

MASTER THESIS

TITLE: Development of an Orchestrator layer for a Wireless Cloud

MASTER DEGREE: Master in Science in Telecommunication Engineering
& Management

AUTHOR: Martí Floriach Pigem

DIRECTOR: Antoni Gelonch Bosh

DATE: July, 22rd 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/46606549?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Títol: Development of an Orchestrator layer for a Wireless Cloud

Autor: Martí Floriach

Director: Antoni Gelonch Bosh

Data: 22 de juliol del 2016

Resum

La gran popularitat que han assolit els dispositius mòbils en els últims anys
està fent que les infraestructures de telefonia mòbil actuals s'hagin quedat
obsoletes. El Cloud-RAN es presenta com un candidat ideal per fer front a les
limitacions del les infraestructures actuals fent ús d'una administració
centralitzada. Tanmateix la seva implementació presenta un repte d'hagut als
estrictes requeriments de temps real dels estàndards wireless i la
implementació d'algoritmes d'administració eficients. Per aquesta raó en
aquest projecte ens hem centrat en la implementació d'una infraestructura de
cloud RAN per tal de troba solucions als problemes esmentats. Concretament
ens em focalitzar en l'estudi d'algoritmes que permetin fer un millor ús dels
recursos wireless. Posteriorment s'ha fet un estudi de la viabilitat de la
infraestructura comparant-la amb les infraestructures actuals.

Els resultats obtinguts indican que el Cloud RAN permet fer un molt millor ús
dels recursos wireless gràcies a la seva flexibilitat i al fet que és molt
reconfigurable, a més a més la seva implementació redueix considerablement
els costos de CAPEX/OPEX respecte les infraestructures actuals.

Title: Development of an Orchestrator layer for a Wireless Cloud

Author: Martí Floriach Pigem

Director: Antoni Gelonch Bosch

Date: July 22 rd 2016

Overview

In the last years mobile devices have gained much popularity, that’s why the
current mobile infrastructure is becoming obsolete. Cloud-RAN arises as an
excellent candidat to overcome the strong limitations of the existing
infrastructure as it uses a centralized administration of the resources. However,
the implementation of such infrastructure presents a significant challenge due
to the strict real time requirements of the wireless standards and the
implementation of efficient administration algorithms. In order to provide
solutions to the problems presented above, in this project we have focused on
the implementation of a Cloud-RAN infrastructure. Specifically, we have
focused on the study of algorithms that allows a better use of the wireless
resources. Later, we have carried out a study to analyse the feasibility of the
proposed infrastructure and we have compared it with the current
infrastructures.

Results obtained show that Cloud-RAN allows a better management of the
wireless resources thanks to its flexibility and the fact that it is totally
reconfigurable. Furthermore, its implementation reduces the CAPEX/OPEX
costs significantly with respect to the current infrastructure.

INDEX

INTRODUCTION .. 11

Software Defined Radio .. 11

Cloud Computing .. 12
Hypervisor and Virtual Machines ... 14

MANO .. 14
Virtual Network Function and Network Function Virtualization ... 15
VNF Manager .. 15
VIM....... ... 15

Cloud Radio Access Network (C-RAN) ... 16

CHAPTER 1. STATE OF ART ... 18

1.1 Software Defined Radio .. 18
1.1.1 SrsLTE .. 18

1.2. Cloud Computing ... 18
1.2.1. OpenStack Architecture ... 18

1.2. MANO ... 19

1.3. Cloud RAN... 19

CHAPTER 2. OBJECTIVES .. 20

CHAPTER 3. OPEN ORCHESTRATOR CLOUD RADIO ACCESS NETWORK
(OOCRAN) ... 21

3.1 Django .. 21

3.2 OpenStack Architecture ... 21

3.3 OOCRAN Architecture .. 23

3.4 Tenants, roles and grants ... 24

3.5 Cluster Infrastructure ... 25
3.5.1. Software Layer Optimization ... 26

3.6 VNF Implementation .. 28

3.7. System Communication Definition ... 28

3.8 Virtual Network Infrastructure.. 30

3.9 Virtual Network Manager (VNFM)... 31

3.10 Orchestrator ... 33

CHAPTER 4. TESTBED .. 35

4.1. Scenario description .. 35
4.1.1 Link Budget ... 35

4.2. LTE processing chain .. 37
4.2.1. Real channel transmission .. 37
4.2.2. Full virtualized processing chain ... 38

4.3. Radio frequency resources Scenario ... 39
4.3.1. Frequency bands reuse ... 40

4.4. Dynamic deployment under demand ... 41
4.4.1. Out Rate study ... 42

4.4.2. Infrastructure Management Strategies ... 46
4.4.3. Comparative dynamic vs traditional infrastructures .. 46

4.5. Implementation cost .. 46
4.5.1. CAPEX ... 47
4.5.2. OPEX ... 48
4.5.3. Comparative C-RAN vs traditional investments .. 50

