96 them.32−34 Recently, the conformational selection model has
97 been extended to include different mutual conformational
98 selection and adjustment steps,35 so that the unbound
99 conformational states that are available for mutual selection
100 might not be initially in the bound conformation. The
101 conformational selection model has been largely supported by
102 several structural studies including MD, NMA, X-ray
103 crystallography, and NMR experiments,35−39 and later strongly
104 confirmed by theoretical analysis based on the correlation
105 between complex association/dissociation rates and several
106 molecular descriptors detailing specific features of protein
107 intrinsic flexibility and complex formation.40 This mechanism
108 can be implemented in a computational docking strategy by
109 using precomputed ensembles of unbound proteins, which
110 ideally contain conformers that are suitable for binding the
111 interacting partner. However, to date this strategy has not been
112 really used for practical protein−protein docking predictions.
113 Most of the prior studies were limited to the use of a few
114 selected conformers and/or applied to specific cases of
115 interest.41−43 Unexpectedly, the few systematic analyses
116 published so far44−46 failed to improve the structural prediction
117 of protein complexes with respect to the unbound structure.
118 This could be related to an unrealistic representation of the
119 motions occurring in the time scale of molecular association or
120 to the use of only a few conformers.44−46 Indeed, for small
121 proteins like ubiquitin it is possible to obtain more
122 representative ensembles, based on RDC data, which are
123 definitely useful in docking predictions.47 However, this
124 approach is difficult to generalize for large scale predictions
125 due to experimental limitations. Therefore, it would be
126 important to find practical ways of generating ensembles that
127 include conformers that improve binding. This could help not
128 only to improve docking predictions but also to advance toward
129 a better understanding of flexible protein−protein association
130 mechanism. With this purpose in mind, here we used three

131different computational approaches to represent the conforma-
132tional heterogeneity of the unbound proteins and tested them
133on a standard protein−protein docking benchmark. Our
134analysis clearly shows that a simple molecular mechanics
135minimization approach provides sufficient conformational
136heterogeneity to improve docking predictions in medium-
137flexible cases, which are the most likely to follow the
138conformational selection mechanism.

139■ METHODS
140Generation of Protein Conformational Ensembles. We
141used three different computational techniques to generate
142conformational ensembles starting from the unbound protein
143structures: MODELER minimization (MM), molecular dy-
144namics simulations (MD), and Normal Modes Analysis
145(NMA).
146Conformational search based on the optimization of a
147molecular probability density function (PDF) was performed
148with the comparative modeling program MODELER version
1499v10,48 using as template the unbound X-ray structure of the
150same protein, and default parameters. Cofactors and small-
151molecule ligands, if present in the template structure, were
152taken into account during the modeling procedure. MODELER
153minimization (MM) is based on an optimization step using the
154variable target function method (VTFM) with restrained
155conjugate gradients (CG), followed by a refinement step
156using short (a few ps) molecular dynamics (MD) and simulated
157annealing (SA), with CHARMM parameters and distance-
158dependent dielectric constant.
159Conformational search based on Molecular Dynamics (MD)
160was performed by a 10 ns long explicit solvent unrestrained
161MD simulation on the unbound structure using the force field
162AMBER parm9949 and the AMBER8 package.50 As a first
163preparation step, all the missing loops in the protein structures
164were modeled using the MODELER program. The para-
165metrization of each system was performed using AMBER’s
166module LEAP, whereas the cofactor and small-molecule ligand
167libraries, when needed, were written with the AMBER modules
168ANTECHAMBER and LEAP. Each system was then
169minimized, solvated, and equilibrated at similar conditions to
170those previously described for the MoDEL database,51 as
171follows. First, original PDB coordinates were stripped of
172hydrogen atoms, monovalent ions, and all water molecules.
173Noncovalent ligands were kept and parametrized with the
174GAFF force-field using standard procedures,52 and missing
175side-chain atoms and hydrogen atoms were added from
176AMBER residue libraries using the LEAP AMBER tool. Each
177system was relaxed by a short restrained energy minimization
178(20 steps steepest descent, 80 steps conjugate gradient,
179restraining all the heavy atoms with a 20 kcal/mol Å2 to the
180initial structure) to relieve highly unfavorable sterical clashes.
181Then each minimized structure was immersed in a periodic
182truncated octahedron box containing a 12 Å buffer of TIP3P
183water molecules, and Na+ and Cl− counterions were added to
184the solvent bulk to maintain neutrality of the system and reach
18550 mM NaCl ionic strength.
186Each solvated system underwent a short solvent minimiza-
187tion and five-step equilibration protocol. First, a 500-cycle
188steepest descent and a 500-cycle conjugate gradient mini-
189mization were performed, applying harmonic restraints with a
190force constant of 50 kcal/(mol·Å2) to all protein atoms in order
191to minimize the solvent molecules. Then, the five-step
192equilibration was performed by applying periodic boundary
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193 conditions and computing long-range electrostatics by the
194 particle-mesh Ewald method. At each stage, the integration
195 time step was set to 2 fs, the system pressure to 1 atm, and the
196 nonbonding cutoff distance to 12 Å. The five steps are
197 Step 1: A 40 ps MD simulation was run applying harmonic
198 restraints to all the protein atoms with a force constant of 25
199 kcal/(mol·Å2), raising the temperature to 300 K by Langevin
200 dynamics approach with a collision frequency of 1 fs.
201 Step 2: A 20 ps step was performed, setting the temperature
202 to 300 K and reducing system restraints to 10 kcal/(mol·Å2).
203 Step 3: Another 20 ps simulation was run with 10 kcal/(mol·
204 Å2) restraints only to the protein backbone atoms.
205 Step 4: A further 20 ps simulation was performed, decreasing
206 protein backbone restraints to 5 kcal/(mol·Å2).
207 Step 5: A final 100 ps unrestrained MD simulation was run
208 without any restraint.
209 Finally, a 10 ns MD simulation was performed in
210 isothermal−isobaric ensemble, setting pressure to 1 atm and
211 temperature to 300 K. From each MD simulation, two
212 conformational ensembles were created by extracting trajectory
213 snapshots every 10 or 100 ps. Additionally, a random subset of
214 11 benchmark cases (1ACB, 1AY7, 1D6R, 1E6J, 1GCQ, 1IRA,
215 1JMO, 1PXV, 2HRK, 2CFH, 2C0L) was selected for longer
216 simulations. Each protein underwent two 100 ns long explicit
217 solvent unrestrained NPT-MD simulations, at the temperatures
218 of 300 and 340 K, respectively, using the same force field as
219 above.
220 Conformational search based on Normal Mode Analysis
221 (NMA) was performed by an in-house protocol on a small
222 subset of the 6 flexible benchmark cases that show strong
223 binding affinity (in which potential errors in the docking
224 scoring function have a minimal impact). NMA is a powerful
225 modeling technique that allows for a fast and accurate
226 description of the intrinsic movements of biomolecules.
227 Modern interpretations of the procedure use the elastic
228 network model (ENM), first described by Tirion as an all-
229 atom version53 and later reformulated as coarse-grained.54 In
230 the ENM, the biomolecule is represented as a network of
231 connected atoms, where each node is connected to all the
232 atoms within a cutoff, and the springs represent the interactions
233 between the nodes. Here we used the Anisotropic Network
234 Model54 that describes the protein as a Cα model, and we
235 assigned the spring constants by a term that assumes an inverse
236 exponential relationship with the distance,55 analog to that from
237 Hinsen.56 We tried to enhance the conformational space by
238 introducing an iterative exploratory search. The proposed
239 method is called eNMA (enhanced NMA) and creates enriched
240 structurally diverse ensembles. The algorithm works as follows:
241 Step 1: Starting from the unbound Cα atoms, we created 100
242 discrete Cartesian conformers from random combinations of
243 displacements along the first 10 normal modes (as described
244 elsewhere).57 The average Cα displacement with respect to the
245 original structure was set to ∼1 Å.
246 Step 2: The resulting conformers were then clustered
247 hierarchically via average linkage method (as implemented in
248 ptraj10)50 to obtain 100 diverse conformations.
249 Step 3: Each conformer from the cluster was sent to Step 1,
250 and the whole cycle was started.
251 Step 4: The process was ended up after 10 iterations.
252 In total, around 100,000 intermediate structures were created
253 per protein, but we only kept the ones resulting from the
254 clustering (i.e., 100 × 10 iterations = 1,000 discrete
255 conformers). The final structures underwent a last optimization