CONCLUSIONS ... 52

FUTURE WORK .. 53

BIBLIOGRAPHIC ... 54

ANNEX ... 56

Annex 1. Network creation template ... 56

Annex 2. NFV allocation and configuration .. 58

Annex 3. Cost per bit calculs ... 59

ACRONYMS

API - Application Program Interface

AWS - Amazon Web Service

BBU - BaseBand Unit

BSP - Base Station Pool

BT - Base Station

CAPEX - Capital Expenditure

CoMP - Coordinated multi-point operation

CPU - Central Processing Unit

DSP - Digital Signal Processor

ERM - Entity Relationship Model

FFT - Fast Fourier Transform

FPGA - Field-Programmable Gate Array

GPP - General Purpose Processors

GPU - Graphics Processing Unit

GUI – Graphical User Interface

HVM - Hardware Virtual Machine

IaaS - Infrastructure as a Service

InP - Infrastructure Provider

LAA - License Assisted Access

LTE - Long Term Evolution

MCS - Modulation and Code Scheme

MIMO - Multiple Input Multiple Output

MPLS - Multiprotocol Label Switching

MVC - Model View Controller

NASA - National Aeronautics and Space Administration

NS - Network Service

NVF - Network Virtual Function

OOCRAN - Open Orchestrator Cloud Radio Access Network

OPEX - Operating Expenditure

PaaS - Platform as a Service

PC - Personal Computer

PCIe - Peripheral Component Interconnect Express

RRH - Remote Radio Head

SaaS - Software as a Service

SDR - Software Defined Radio

SDN - Software Defined Network

SP - Server Provider

TSP - Telecommunication Service Provider

UE - User Equipment

USRP - Universal Software Radio Peripheral

VIM - Virtualized Infrastructure Manager

VNF - Virtual Network Function

WCDMA - Wideband Code Division Multiple Access

List of Tables

Table. 3.1 Hardware specifications .. 25
Table. 3.2 Configured nova parameters ... 27
Table. 3.3 Virtual machine configuration .. 27

Table. 4.1 Linkbudget Calculus .. 36

Table. 4.2 Time reconfiguration according to the area 44
Table. 4.3 Hardware specification and price .. 47
Table. 4.4 OPEX price by element ... 48
Table. 4.5 OPEX prize in fucntion of the modulation and BW 50

List of Figures

Fig. I.1 SDR implementation example .. 12
Fig. I.2 Cloud Computing types .. 13
Fig. I.3 ETSI MANO architecture .. 15
Fig. I.4 Cloud Radio Access Network architecture ... 17

Fig. 3.1 OpenStack Architecture ... 22
Fig. 3.2 OOCRAN Architecture ... 23
Fig. 3.3 Interaction between characters ... 24
Fig. 3.4 OOCRAN hardware implemented ... 26

Fig. 3.5 Pinning effect ... 27
Fig. 3.6 Fronthaul virtualizing architetcture ... 29
Fig. 3.7 Full communication system virtualization .. 30

Fig. 3.8 Virtual network infrastructure architecture ... 30

Fig. 4.1 LTE channel captured ... 38
Fig. 4.2 Full virtualized communication system test ... 39

Fig. 4.3 Frequency reused applied ... 40
Fig. 4.4 Frequency reuse applied on OOCRAN ... 41

Fig. 4.5 Time pattern used on OOCRAN .. 42
Fig. 4.6 Out rate example ... 43
Fig. 4.7 VM time creation study .. 44

Fig. 4.8 Dynamic deployment using OOCRAN ... 45

Fig. 4.9 LTE speed in function of the modulation and BW 47

Fig. 4.10 Prices applied to the OOCRAN ... 49
Fig. 4.11 CAPEX/OPEX price depending of the cell features 51

INTRODUCTION 11

INTRODUCTION

The continuing growth in demand from subscribers for better mobile broadband
experiences are doing that the traditional mobile network architectures are in
facing a serious situation. The traffic will be double every year, which will
require more cost to build, operate and upgrade the current network
infrastructure, while the revenue will be each year smaller. Meanwhile traditional
networks are wasting several resources, due to the changes in a time-geometry
pattern called “Tidal Effect” .

In addition, mobile operators are forced to maintain various wireless
communication standards under the same infrastructure, increasing the capital
expenditure (CAPEX) and operating expense (OPEX). Therefore it is necessary
to find new alternatives to solve this problem, with the following features:

 Support of multiple air interface standards and flexible software upgrade. [1]
 Provision of reliable services with reduced cost, while maintaining healthy

revenue. [1]
 Optimization among capacity, mobility, and coverage in broadband cellular

wireless systems. [1]

Software Defined Radio

Software Defined Radio (SDR) refers to the technology wherein software
modules running on a generic hardware platform consisting on DSPs, FPGA
and general purpose microprocessors (GPPs) are used to implement radio
functions such as mixers, filters, amplifiers, etc.
SDR can be used to implement military, commercial and civilian radio
applications such as WCDMA, LTE, etc [2]

Current radio frequency (RF) frontends can convert radio frequency signals into
a digital domain with a few steps, allowing make the signal processing into a
digital domain using common language programming as C.

Development of an Orchestrator layer for a Wireless Cloud 12

Fig. I.1 SDR implementation example

The implementation of radio functions in software take several advantages:

 Reconfigurability: allows to co-existence of multiple software modules

implementing different standards on the same system and reconfigure the
radio system selecting the appropriate software module [3].

 Ubiquitous Connectivity: the implementation in modules and multiples
instances of such modules can co-exist in the infrastructure [3].

 Adaptive Radio: communication system have a means of monitoring their
own performance and modifying their operating parameters to improve the
performance of the system [3].

 Cognitive Radio: communication system are aware of their internal state(
environment, localization, spectrum usage, etc ...) and take advantage of
this modifying his own radio operating behavior. [3]

Cloud Computing

Cloud computing is a kind of Internet-based computing that provides shared
processing resources and data on demand.
In this new paradigm, companies can avoid the upfront infrastructure costs and
focus on the projects. At the same time, cloud infrastructures provide an
improvement of the manageability with less maintenance, faster adjusting of the
resources according to the demand, normally called scaling. With this model

INTRODUCTION 13

companies pay for the resources that they are using, making the deployment
and maintenance cheaper.