256step with MODELER 9.10. All-atom models were rebuilt by
257adding missing atoms and side-chains and were atomically
258refined with MODELER (using the original Cα model as
259template) to fix incorrect bond distances.48,58 In addition, 100
260discrete conformers were randomly selected, and for each of
261them 10 MODELER models were built. The whole procedure
262took ∼2 h per protein (ranging from 40 min for 1ACB ligand,
263with 70 Cα atoms, to 5 h for 1IBR ligand, with 440 Cα atoms)
264on 1 core of an Intel Xeon 3.5 GHz CPU (16GB RAM) Linux
265workstation. Note that our conformational search was
266unguided, but it could be also guided in future applications
267(i.e., selecting the combination of models that provides the best
268score on a given fitness function).
269Docking Simulations. For all the dockings experiments,
270the FTDock docking program9 was used to generate 10,000
271rigid-docking poses based on surface complementary and
272electrostatics at 0.7 Å grid resolution, and then, each docking
273solution was evaluated by the energy-based pyDock scoring
274scheme,19 based on desolvation, electrostatics, and van der
275Waals energy contributions. All energy values are shown as
276arbitrary units. Cofactors, small-molecule ligands, and ions were
277excluded during the sampling and the scoring calculations in
278docking.
279Benchmark. In order to validate the approach proposed
280here, we used the protein−protein docking benchmark 3.0,59

281comprising a total of 124 test cases in which the structures of
282both the free components and the complex are known. We
283have classified these cases according to the conformational
284variation of the proteins from the unbound to the bound state
285(based on the RMSD of Cα atoms of the interface residues as
286defined in the mentioned protein−protein benchmark 3.0),
287which resulted in the following categories: “rigid” (I-RMSDCα <
2880.5 Å), “low-flexible” (0.5 Å < I-RMSDCα < 1.0 Å), “medium-
289flexible” (1.0 Å < I-RMSDCα < 2.0 Å), “flexible” (2.0 Å < I-
290RMSDCα < 3.0 Å), and “highly flexible” (I-RMSDCα > 3.0 Å).
291The quality of the docking predictions was evaluated according
292to the ligand protein Cα-RMSD with respect to the complex
293crystal structure (after superimposing the Cα atoms of the
294receptor molecules). A docking experiment was considered
295successful if a near-native solution (a docking pose with ligand
296Cα-RMSD < 10 Å) was ranked among the top 10 predictions
297according to the pyDock scoring function. Structural analyses
298of proteins, including RMSD and clashes calculations, were
299performed using the ICM program60 (www.molsoft.com).

300■ RESULTS
301Unbound Conformational Ensembles from Molecular
302Mechanics Contain Conformers with Better Binding
303Capabilities than the Unbound Structure. Here we
304explored in a systematic way whether a minimal description
305of the conformational heterogeneity of the interacting proteins
306could significantly improve their binding capabilities. For that
307purpose, we generated conformational ensembles from the
308unbound proteins of the complexes in the protein−protein
309benchmark 3.0.59 Ensembles of 100 conformers were initially
310generated by using two distinct molecular mechanics
311procedures: a fast restricted conformational optimization, as
312implemented in MODELER, and a much more computation-
313ally demanding molecular dynamics method, as implemented in
314 f1the AMBER package (see Methods). Figure 1 shows examples
315of the typical conformational heterogeneity (at backbone and
316side-chain level) generated by MODELER minimization
317(MM). The deviation of the interface atoms from the initial
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318 unbound structure was 1.2 Å RMSD on average (ranging from
319 0.6 Å for the 1R0R receptor to 7.7 Å RMSD for the 2QFW
320 receptor).
321 We compared the unbound models to their corresponding
322 structures in the complex to structurally characterize these
323 conformers and to estimate their capabilities for binding. In
324 order to do that, we first structurally superimposed each model
325 into the corresponding native complex structure (considering
326 only the Cα atoms) and then computed the following
327 parameters: (i) the RMSD for all Cα atoms (Cα-RMSD)
328 with respect to the complex structure; (ii) the RMSD for all
329 interface atoms (Int-RMSD) after superimposing only those
330 interface atoms; (iii) the pyDock binding energy (au) with the
331 bound partner; (iv) the pyDock binding energy (au) with the
332 unbound partner; and (v) the number of clashes with the
333 bound partner. The values for these parameters in the different
334 conformers generated by MODELER are randomly distributed
335 following a Gaussian function (Figure S1). Except for a few
336 cases, such as the viral chemokine binding protein M3 (1ML0
337 receptor), there is no significant correlation between the
338 binding energy of the different conformers in the native
339 orientation and their similarity with respect to the bound