In cloud computing world we found two main characters:

 Infrastructure provider: It is the owner of the infrastructure and the one who

rents resources.
 Tenants: They are the companies that are paying for the resources that

they are using.

Depending on the grants that the infrastructure provider gives to the tenants, we
can find three main types of cloud:

 Software as a Service (SaaS): In this model users have access to the

applications and database. Infrastructure provider manages the
infrastructure that run the applications. This model allows to avoid install
,run and maintain applications in his own infrastructure.

 Platform as a Service (PaaS): This model offers a developer environment to
application developers. It is normally compost by an operation system with a
toolkit to develop and test applications in a safety and controlled
environment.

 Infrastructure as a Service (IaaS): This model gives to the tenants the
maximum grants, allowing to design specific infrastructure in the cloud. This
infrastructures are composed by computers interconnected with routers
creating networks where each tenant has full control of all the components.

The following image summarize the three main models:

Fig. I.2 Cloud Computing types

In order to allow to share resources, it is necessary to ensure isolation between
tenants. The most famous technique that achieve this purpose is the
virtualization, that's why cloud computing is close associated to it.

Development of an Orchestrator layer for a Wireless Cloud 14

Hypervisor and Virtual Machines

Computers run applications into the CPU but just can run one application in a
specific time. For that reason, CPUs run applications according to an specific
scheduler which decide what applications must run first. According to
differences proposes, we find different kinds of schedulers.
Virtual machines at low level done something similar, each VM reserved a
specific processing time of the physical CPU. Another VMs can not run its own
application into that computation time. This allow that another VM can not
degenerate the performance of another VM. The element that reserved
computation time is the hypervisor, which reserve time and create virtual
machines with a specific features [4].

MANO

Telecommunications Infrastructure Providers have shown interest in cloud
features, therefore they desire to migrate their infrastructure in a virtual
environment. In 2013’s Mobile World Congress several institutions agreed to
standardize the administration of these infrastructures in the cloud. The
architecture is already defined but many challenges must be solved before its
kickstart in 2016 and subsequent implementation in 2018.
The structure that ETSI designed is composed by three main blocks, where
each one has a particular mission.

 Orchestrator: Responsible for onboarding of new services and virtual

network function packages. This element manage the overall network.
 VNF Manager: Oversees life cycle management of VNF instances,

coordinating and adapting his roles on the NFVI. This element manage
each VNF instance according to the specifications provided by the
orchestrator.

 Virtualized Infrastructure Manager (VIM): Controls and manages the NFVI
compute, storage and network resources.

In the following graph we show the diagram block of the ETSI MANO
architecture:

INTRODUCTION 15

Fig. I.3 ETSI MANO architecture

In the following points we will describe with more detail each element.

Virtual Network Function and Network Function Virtualization

Virtual Network Function (VNF) is virtual machines that mimic the function of a
specific hardware in the telecommunications field. And the Network Function
Virtualization is the configuration of the VNF for a specific purpose. VNF is an
object and the NVF is an instance of that object.

VNF Manager

This element manage the VNFs:

 Manage lifecycle of VNFs (deciding when create, maintains and terminates

VNFs).
 It is responsible of handle: faults, configuration, accounting, performance

and security of VNFs.
 It decide when scale up/down computation resources of the VNFs.

VIM

VIM manage NFVI resources in a domain, managing computing resources and
network resources. Between its tasks we find:

Development of an Orchestrator layer for a Wireless Cloud 16

 Manage the lifecycle of virtual resources (create, maintains and tear down
VM from the physical resources).

 Keep inventory of VM associated with physical resources.
 Monitoring, performance and fault management of hardware and software.

Expose virtual and physical resources to another management systems through
APIs.

Cloud Radio Access Network (C-RAN)

The union of the previous topics (SDR and Cloud Computing) allow to create
network infrastructures with better performance than traditional ones, improving
the spectrum efficiency exploiting the spectrum holes, deploy more cells with
small size and take advantage of the frequency reuse and make the
infrastructure flexible, green and more cheaper. This kind of infrastructures are
called Cloud Radio Access Network (C-RAN).

Heterogeneous network supported by Cloud Radio Access Network (C-RAN) is
expected to be the candidate for the new generation of access network
techniques [5].This new set of techniques allow to decouple the baseband
processing from the radio units and pooled in a centralized localization. This
new network structure is composed by:

 Base Station Pool (BSP): a centralized pool of computing resources whose

provide the signal processing and the orchestration of the overall network
required by the cells of the area [6].

 Optical Fronthaul: the digitized samples will travel from the BSP to the next
element ready to be sended to the user [6].

 Remote Radio Heads (RRH): the radio frequency signals from
geographically distributed antennas are end/receive digitalized signals
to/from BBU pool via optical fiber, and antennas are equipped with RRHs to
transmit/receive radio frequency signals (RF) [6].

INTRODUCTION 17

Fig. I.4 Cloud Radio Access Network architecture

With the resource of the BSP, C-RAN create BaseBand Units (BBU) whose act
as a digital unit implementation of the base station traditional functions. This
BBU is implemented using SDR, executed in a virtual environment (NVF),
orchestrated for a cloud platform and running under a GPP with multiples
acceleration tools as multicore, or multi threading, etc.

Common GPP (CPU and GPU) has a good processing capability with
affordable price but some modules of the processing chain need more power
as: Turbo decoder, FFT and MIMO decoders. For that modules hardware
accelerators (DSP and FPGA) are required, interconnecting the board through
the PCIe interface. By the other, hardware accelerator will be increase the price
of the infrastructure.

Development of an Orchestrator layer for a Wireless Cloud 18

CHAPTER 1. State of Art

This chapter introduces the state of the art of the previous topics, and the tools
that we used throughout this thesis providing context. In addition, we will
introduce the architecture and nomenclature of the used tools.

1.1 Software Defined Radio

Since the born of the SDR in 1991, there are multiples solutions to the market.
Until a few years ago, all this platforms were commercial and in a lot of cases
designed for military proposes. But currently, we can find open source platforms
in the market such as: GNU radio [7], OpenLTE[8], etc…

In the course of this project, we will work with Long Term Evolution (LTE) base
stations. For that reason, we decided to work with an open source platform
designed specifically for the emulation of the LTE base station called srsLTE.
Besides, srsLTE provides APIs to connect with several radio frequency
frontends that we are using.

1.1.1 SrsLTE

SrsLTE [9] is a free and open-source LTE library for SDR User Equipment (UE)
and eNodeB developed by Software Radio Systems. The library is highly
modular with minimum inter-module or external dependencies. It is entirely
written in C and, if available in the system, uses the acceleration library VOLK
distributed GNURadio [10].

The library currently supports the Ettus Universal Hardware Driver (UHD) [11]
and the bladeRF driver .

1.2. Cloud Computing

Nowadays Cloud Computing is a trending topic and several infrastructures are
deployed in virtualized environment. There already exists multiple platforms
available on the market. But we are just interested on the open source platforms
and IaaS solutions for deployment of the cloud. With these conditions,
OpenStack is the most suitable due to his reputation on the market.

1.2.1. OpenStack Architecture

CHAPTER 1. State of Art 19

OpenStack is a famous cloud computing platform designed for RackSpace
Hosting and NASA on 2010. It is deployed on python and it is a IaaS solution.
Several companies are using this platform to deploy their own private cloud
computing infrastructure, one of the most famous companies are AWS (Amazon
web service). Users manage their own infrastructure through a web-based
dashboard, command-line or via a RESTful API. [12]

1.2. MANO

The infrastructure proposed by ETSI [13] for the deployment of the VNF
appeared a few years ago and it is currently under deployment. The main
architecture of the standard and the functions of the elements are decided, but
connections and procedures are in development and have continuity
modifications.

Even all this problems, we can find platforms available on the market. Normally,
these platforms are focused on wire communication and they use OpenStack as
VIM. The most famous one is OPNFV [14] by Linux Foundation but we can
found others like OpenMANO [15], Gohan [16].

After investigating these platforms, we consider them too be difficult to install
and maintain and moreover the learning curve is too high. By the other hand,
they are mainly focused on wire communications, therefore, many features are

not adapted to wireless systems.

1.3. Cloud RAN

China Mobile was the first one to introduce the cloud-RAN concept in the
market a few years before. Using Intel processors of the Xeon family and single
optical fiber and wavelength multiplexing division, they deployed the first cloud-
RAN solution making a full virtualization of the fronthaul providing a LTE signal.
In the recent implementation, they introduce CoMP algorithm in the uplink. [5]

Even this fact, Cloud RAN solutions are in development and most of them are
private or they just provide a few functions of the overall potential. The only
open source solution that we found is Open Air Interface [17]. This platform
seems more focused on introducing 5G features on the cloud than providing
collaborative features to the existing ones. Commercial and open source

solutions are all implemented using OpenStack as VIM.

Development of an Orchestrator layer for a Wireless Cloud 20

CHAPTER 2. Objectives

With the background of the previous chapter, we thought that it could be
interesting to investigate in this topic and go in depth about some concepts.

We are interested on designing a cloud-RAN web-based platform following the
ETSI MANO standard but focusing on wireless communications running under a
cluster of GPPs, in particular on CPUs. We are also interested on creating a
flexible infrastructure to reduce the intracell interference, and hence, improve
the performance of the network while making a better use of the resources.
Once the platform is completed, the next step will be analyze and improve the
radio spectrum usage and reuse between several operators.

The currently ETSI MANO platform is not adequate for our purposes, because
they are mainly focused on wire communication. For that reason, we decided to
deploy a Cloud-RAN from scratch using OpenStack as a VIM and following the
architecture of the ETSI MANO standard.

The objectives of the platform are:

 Create a real LTE processing chain and test it in the virtual environment.
 Share computational and radio resources between several operators.
 Make an intelligence reuse of the radio spectrum resources taking into

account the interference with the operators and cells.
 Deploy cognitive infrastructures that can follow the subscribers bit rate

demand depending of the time-geographic pattern.
 Deploy partial virtual infrastructures (BTS) and full virtualized infrastructures

(BTs, channels and subscribers).
 Design a system to monitor all the elements of the infrastructures and

actuate under fault conditions.

The results provided by the platform will be useful to make a comparison
between traditional infrastructures and cloud RAN in terms of radio resources
usage. Besides, partial and full virtualized infrastructures will be combined in
order to make the simulation much more realistic.

Finally, we will make an analysis about the CAPEX/OPEX costs of the cloud-
RAN infrastructure deployment versus the traditional ones.

CHAPTER 3. OpenOrchestrator Cloud Radio Access Network (OOCRAN) 21

CHAPTER 3. Open Orchestrator Cloud Radio Access
Network (OOCRAN)

Regarding the objectives, we propose to develop a framework with the
appropriate functionalities to achieve them. The platform will be called Open
Orchestrator Cloud Radio Access Network (OOCRAN), and it will be designed
in python using the popular web framework called Django release 1.9 as a
programming platform and OpenStack as a VIM. The project code is open
source and is availiable on this repository [18].