f2 340 structure (Figure 2). Perhaps the main reason for this is that, in
341 general, due to the limited sampling used here, these
342 conformers are not exploring the vicinity of the bound state.
343 Indeed, only 20% of the benchmark proteins contain
344 conformers within 1.0 Å Int-RMSD from the bound state
345 (and in virtually all of these cases the unbound state already had
346 Int-RMSD < 1.0 Å from bound).
347 Ensembles generated by short MD trajectories showed larger
348 conformational variability, but in general they were not closer
349 to the bound state (Figure S1 and S2). Increasing the number
350 of conformers to 1,000 (Figure S3) did not significantly modify
351 the range of conformational variability for either sampling
352 method.
353 We next aimed to identify which conformers of the ensemble
354 seemed more promising for binding. Thus, we selected the best
355 conformers of the ensemble according to the criteria analyzed

f3 356 in the previous paragraphs. Figure 3 shows the best conformers
357 for receptor and ligand proteins identified according to each

358parameter as compared to the unbound receptor and ligand
359structures for all benchmark cases. Regarding the RMSD with
360respect to the complex structure, only in a few cases (21% and
3616%, according to Cα-RMSD and Int-RMSD, respectively) the
362best pair of conformers were significantly better (i.e., more than
36310% change; averaged for receptor and ligand proteins) than
364the unbound X-ray structures. These cases were not particularly
365enriched in conformers with Int-RMSD < 1.0 Å. Actually, in
366some cases (14% and 36%, according to Cα-RMSD and Int-
367RMSD, respectively) the best conformers were even farther
368from the bound structure than the unbound one.
369Interestingly, we found a much higher number of cases in
370which the best conformers showed significantly better binding
371energy (in 46% and 51% of cases, when considering the bound
372or unbound structure as partner, respectively) or fewer clashes
373(in 69% of cases) than the unbound X-ray structure. It is
374remarkable that the improvement in binding energy was
375independent of the structural similarity to the bound structure.
376Again, one of the reasons is that in the majority of cases the
377limited conformational sampling used here does not permit
378reaching the vicinity of the bound state, and, therefore, in such
379unbound minima any small improvement toward the bound
380state is not relevant in terms of binding energy.
381Although MD ensembles showed larger conformational
382variability (Figures S1 and S2), the percentage of cases with
383conformers that became significantly better than the unbound
384state according to each of the above-mentioned criteria (12%,
3857%, 37%, 62%, and 69%, respectively) was very similar to those
386observed for the MODELER ensembles. However, the

Figure 1. Representative conformational ensembles generated by
MODELER minimization. 100 conformers independently generated
by MODELER for receptor and ligand proteins are shown for two
benchmark cases: (A) 1PXV and (B) 1ACB. Conformers were
superimposed onto the corresponding molecules in the reference
complexes for visualization. Only interface side chains are shown for
the sake of clarity.

Figure 2. Distribution of geometrical and energetic values for
ensemble conformers. The correlation between the full atom interface
RMSD (Int-RMSD) with respect to the bound state and the pyDock
binding energy (au) toward the bound partner in the native
orientation (bound BE) for all conformers in MODELER ensembles
are shown for two benchmark cases: (A) 2F0R (1S1Q receptor) and
(B) 1MKF (1ML0 receptor). Distribution of Int-RMSD and bound
BE values are shown as histograms. Data for the unbound X-ray
structure are shown in red.
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387 ensembles generated from the short MD trajectories showed
388 even more limited conformational sampling in the vicinity of
389 the bound state, since less than 4% of the benchmark proteins
390 had conformers with Int-RMSD < 1.0 Å with respect to the
391 bound state (as compared to 20% in MODELER). Moreover,
392 in most of the cases (74% and 71%, according to Cα-RMSD
393 and Int-RMSD, respectively) the best conformers from MD
394 were even farther from the bound structure than the unbound
395 one. This could be related to the limited sampling of the short
396 MD simulations used here, as well as to the fact that the protein
397 structures in solution typically deviates 1−2 Å RMSD from that
398 in the crystal.61 Indeed, this is what we observe in our MD
399 ensembles (Figures S1 and S2). Of course, we should not
400 disregard possible inaccuracies in the force-field, but they are
401 usually more relevant in very long trajectories but not so much
402 in the suboptimal sampling used here.62

403 Selected Conformers Can Yield Significantly Better
404 Docking Results than Unbound Subunits. The fact that in
405 the majority of cases the conformational ensembles contained
406 conformers that showed better binding energy capabilities than
407 the unbound X-ray structure encouraged us to evaluate their
408 use for docking. Since the systematic cross-docking of all
409 conformers for receptor and ligand proteins would be
410 impractical, we tried instead to estimate the expected
411 performance of the unbound ensembles for docking in the
412 best-case scenario. Therefore, based on the native orientation,
413 we selected those conformers that seemed the best candidates
414 to improve the docking predictions according to the criteria
415 described in the previous section: (i) the lowest Cα-RMSD
416 with respect to the bound state, (ii) the lowest Int-RMSD, (iii)
417 the best binding energy with the bound partner, (iv) the best
418 binding energy with the unbound partner, and (v) the smallest
419 number of clashes with the bound partner. These conformers

420were used in protein−protein docking as described in the
421Methods section.
422 f4Figure 4A shows the docking success rates for the top 10
423predictions when using these selected conformers, with all the
424 t1details in Table 1. Interestingly, the results do not significantly
425change when using a larger number of conformers (1,000)
426generated by MODELER (and applying the same procedure for
427selecting the best expected conformers), or when conformers
428were generated by short MD trajectories, either using 100 or
4291,000 conformers (Figure S4). Strikingly, when we used the
430best conformers based on Cα- or Int-RMSD with respect to the
431complex structure, the docking results were slightly worse than
432those of unbound docking, as can be seen in Figure 4A (the
433results did not significantly change when selecting only those
434cases in which the best conformer had significantly better Cα-
435or Int-RMSD than that of the unbound structure). This can be
436due to the fact that either MODELER minimization or a short
437MD trajectory cannot generally sample too far from the
438unbound structure, and therefore cannot reach the vicinity of
439the bound state in most of the cases. However, when using the
440conformers that would give the best binding energy or the
441smallest number of clashes when in the native orientation, the
442docking results significantly improved with respect to those of
443the unbound structures, as can be seen in Figure 4A. Again, this
444did not correspond to an improvement in geometrical terms.
445Indeed, in 99% of the cases in which the best-energy conformer
446improved the docking predictions, such conformer did not have
447significantly better Int-RMSD from the complex structure than
448the unbound conformation. For comparison, we show the
449success rates that we would obtain when using the bound
450structures, which establishes the upper limit for the expected
451docking success with this approach. The success rates of the
452selected conformers based on binding energy are more than

Figure 3. Best ensemble conformers according to quality criteria based on the complex native orientation. For each benchmark case, it is shown the
best pairs of receptor and ligand conformers in the conformational ensemble according to the following criteria: (A) Cα-RMSD, (B) Int-RMSD, (C)
pyDock binding energy with the bound partner (au), (D) pyDock binding energy with the unbound partner (au), (E) number of clashes with
respect to the bound partner. The above-described descriptors were calculated independently for the best receptor and ligand conformers and then
averaged. These are compared to those of the unbound X-ray structures. Dashed lines represent the (arbitrary) range of variation that we used to
consider a change as significant, and it was defined as 10% in the RMSD- and clash-based criteria or 10 au in the energy-based criteria.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00204
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

E

http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.6b00204/suppl_file/ct6b00204_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.6b00204/suppl_file/ct6b00204_si_001.pdf
http://dx.doi.org/10.1021/acs.jctc.6b00204


453 half of the maximum expected success rates when using the
454 bound structures. It is important to mention that this approach
455 only proves the existence of some conformers that can provide

456better docking predictions than the unbound structures.
457However, in a realistic scenario, it would be impossible to
458accurately identify these optimal conformers from the unbound
459ensemble. The success rates obtained in this section can be
460considered as a rough estimation of the potential predictive
461rates that could be obtained if all ensemble conformers were
462used in a docking strategy. One could hypothesize that if these
463conformers are able to find docking orientations with good
464scoring, such orientations would automatically appear well-
465ranked in a general docking pool, even if they include docking
466poses obtained with other conformers. Preliminary tests show
467that merging the results of 100 docking runs with one
468conformer from the receptor protein and another from the
469ligand protein, each time a different one, would provide similar
470success rates than the ones obtained here when using the best-
471energy (with the unbound partner) conformers (data not
472shown). There could be other strategies that can be devised for
473using all unbound conformers in docking. However, the
474systematic evaluation of these different approaches in a practical
475docking procedure is beyond the scope of this work. The
476findings here show some potentiality for future developments
477in ensemble protein−protein docking, but the practical
478problem is still unsolved.
479In order to provide a statistical significance for these results,
480we randomly selected five conformers from the conformational
481ensemble. The results for each random conformer were similar
482(within experimental error) to those of the unbound structure
483(Figure 4A) and show that the conformers selected according
484to the optimal binding energy improved significantly the
485docking results with respect to the randomly chosen con-
486formers. An alternative possible explanation for the docking
487improvement when using the ensemble conformers might be
488related to the limited discrete sampling in FTDock derived
489from the fix number of ligand rotations (which makes coarser
490surface sampling for large proteins) and the grid resolution of
4910.7 Å (which introduces inaccuracies in the atomic
492coordinates). This creates a stochastic dependence of the
493FTDock docking algorithm on the initial rotation of the
494interacting subunits, given that each initial rotation of the
495interacting proteins could be mapped on different cells of the
4963D grids. This is a limitation of any FFT-based algorithm, and it
497was already shown that performing parallel docking runs using
498several initial rotations provided more consistent docking
499results than using just a single one.14 To evaluate the possibility
500that the extensive sampling in the atomic positions provided by
501the use of unspecific conformers prior to docking could
502compensate the suboptimal grid-based sampling of FTDock, we
503performed five different docking runs with random initial
504rotations for the unbound receptor and ligand proteins. The
505results from the individual random rotations were similar,
506within experimental error, to the unbound docking results
507(Figure 4A).
508These results suggest that the selected conformers according
509to specific criteria (i.e., optimal binding energy, number of
510clashes) were more beneficial for docking than just a random
511selection of conformers or initial rotations. Overall, this clearly
512shows that conformational heterogeneity in the interacting
513subunits can improve the binding capabilities of the unbound
514X-ray structures.
515A Simple Description of Conformational Heteroge-
516neity Is Particularly Beneficial for Low- and Medium-
517Flexible Cases. We have analyzed whether the docking
518improvement when using ensembles depends on the conforma-

Figure 4. Docking performance for selected conformers. (A) Docking
success rates for the top 10 predicted models on the protein−protein
docking benchmark when using selected conformers according to
specific criteria: Cα-RMSD (green), Int-RMSD (yellow), binding
energy toward the bound partner (orange), binding energy toward the
unbound partner (blue), number of clashes with respect to the bound
partner (magenta). For comparison, the docking success rates for
bound (white) and unbound (dark gray) X-ray structures are also
shown. To show the significance, docking rates for five random
conformers pairs (green gradations) and five random initial rotations
of the unbound docking partners (gray gradations) are also shown. (B)
Docking success rates according to the conformational variability
between the unbound and bound structures for selected conformers
(same color code as above). For comparison, docking success rates for
the bound and unbound X-ray structures, as well as for one random
pair of conformers (light green) and one random initial rotation of the
unbound docking partners (light gray) are also shown. (C) Docking
success rates according to unbound−bound conformational variability
on the 28 cases of the benchmark with reported high affinity (ΔG <
−12.0 kcal/mol) when using selected conformers, as well as the bound
and unbound X-ray structures, one random pair of conformers and
one random initial rotation of the unbound docking partners (same
color code as above).
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Table 1. Docking Performance of Conformers Selected from MODELLER Ensemblesa