3.1 Django

Django [19] is a web framework based on Model-View-Controller (MVC)
software architecture. MVC provide a clean, organized and agile programming
methodology. This architecture is widely extended and used [20]. Thanks to that
fact it will be easy to make modification to the code from third parties.

The MVC software architecture allows to divide:
 Views: are the front-end which is a graphical user interface (GUI) designed

using HTML, CSS and Jquery.
 Model: are a methodology for capture and manipulate data from a

database. Django allows to work with multiples kinds of database.
 Controller: are the back-end of the platform. They take decision according

to the GUI requests and the model data. The controller are full programmed
using python.

Django allows to work with multiples controller providing a clean and organized
program architecture.

3.2 OpenStack Architecture

OpenStack [12] is a IaaS cloud computing platform that allows to administrate
virtual machines and computational resources. OpenStack is composed by
several elements called services. Each service has a specific intent. All services
are interconnected to improve the management of the overall system. The
following picture shows the interconnection between services:

Development of an Orchestrator layer for a Wireless Cloud 22

Fig. 3.1 OpenStack Architecture

We will explain the architecture from inside to outside. The core of the platform
is the hypervisor, OpenStack works with several commercial hypervisor such as
KVM, VMware, docker, etc. In order to configure the hypervisor skills for a
particular VM, we found Nova service. Nova handles the VMs: manage the
lifecycle, configure the parameters, etc. VMs run with a particular Operation
System (OS) which is provided by Glance. This service is a repository of
images that provides OS to the VMs.

Multiple VMs can be interconnected composing a network, in this network we
find routers, switches, etc, all these elements are managed by Neutron service.

Networks and VMs are the elements that users pay for, therefore Keystone
service manage the users permissions and allow or deny access to these
elements. Their main function is as middleware.
Users need to manage their own infrastructures. Horizon provides a web server
front end to handle users infrastructures.

Finally, we find Heat, this service is an infrastructure creator. Using a program
language wrote in the template, users can deploy and save infrastructures.

There are more additional services in the OpenStack architecture, but we have
just explained the most commons.
The main intents of each service is:

 Nova: manage the lifecycle of the VMs.
 Glance: provide images to run VMs.
 Neutron: manage the networks.

CHAPTER 3. OpenOrchestrator Cloud Radio Access Network (OOCRAN) 23

 Keystone: provides security and permissions in the VMs.
 Horizon: is a web front-end for to handle the infrastructure.
 Heat: manages the virtual infrastructures.

OpenStack works with a particular hypervisor, for this project we selected KVM
because it is an open source project and provides good performance. However,
it is necessary to introduce some optimization features in order to administrate

the scheduler of the VM allocation on the CPUs.

3.3 OOCRAN Architecture

As we said in the chapter 2 (Objectives), we will follow the ETSI MANO
standard but introducing a new element on the architecture. This element will be
a pool of radio frequency resources (radio frequency spectrum), where various
tenants will share it between them. The objective is to manage jointly and
consistently all available resources to create the necessary infrastructure to
support to a wireless operator.

Then the architecture of the OOCRAN will be:

Fig. 3.2 OOCRAN Architecture

Development of an Orchestrator layer for a Wireless Cloud 24

3.4 Tenants, roles and grants

With the implementation of ETSI MANO architecture also appears new
business models with new players interacting between them. In the course of
this thesis we will play one or multiples roles, thus it is time to define them and
their associated privileges in the OOCRAN platform. These players can be
defined as:

 Telecommunication Service provider (TSP): are the common mobile

providers such as Orange, who provide connectivity user to user or user to
Ethernet.

 Subscribers: are the clients who consume the TSP services.
 Infrastructure Provider (InP): are the entities who are renting the

infrastructure, in this case RF front ends and the networks.
 Server Provider (SP): provides computing resources in order to run NVFs.

Amazon web service (AWS) can be an example of SP.
 VNF Provider (VNFP): this entity provides VNF in order to emulate network

functions in a virtualized environment.

TSPs will provide connectivity to the subscribers through the InP and SP.
Moreover, TSP will provide a specific service (wireless standard) to the
subscribers implemented by a VNFP.

Fig. 3.3 Interaction between characters

In the course of this project, we will represent all the roles, but OOCRAN is
designed for InP and SP. The investigation done in this project will benefit TSP,
InP and SP. Finally, we will represent the VNFP role and the subscribers in
order to make the testing of the platform.

CHAPTER 3. OpenOrchestrator Cloud Radio Access Network (OOCRAN) 25

3.5 Cluster Infrastructure

Once the concepts are explained, it is time to talk about the built infrastructure,
the proprietary of this infrastructure is the SP and OOCRAN will configure the
resources provided by this cluster. The infrastructure was created using the
default installation of OpenStack release Mitaka, using a self-service network.
Self-service allows each TSP to administrate their own network.

OpenStack in this release is composed by at least one controller node and one
compute node. Controller node will manage the resources and virtual networks,
by the other hand compute nodes are containers where the controller node
attach and configure VM on it.

The hardware used by the implementation of the OpenStack have the following
features:

 Controller

(freq, cores,
threads, cpus)

Compute 1

(freq, cores,
threads, cpus)

Compute 2

(freq, cores,
threads, cpus)

CPU (GHz) 2.37*4*2 2.37*12*2*2 2.37*12*2*2

RAM (GB) 8 52 52

Disk Space (GB) 120 240 240

Network (GBps) 1 10 10

Table. 3.1 Hardware specifications

The RRHs are USRP N210 which can recollect 25MS/s at 16 bits per sample,
generating a maximum throughput of 25x32 = 800Mbps. By default we can
connect with the USRP using a IP connection, attached in the 192.168.10.0/24
network.