PDB bound unbound Cα-RMSD Int-RMSD bound BE unbound BE clashes

Rigid (I-RMSDCα < 0.5 Å) (18 Cases)
1AVX 2 102 33 40 1 231
1FSK 3 3 39 34 1 1 514
1GHQ 7455 6528 1878
1IQD 1 8 64 3 6 6 3
1KLU 18 1246 6002 4468 2587 6498 1647
1KTZ 48 3725 6333 309
1NCA 14 7 1269 1332 7 1
1NSN 405 500 254 5587 33 33 1085
1PPE 28 6 12 2 5 1 4
1R0R 1 3 258 230 9 17 37
1SBB 161 298 73
1WEJ 1 274 5 456 64 2 9
2JEL 1 42 16 25 12 2 1
2MTA 2 78 61 187 48 3 554
2PCC 12 6 91 12 6 4 11
2SIC 1 8 3378 1 2 249 1
2SNI 1 3 1 16 1 1 1
2UUY 69 4472 4801 64 159 11 1997
Low-Flexible (I-RMSDCα 0.5−1.0 Å) (45 cases)
1AHW 1043 4049 6796 838 431 836 2974
1AY7 1 24 130 118 4 2 7
1AZS 1 30 6 6
1BJ1 9 18 9 25
1BUH 71 66 209 426 36 24 119
1BVN 1 2 2 1 1 1 687
1DQJ 216 604 261 3363 75 25 223
1E96 113 1 59 168 73 5 130
1EAW 8 622 297 86 42 25 1
1EFN 6 166 197 1684 203 97 172
1EWY 4 8 200 5 10 10 1
1F34 1 139 174 226 52 280 2
1F51 2 7 13 375 1505 130 8
1FQJ 14 309 396 482 218 438 101
1GCQ 274 1091 574 1540 5 5 364
1GLA 61 50 12 6 21 131
1GPW 1 1 1 1 1 1 1
1HE1 1 3958 102 4506 2425 523 2629
1HE8 138 2917 2612 1503 277 242 3437
1IJK 16 1309 69 61 493 487 388
1J2J 46 19 303 18 2 3 5
1JPS 709 481 2135 1 2
1K4C 3036 3369 2275 2379
1K74 150 14 172 82 1 1 24
1KAC 4737 1286 3545 990 107 19 917
1KXQ 1 250 8 4 4 1 1
1MAH 1 19 2 4 4 1 1
1MLC 2 37 50 10 1 97 144
1N8O 3 53 5 90
1QA9 3253 7378 5902 6152 1546 37 7973
1QFW 81 239 234 26 21 72
1RLB 1319 4094 7917
1S1Q 147 1211 2994 541 164 175 87
1T6B 3 56 802 1464 2 11 3
1TMQ 1 1 27 4 54 4
1UDI 1 1 2 47 1 1 420
1YVB 1 19 1 2 3 21 7
1Z0K 2 8 523 57 42 11 44
1ZHI 5 3 7450 196 5 5
2AJF 5 1788 311 562 2268 2122
2B42 1 1 2 37 1 2 21
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Table 1. continued

PDB bound unbound Cα-RMSD Int-RMSD bound BE unbound BE clashes

Low-Flexible (I-RMSDCα 0.5−1.0 Å) (45 cases)
2BTF 1 33 120 26 60 9 250
2OOB 588 112 131 217 106 547 432
2VIS 64
7CEI 1 19 11 1 1 1 20
Medium-Flexible (I-RMSDCα 1.0−2.0 Å) (35 Cases)
1A2K 36 114 5641 284 782
1AK4 2420 2040 3983 3619 2721 1055
1AKJ 89 656 345 261 204 162 1168
1B6C 1 3 6 11 1 1 21
1BGX 1
1BVK 7 18 4 146 87 85 2
1D6R 1050 2128 227 888 669 785 102
1DFJ 6 557 2 1 1 1 4
1E6E 1 3 2 1 1 8 1
1E6J 33 34 3 1 2 5
1EZU 1 2048 3633 1449 1547 102
1FC2 127 233 326 1256 683 171
1GP2 1 842 85 87
1GRN 2 858 184 1184 450 23 2909
1HIA 99 40 415 42 23 166 7
1I4D 1 642 44 132
1I9R 15 846 568 212 99
1K5D 1 360 85 2 610
1KXP 1 16 14 1 1 1 1
1ML0 1 173 80 140 1 1 9
1NW9 1 9 181 36 43 39 181
1OPH 59 14 469 2584
1VFB 37 59 86 59 128 31 95
1WQ1 4 2448 5 1077 16 6 6
1XD3 1 1 3 13 2 1 1
1XQS 1 14 55 628 1 8564 7
1Z5Y 1 16 320 4 39 17
2CFH 1 1904 202 1394 4066 43 5
2FD6 68 31 81 1
2H7V 1 734 1091
2HLE 1 13 1 1 2 1 3
2HQS 1 30 2 30 146 146 129
2I25 1 40 443 1520 15 948 3599
2O8V 1 60 5 186 220 1
2QFW 1 19 7 73
Flexible (I-RMSDCα 2.0−3.0 Å) (18 Cases)
1ACB 1 361 144 668 6 4 15
1BKD 2 522 157 1050 99 114 646
1CGI 1 19 98 13 1 12 5
1DE4 1 366
1E4K 104 1215 722 148 200 4249 74
1EER 3 1821 91 21 81 37 675
1I2M 1 683 632 50 149 247
1IB1 34 2116 7028 255 2775 1626
1IBR 1
1KKL 88 49 271 176 1 2 289
1M10 1 81 5742 574 21 2873
1N2C 1 16
1PXV 1 2073 100 429 673 1498 2375
2C0L 83 3958 1024 1589 5105 3834
2HMI 2
2HRK 49 16 23 47 83 83 241
2NZ8 1 10 5509 247 2 168 5848
2OT3 1 5 212 14 91 131
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519 tional rearrangement of the interacting proteins upon binding
520 (see Methods). The largest docking improvement when using
521 the selected conformers is observed in the low- and medium-
522 flexible cases, i.e. those with I-RMSDCα between 0.5 and 2.0 Å
523 (Figure 4B). The ensemble success rates are particularly good
524 in the low-flexible cases, for which they reach predictive
525 docking values similar to the optimal ones when using the
526 bound structures. This could be related to the limited sampling
527 used here, which did not explore too far from the unbound (1.2
528 Å of Int-RMSD as average) and therefore they can only deeply
529 explore the vicinity of the bound state in low-flexible or rigid
530 cases. Indeed, in the rigid cases (I-RMSDCα < 0.5 Å), the
531 selected conformers yield similar results to the unbound
532 structures. In these cases, unbound structures already produced
533 optimal results, similar to the optimal success rates obtained
534 when using the bound structures. In flexible or highly flexible
535 cases (I-RMSDCα > 2.0 Å), the docking results for the
536 ensembles are as poor as those for the unbound structures, very
537 far from the optimal success rates when using the bound
538 structures. Using MD or more conformers does not
539 significantly change the results (Figure S5).
540 We noted that the results of bound docking are not as good
541 as one would expect, mostly due to the above-mentioned low-
542 resolution FFT-based discrete searching algorithm. In this
543 method, proteins are represented in 3D grids with 0.7 Å of grid
544 cell size, and thus the exact atomic positions of the interacting
545 proteins are not explicitly considered during the simulations.
546 Rotations of the ligand protein are also discretely sampled,
547 which makes it unlikely to find the exact native orientation.
548 This would be particularly critical in low-affinity cases, in which
549 the small number of interactions would make them less tolerant
550 to small errors in the atomic positions. To minimize the impact
551 of this technical limitation in our evaluation, we have performed
552 the same analysis as above but focusing only on the 28 cases of
553 the benchmark that have been experimentally defined as high-
554 affinity (ΔG < −12.0 kcal/mol), for which the results of bound
555 docking are close to optimal (Figure 4C). Under these
556 conditions, we can observe even more clearly that the selected
557 conformers largely improved the docking success rates in the
558 low-flexible cases. This analysis helps to explain the observed
559 general improvement in docking when using the optimal
560 conformers and aims to be useful for future development of a
561 practical docking protocol. Given that it would be very difficult
562 to identify a priori which cases can be more benefitted from this
563 approach, any future docking protocol using this strategy
564 should be of general applicability to all cases.

565■ DISCUSSION

566Conformers Providing Better Binding Energy in the
567Native Orientation Are More Likely To Improve
568Docking. We have shown that a set of discrete conformers
569representing the conformational heterogeneity of the unbound
570structure yielded better docking results than the unbound
571structures alone. It would be important to analyze the reasons
572for the success of such conformers. Surprisingly, the conformers
573that were structurally more similar to the reference structures
574did not yield better docking results than the unbound
575structures. More interestingly, selected conformers with the
576best binding energy in the native orientation yielded better
577docking results than the unbound structures. Thus, the capacity
578to provide favorable binding energy in the native orientation
579seems to be a major determinant for the success of docking, as
580opposed to the criterion of structural similarity to the native
581conformation. This might be due to the fact that in the majority
582of our cases, ensembles are not exploring the conformational
583space close to the bound state, because sampling is limited to a
584region in the vicinity of the unbound.
585 f5Figure 5A shows, for each case, the best ranked near-native
586solution obtained when docking the conformers that had the
587best native-oriented binding energy with the bound partner
588(i.e., best near-native rank in ordinates; average native-oriented
589energy of best pair of conformers in abscissas). As we can see in
590Figure 5A, 90% of the successful cases (i.e., near-native solution
591ranked within top 10) have an average conformer binding
592energy < −20.0 au in the native orientation. Actually, 71% of
593the docking cases with conformers with binding energy in the
594native orientation < −40.0 au were successful. This confirms
595that the existence of conformers with good optimal energy in
596the native orientation is determining the success of docking.
597Figure 5A highlights the cases that significantly improved, i.e.
598which had a near-native ranked ≤10 when using the energy-
599based selected conformers but not when using the unbound
600structures. In many of these cases, the unbound structures in
601the native orientation had binding energy < −20.0 au (Figure
6025B) but were not successful in unbound docking. In these cases,
603a minimal amount of conformational sampling seems to be
604sufficient to generate conformers that significantly improve the
605docking results.
606Ensembles in Docking: Does Size Really Matter? For a
607practical use in docking, the conformational ensembles should
608provide a reasonable coverage of the conformational space,
609using a minimal number of conformers. We have shown here
610that the selected conformers (based on the reference complex
611structure) from the 1,000-member ensembles generated by

Table 1. continued

PDB bound unbound Cα-RMSD Int-RMSD bound BE unbound BE clashes

Highly Flexible (I-RMSDCα > 3.0 Å) (8 Cases)
1ATN 7 2568 665
1FAK 41 5327 43 41
1FQ1 6 3865 4315 7901 927 4833
1H1V 537
1IRA 1
1JMO 1 5325 5398 2969 5510 5547
1R8S 1 4043
1Y64 1420 1329

aFor each case, the best rank of any near-native docking solution is shown, when docking the bound and unbound structures of the interacting
proteins, or the best conformers selected from the MODELER ensembles according to the different criteria, based on the native orientation, as
described in the main text. In bold are shown the high-affinity cases.
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612 MODELER or MD yielded similar results to those selected
613 from the 100-member ensembles (Figure S4). This suggests
614 that the “extra” 900 conformers are exploring the same
615 conformational region and that the initial ensembles of 100
616 conformers already achieved convergence and provided
617 reasonable sampling, at least at the conditions of our
618 experiment. Perhaps the resolution of the docking or the
619 energy-based scoring is not sufficient to appreciate subtle
620 changes in the conformational ensembles, so adding more
621 models, without changing the conditions of the simulation, is
622 not going to help. This is exactly what happens in the more
623 rigid cases, in which a larger conformational ensemble does not
624 seem to help to find better conformers to improve the docking
625 results. However, we can observe a small improvement in the
626 flexible cases when using the larger ensembles (Figure S5).
627 Perhaps, in addition to larger ensembles, higher conformational
628 variability would be needed in order to see further improve-
629 ment in the flexible cases. In this sense, we have performed
630 longer MD simulations (100 ns), at different temperatures (300
631 and 340 K), on a random selection of 11 cases with no missing
632 long loops (comprising all ranges of flexibility values). The
633 1,000-member ensembles from these extended MD simulations
634 showed larger conformational variability as compared to the
635 shorter simulations. However, these larger ensembles did not
636 increase the number of cases with conformers significantly
637 more similar to the bound structure, neither provided better
638 docking success rates (S1 Table). Given the known
639 convergence issues in MD,63 it seems that more exhaustive
640 sampling of the unbound conformational space is needed for
641 most of the cases. This could be achieved by much longer MD
642 trajectories, multiple MD runs in parallel, or enhanced sampling
643 methods like metadynamics,64 replica-exchange,65 or MD with
644 excited normal modes.66 Future work on ensemble docking
645 would need to explore the use of these enhanced ensembles.