The interconnection between all elements: USRP, OpenStack and OOCRAN is
available on the next figure:

Development of an Orchestrator layer for a Wireless Cloud 26

Fig. 3.4 OOCRAN hardware implemented

USRP are connected in the private network in order to provide connectivity to
the NVF. By the other hand, OOCRAN will be connected with OpenStack
through the controller in order to use the OpenStack APIs.

Once the infrastructure is created, the next step is to configure the computer
resources management of the cluster. This configuration allows to do a better
resources usage configuring the scheduler.

3.5.1. Software Layer Optimization

In this section we will describe the additional features activated on the
OpenStack for the computational resources scheduler.

We though that the best configuration would be allocate each VM on a physical
core, however, once we were doing the testing procedure, we did realize that
we were wasting a lot of resources because the software modules (SDR) were
not consuming all the available resources of the physical core. For that reason,
we decided to configure the following parameters:

The first one is to force the CPU model of the NVF, avoiding the virtualization of
CPU model. By doing that, we can use the optimization features of the CPU
without emulation, increasing the performance. This features will be
configurated on the nova configuration [21].

CHAPTER 3. OpenOrchestrator Cloud Radio Access Network (OOCRAN) 27

Parameter Function

Cpu_model = custom Allows to decide the family of the
virtual CPU.

CPU_mode = host-passthrough The virtual CPU family will be the
same as the physical CPU

Table. 3.2 Configured nova parameters

Another feature is limiting the CPU usage of the NVF. Depending on the
configuration of the NVF, the VM will waste more resources or less. By limiting
the resources usage of each NVF, we can attach multiples NVF on the same
core of the physical CPU. Besides, if one NFV fails it does not storb other
NFVs. With the period and the quota we can limit the CPU usage. For example,
if the quota is the half of the period, the CPU usage is 50%. By the other hand,
it is necessary to activate the CPU pinning in order to apply these features [22]
[23]. This features will be establish with the creation of the VM:

Parameter Function

Hw:cpu_period = 5000 Establish what period of time will give
resources to the VM.

Hw:cpu_quota = 2500 Establish the maximum number of
resources that will be provided to the
VM.

Hw: cpu_realtime = yes Allows to run the VM under a real time
scheduler (FIFO, Round Robin)

Table. 3.3 Virtual machine configuration

CPU pinning works running processes in different cores of the CPUs, providing
resources to the particular process during a few period of time and then jump to
another core. Thus, VM are reserving time processing of a particular core, not
an entire core. This system allows not to force a particular core increasing the
lifespan of all the physical cores.

Fig. 3.5 Pinning effect

Once the hardware is configurated, it is time to move to the virtual environment
where we will explain the virtual infrastructures implemented which are running
under the implemented cluster.

Development of an Orchestrator layer for a Wireless Cloud 28

3.6 VNF Implementation

All virtualized elements must be implemented in a VNF. We can find three types
of them: base stations, channels and subscribers. We assume, all them are
software modules running under a particular OS. We selected Ubuntu 14.04,
due to the fact that we worked with them before.

The BTs and the subscribers are implemented using the srsLTE library (SDR
code). But LTE standard has a strict requirements of real time (1ms), thus we
need to used optimization features (VOLK libraries, SSE options, etc) in order to
improve the performance of the code.

This software module allows to configure the following parameters: carrier
frequency, bandwidth, power supply, modulation and code scheme (MCS), the
message and the IP direction of the remote radio head. If these parameters are
set in the boot command of the software module, OOCRAN will be able to
configure the NFV without having to change the OOCRAN code. Therefore, it
will be able to work with any sort of signal, bringing flexibility and agility when it
comes to define a deployment.

./pdsch_enodeb_file -a addr={{ip}} -l 0.3 -g {{pt}} -f {{freC}} -p {{BW}} -i

../../../rfc793.txt -m 1 >> /home/nodea/run.log

This example allows booting a software module that generates LTE signals.
Then, all the resources are given to a single user and the result is stored in .log
file. The attributes in brackets “{{}}” indicate that it will be OOCRAN who will
decide their value.

By the other hand, we will use a virtual channel that has a behavior of Additive
white Gaussian noise, where we can configure the signal-to-noise ratio (SNR)
level.

Finally, we introduce several interfaces to the all VNFs in order to reconfigure
parameters and process data from other VNFs, creating a realistic
communication system.

Once the VNFs are created, we can provide services using one or multiples
VNFs. The provided service is a communication system.

3.7. System Communication Definition

We can characterize any communication system with a transmitter, channel and
a receiver. As we explained in the objectives section the full chain can be
virtualized or just parts of it. All the communications are using the User
Datagram Protocol (UDP) protocol.

CHAPTER 3. OpenOrchestrator Cloud Radio Access Network (OOCRAN) 29

We will start describing the common configuration for the cloud-RAN, where we
just virtualize the front-haul. The base station (NVF) will connect with RRH
through an IP connection using the UDP protocol. In this case and in order not
to have errors of real time we have configured the protocol to be not blocking,
that means that the transmitter do not waits for an acknowledgment from the
receiver.

In the following figure you can see the communication chain:

Fig. 3.6 Fronthaul virtualizing architecture

NVF and RRH will be inside the private networks, specifically, NVF will be in
20.0.0.0/24 and RRH in 192.168.10.0/24. When a NVF is launched the VIM will
assign an IP to each VM using the DHCP protocol. It will be OOCRAN task to
associate each NVF with its corresponding IP. This task will be carried out using
the NOVA and Neutron APIs. The IP configuration of the RRHs must be done
by hand.