646Binding Mechanism: What Can We Learn from
647Docking? The different possible mechanisms that have been
648proposed for protein−protein association could be described by
649existing computational approaches. In this context, we can
650consider several possible scenarios. For protein complexes
651following a rigid association (similar to “lock-and-key”
652mechanism), the use of rigid-body docking with the unbound
653subunits could be a suitable approach to describe the binding
654process and obtain good predictive models. Indeed, this seems
655to be the case for complexes with small conformational changes
656between the unbound and bound states (I-RMSDCα < 0.5 Å),
657in which unbound docking already gives similar success rates as
658bound docking (Figures 4B and 4C). In these rigid cases, the
659optimal conformers from the unbound ensembles also yielded
660similarly good docking rates as those obtained with the
661 f6unbound and bound structures. Indeed, Figure 6 shows one

662example of rigid-body docking (2SNI) in which the unbound
663proteins in the native orientation showed good average binding
664energy toward the bound partner (−32.8 au), not far from that
665of the bound structures (−40.8 au). Consistently, the average
666binding energy of the best conformers were similar to that of
667the unbound or bound pairs (−37.8 au). However, when
668conformers were selected by criteria of structural similarity to
669bound state, docking success rates were much worse than

Figure 5. Docking performance dependence on energetic comple-
mentarity of the docking partners. Best rank of any near-native
docking solution vs average native-oriented pyDock binding energy
(au) toward the bound partner calculated for (A) best pair of
conformers according to binding energy toward the bound state and
(B) unbound X-ray structures. Highlighted in black are the cases that
largely improve docking performance (from near-native rank >10 to
rank ≤10) using the energy-based selected conformers.

Figure 6. Average pyDock binding energy (au) of the unbound, best
conformer according to native-oriented bound energy and bound
conformations, in the native orientation, with the bound structure. A
few examples with different degrees of unbound-to-bound conforma-
tional changes are shown. Similar binding energies for the unbound,
conformer and bound structures suggest a lock-and-key binding
mechanism (as in 2SNI). An average binding energy for conformers
better than that of unbound structures and similar to that of bound
structures suggests a conformational selection model (as in 1KXP,
1ACB). Conformer binding energy similar to that of the unbound
conformation and worse than that of the bound structure could be
compatible with conformational selection (1I2M; see main text) or
induced fit mechanisms (1IRA).
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670 unbound or bound docking, because in these cases conforma-
671 tional heterogeneity is more likely to produce conformers that
672 are further from the bound state than the unbound one (given
673 that the unbound was already close to the bound state). Indeed,
674 in none of these cases there were a single conformer that was
675 significantly closer (in terms of Int-RMSD) to the bound state
676 than the unbound structure.
677 On the other side, we know that in complexes involving
678 flexible association, rigid-body docking with the unbound
679 structures is not going to produce correct models. For such
680 cases, different binding mechanisms have been proposed, such
681 as conformational selection or induced fit. For cases following
682 the conformational selection mechanism, the hypothesis is that
683 the unbound proteins naturally sample a variety of conforma-
684 tional states, a subset of which are suitable to bind the other
685 protein. Therefore, for these cases the use of precomputed
686 unbound ensembles describing the conformational variability of
687 the free proteins in solution should generate conformers that
688 would improve the rigid-body docking predictions with respect
689 to those with the unbound structures. Indeed, this is the case
690 for the complexes undergoing unbound to bound transitions
691 between 0.5 and 1.0 Å I-RMSDCα. In these cases, selected
692 conformers from the unbound ensembles yielded much better
693 docking predictions than the unbound structures, virtually
694 achieving the success of bound docking (Figure 4B). For cases
695 undergoing unbound-to-bound transition between 1.0 and 2.0
696 Å I-RMSDCα, the use of unbound ensembles also improved the
697 predictions with respect to the unbound docking results,
698 although to a lesser extent (Figure 4B). Figure 6 shows one of
699 these cases, 1KXP, in which the binding energy of the selected
700 pair of conformers in the native orientation (−51.4 au) is better
701 than that of the unbound structures (−31.3 au) and similar to
702 that of the bound structures (−63.6 au). Some residues in the
703 best pair of conformers show better energy contribution than in
704 the unbound state, which explains why this specific pair of
705 conformers improves docking results. In these cases, the
706 existence of a subpopulation of “active” conformers, i.e. with
707 good binding capabilities toward the bound partner, would be
708 consistent with a conformational selection mechanism. The fact
709 that these conformers with improved binding capabilities are
710 not geometrically closer to the bound state seems counter-
711 intuitive. However, recent views of binding mechanism suggest
712 that active conformers that are selected by the partner (initial
713 encounters) do not necessarily need to be in the bound state, as
714 they can adjust their conformations during the association
715 process.35 Our docking poses are likely to represent these initial
716 encounters between the most populated conformational states
717 of the interacting proteins and would be compatible with this
718 extended conformational selection view.35 However, in other
719 cases the limited conformational sampling used here might not