Apart from the connection interface with the RRH, each BTs will have several
services running in parallel.

 Reconfiguration service through the port 5001. The connection will be

established with the OOCRAN to reconfigurate one or several attributes of
the BTs.

 Data gathering service through the port 8888.

The full virtualized chain has more virtualized elements but all of them have the
same interfaces than the previous architecture. The software modules can run
in a separated NVF or in the same VM saving then more resources. In the
following example all the elements will be virtualized, therefore, it will be
necessary to create a circuit that connects all the NVF if we decide to launch
each NVF separately. To do such circuit, we will place each NVF in a different
subnet, BTS (20.0.0.0/24), channels (30.0.0.0/24) and subscribers
(40.0.0.0/24), the IPs will be assigned using the DHCP protocol. Again,
OOCRAN will configure the connections as well as the different networks.
 In the following image, we can see the resulting circuit:

Development of an Orchestrator layer for a Wireless Cloud 30

Fig. 3.7 Full communication system virtualization

Once the communication system was implemented, the next move was to
design an infrastructure composed by multiple communication systems (mobile
deployment) that work together, in this case these infrastructures provided a
wireless mobile service.

3.8 Virtual Network Infrastructure

The communication systems are interconnected because the elements
exchange data, thus we designed a network of base stations, virtual channels
and virtual subscribers.These network is specific for each area and TSP,
therefore, each area will have as many as networks as TSP. These networks
will be built when the InP introduces a new area, and they will have the
following configuration:

Fig. 3.8 Virtual network infrastructure architecture

CHAPTER 3. OpenOrchestrator Cloud Radio Access Network (OOCRAN) 31

Each network is composed by 3 subnetworks:

 BTs network where NVFs that will play the role of BTs will be assigned. The

range of IPs that will be assigned is 20.0.0.0/24
 Channels network, the proposed IP range is 30.0.0.0/24
 Subscribers network where NVFs will be assigned IPs in the range

40.0.0.0/24.

As we can see in the previous figure, every subnetwork is connected to the
interface that gives access to the outer network where there are the USRPs.
We decided to implement this network because it is well organized, thus, it will
allow us to look for the NVF in more efficient way and at the same it is easy to
build. The template to generate this network can be found in the annex 1.

Over this infrastructure we will deploy one or multiple mobile infrastructures. We
allow to deploy multiple mobile infrastructures because by doing that we can
make a macro cellular deployment and a micro cellular deployment at the same
time. Then, we can administrate them in a different manner and therefore, a
change in a particular deployment does not interfere on the other infrastructures
of the same TSP.

Mobile infrastructures combine complete and partial communications systems.
Besides, it will be possible to use different wireless standards with different
configurations for each standard. Virtual channels and subscribers of each base
station will be defined in the same template. In annex 2 there is an example of
these templates.

On the next section we will explain how we created the virtual network
infrastructures and configured the NVFs.

3.9 Virtual Network Manager (VNFM)

The main function of the VNFM is to manage the VNFs and communicate the
configuration to the VIM through the OpenStack API. In this section, we will
explain how we will use the OpenStack API in order to configure the mobile
deployment.

As we explain in the section 3.5. (Cluster infrastructure), there is a specific
module of OpenStack deployed for the implementation of the infrastructures,
this module is called Heat and works with templates which is a particular
programming language. In these templates we will define the elements of the
infrastructure [24].

OOCRANs’ tasks are programmed and stored by using these templates and
according the specifications from each TSP. Once the template is written, it will
be sent to the VIM in order to create the expected infrastructure. The template

Development of an Orchestrator layer for a Wireless Cloud 32

will be stored in a repository of infrastructures, then we will launch one or more
templates when certain conditions are met.

In heat templates we will find several kinds of elements (VM, switches,
networks, subnetworks, etc). Regarding the network elements, we just have to
configure the input/output ports, IPs ranges.

In the case of VM, it will be necessary to configure several parameters to define
the NVF properly. The structure to create a NVF using templates is the
following:

Element_name:
 type: OS::Nova::Server
 properties:
 name: {{name}}
 image: {{image}}
 flavor: {{flavor}}
 networks:
 - network: {{network}}
 user_data_format: RAW
 user_data: |
 #cloud-config
 runcmd:
 - {{script}}
 - sh /home/nodea/start.sh

The command type: OS::Nova::Server indicates the sort of element his
properties are explained in the list below:

 Name: NVF identifier, for instance, in the case of BTs we will identify them

using a numerical value.
 Image: This is the software, by software we mean the whole operative

system with its SDR modules that are going to be executed. As we have
explained in the previous section, 3.6 VNF implementation, we have
created these images.

 Flavor: hardware specifications (CPU time, amount of RAM and space on
the disk). It is important to define the flavors so as to optimize the use of the
hardware resource and do not waste them. That’s why we designed an
algorithm to define the flavors that we will explain later.

 Network: It indicates the network where the NVF will be connected.
Depending on the task of the NVF it will be connected in one network or
another.

 Script: Inside the VM there are several software modules and depending on
the task, we should execute one or another. The execution of this software
module will be done with a script. It is important to highlight that this script is
programmed in bash as it allows to execute several modules in sequence or
create complex execution structures.

CHAPTER 3. OpenOrchestrator Cloud Radio Access Network (OOCRAN) 33

The module that decides the values of the properties is the orchestrator, who
depending on the state of the infrastructure take decisions. In the next section
we will talk with more detail about the orchestrator.