720be sufficient to explore all conformational states available in
721solution, and therefore the specific binding mechanism cannot
722be easily identified.
723On the other extreme, in cases following an “induced-fit”
724mechanism the bound complexes would only be obtained after
725rearrangement of the interfaces when interacting proteins are
726approaching to each other, in which case the use of
727precomputed conformational ensembles in docking (even if
728generated by exhaustive sampling) would not produce favorable
729encounters around the native complex structure. This seems
730the case for complexes undergoing unbound to bound
731transitions above 3.0 Å I-RMSDCα. In all these cases, rigid-
732body docking, either with unbound structures or with selected
733conformers, fails to reproduce the experimental complex
734structure. Figure 6 shows one of these highly flexible cases,
7351IRA, in which the binding energy of the selected pair of
736conformers is similar to that of the unbound structures and
737much worse than that of the bound conformation. For these
738complexes, the use of precomputed unbound ensembles does
739not seem to be advantageous, and they would probably need to
740include flexibility during the docking search, mimicking the
741induced fit mechanism. However, in the flexible category (i.e.,
742unbound to bound transitions between 2.0 and 3.0 Å I-
743RMSDCα), there are cases like 1ACB, which seem to follow the
744(extended) conformational selection mechanism, since the use
745of conformers helps to improve the docking results, and the
746conformers show better energy than the unbound structures
747(Figure 6). Again, there might be other complexes under this
748category that could still follow the conformational selection
749mechanism, but for which our conformational search is perhaps
750not sufficient to sample the productive conformations that may
751exist in solution. This seems to be the case of 1I2M, in which
752the ensembles based on MODELER did not produce any pair
753of conformers with sufficiently good binding energy in the
754native orientation (Figure 6), but the use of extended sampling
755based on NMA was able to improve the docking rates (see
756later).
757Obviously, the use of docking calculations to learn about the
758binding mechanism has additional limitations. The time scale of
759transitions between inactive and active conformers can play an
760important role in controlling the binding mechanism.67 In the
761present work, we can only assume that our ensembles are
762formed by the most populated conformers in solution, so the
763existence of active conformers that can be preferentially
764selected by the bound partner would be compatible (but not
765exclusively) with a mainly conformational selection mechanism.
766However, in a situation in which the active conformers are not
767highly populated, as those that would need extended sampling
768to be identified, we could not define the type of mechanism
769unless transition rates between conformers are considered.

Table 2. Docking Performance of Conformers Selected from NMA-Based Ensembles

PDB bound unbound
MM (100
conf)

MM (1,000
conf)

NMA (100 conf) * MM
(1 conf)

NMA (100 conf) * MM
(10 conf)

NMA (1,000 conf) * MM
(1 conf)

1ACB 1 361 4d 34d 46c 3d 1d

1ATN 7 2568 665d 292c 3245a 1788a

1EER 3 1821 21b 13c 17d 3c 3b

1I2M 1 50c 13c 23c 1c,d 1d

1IBR 1 1108e 87a 146e 88a

1PXV 1 2073 100a 822c 168d 168d 232d

aCα global RMSD. bFull-atom interface RMSD. cNative-oriented binding energy with bound partner. dNative-oriented binding energy with
unbound partner. eNumber of clashes with bound partner in the native orientation.
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770 Future Perspectives: Improving Sampling with Nor-
771 mal-Mode Analysis for Flexible Cases. We have shown
772 here that cases with large conformational changes after binding
773 (I-RMSDCα > 2 Å) do not generally benefit from the use of
774 conformers from unbound ensembles generated by MODELER
775 or short MD simulations. These complexes could follow the
776 induced fit binding mechanism, in which the use of
777 precomputed unbound ensembles would not be appropriate
778 to describe association. However, we should not disregard that
779 some of these complexes could still follow a conformational
780 selection mechanism, but for some reason a dramatically larger
781 conformational sampling would be needed to find suitable
782 conformers. One way to extend conformational sampling is by
783 using Normal Mode Analysis (NMA). When generating 100
784 conformers for this group of cases (strong and flexible I-
785 RMSDCα > 2.0 Å) with an ad-hoc Monte Carlo sampling
786 method based on Cα NMA and full-atom rebuilding with
787 MODELER (Figure S6; see Methods), the results were not
788 better than those obtained with the conformers directly

t2 789 generated by MODELER (Tables 2 and S2). However, when
790 generating 1,000 conformers based on NMA (either formed by
791 1,000 NMA-based conformers rebuilt with MODELER, or by
792 100 NMA-based conformers with 10 MODELER models for
793 each of them), the success rates largely improved with respect
794 to those obtained when generating conformers only with
795 MODELER (either 100 or 1,000 conformers). It is interesting
796 to analyze the flexible case 1I2M, in which docking failed when
797 using the unbound structure or the best conformers from either
798 MODELER or MD ensembles, but yielded successful results
799 with the 1,000-member NMA-based ensembles. This shows
800 that new sampling approaches based on NMA could produce
801 the type of enhanced sampling needed for the most flexible
802 cases that follow a conformational selection mechanism. Our
803 findings could help to develop future strategies to integrate
804 NMA-sampling in a practical docking protocol, but this would
805 need extensive evaluation on the entire benchmark (including
806 cases in which the conformational difference between bound
807 and unbound structures is small) and algorithmic optimization,
808 which is beyond the scope of current work.

809 ■ CONCLUSIONS
810 We present here the most complete systematic study so far
811 about the potential capabilities of using precomputed unbound
812 ensembles in docking. The results show that considering
813 conformational heterogeneity in the unbound state of the
814 interacting proteins can improve their binding capabilities in
815 cases of moderate unbound-to-bound mobility. In these cases,
816 the existence of conformers with better binding energy in the
817 native orientation is associated with a significant improvement
818 in the docking predictions. It seems that protein plasticity
819 increases the chances of finding conformations with better
820 binding energy capabilities, not necessarily related to similar-to-
821 bound geometries, which is compatible with the extended
822 conformational selection mechanism. Other moderately flexible
823 cases have conformers that look promising from a binding
824 energy perspective but do not provide good docking
825 predictions. These cases could also follow a conformational
826 selection mechanism, but they would need extensive sampling
827 to find suitable conformers for binding. The most flexible cases
828 would show larger induced fit effects and therefore would not
829 be well described by ensemble binding. In a realistic scenario,
830 optimal conformers would not be easy to identify a priori, and,
831 as a consequence, new ways of efficiently including all

832conformers in a docking protocol should be devised. This
833work helps to set guidelines for future strategies in practical
834docking predictions based on unbound ensembles generated by
835molecular mechanics minimization.
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