3.10 Orchestrator

The main goal of the orchestrator is to administrate the virtual infrastructure,
deciding the configuration parameters of the virtual network manager.
Furthermore, this module contains the user interpreter that was designed using
MVC software architecture explained on the section 3.1 Django.

Besides, for the orchestrator implementation we used Google maps APIs
providing a visual location of the RRHs, and bootstrap to improve the visual
interface experience.

As we said on section 3.1, Django works with multiples controllers and the
architecture proposed has the following controllers:

 Vnfs: administrate the VNFs making a repository where the properties and

the execution command of each one will be saved. BTs, channels and
subscribers have the same defined properties explained on the section 3.4
VNFM. Furthermore when the TSP introduce a new VNF, this controller do
a monitoring of the computational resources usage by the NVF and create a
virtual hardware (flavor) with the minimum requirements for avoid resources
wasting.

 Operators: administrate the TSPs and his own configuration (OpenStack
credentials, MCS, settings, etc)

 Scenarios: Administrate the areas where the TSP allocate the RRHs and
save the properties of each one (location, neighbors, frequency carriers,
maximum power supply, maximum bandwidth allowed). Furthermore this
controller create the virtual network infrastructure.

 Users: administrate the subscriber repository and the connections between
subscriber and BTs.

 Deployments: administrate the NVFs, channels and deployments, working
similar to the scenario controller using a CSV file, where TSP indicate the
base stations, channels and subscribers. Betwen his tasks there are the
frequency reusing and the creations of the mobile deployment.

For each area, we have a demanded bit rate forecasted according to the hour of
the day. Then the TSP can select two deployment ways. Those ways will be
administrated by the deploy controller, configuring the NVF parameters.

 Make a mobile deployment according to a forecast indication the period of

time where the infrastructure will be active. Once this will be done the
infrastructure will be deleted. The TSP is who decides when and what
mobile infrastructure will be the most suitable.

 Let OOCRAN search for the best mobile infrastructure according to the
demand. In order to work with this mode will be necessary to provide to
OOCRAN a mobile infrastructure repository. From this repository OOCRAN

Development of an Orchestrator layer for a Wireless Cloud 34

will search for the more suitable one (bit rate demand) depending of the
hour of the day.

For each mobile infrastructure the deploy controller must assign a price
according to the number of NVF launched and the bandwidth used by each one.
The price will be specify on the section 4.5 cost implementation.

With the OOCRAN architecture being explained, we can move to the result
chapter where we make the testing process of several OOCRAN functionalities

CHAPTER 4. Testbed 35

CHAPTER 4. Testbed

In this chapter we present the results obtained from defined case study where
developed OOCRAN platform shown their capabilities. The case study, that
include the deployment and management of the mobile infrastructure, provided
the scenario where to perform the test defined in chapter 3 (objectives)

4.1. Scenario description

Case study defines a mobile deployment in the EETAC campus using
femtocells. Femtocells have a cell radius around 30 meters. They are normally
used in hotspot areas, however, in the new mobile generation 5G it is expected
to make large deployments with this kind of base station. Thanks to its small
coverage range it facilitates the application of spectrum resource management
techniques, like frequency reuse to improve the bit rate. But it must be done
under the cloud management premises.

Depending on the purpose of the test, we adapted the location, power supply
and number of base station on the map. All the test has been done with the
same assumptions:

 Femtocell deployment: the C-RAN will use this kind of base stations.
 Omnidirectional antenna pattern: more realistic pattern are difficult to

implement and they do not introduce conceptual advantages on the test
proposed.

 Free Space Propagation model: depending on the area the model will
change.For that reason we used the most common and simple one.

 Overlook the city clutter (attenuation): introduce more complexity to the
platform and its effect does not contribute so much to the proposed study.

 The RRHs can work with various frequency carriers: C-RAN was designed
with these configuration in mind so it is strictly necessary to apply it.

 BTs allow sending data to multiple subscribers at the same time by
assigning different bit rates to each one.

 All frequency carrier has a bandwidth of 1.4MHz to limit the scope of this
study although any LTE bandwidth is available under current lab
infrastructure.

4.1.1 Link Budget

Under a realistic case study it is mandatory to calculate the the link budget. Link
budget is a power balance of the communication system, moreover, the link
budget sets a maximum cell range available for the transmission [25].

Development of an Orchestrator layer for a Wireless Cloud 36

Downlink

Uplink

 data rate 1 Mbps data rate 64 Kbps

Transmitter - eNode B Transmitter - UE

HS_DSCH power (dBm) 23 Max. TX power (dBm) 24

TX antenna gain (dBi) 0 TX antenna gain (dBi) 0

cable losses (dB) 0 Body loss (dB) 0

EIRP (dBm) 23 EIRP (dBm) 24

 Receiver- UE Receiver - eNode B

Noise figure (dB) 7 Noise figure (dB) 2

Thermal noise (dBm) -104,5 Thermal noise (dBm) -118,4

Receiver noise floor (dBm) -97,5 Receiver noise floor (dBm) -116,4

SINR (dB) -10 SINR (dB) -7

Receiver sensibility (dBm) -107,5 Receiver sensibility (dBm) -123,4

Interference Margin (dB) 0 Interference Margin (dB) 2
Control channel overhead
(dB) 0 Cable Loss (dB) 2

RX antenna gain (dBi) 0 RX antenna gain (dBi) 0

Body loss (dB) 0 MHA gain (dB) 2

Maximum path Losses (FSL) 130,5
Maximum path Losses
(FSL) 141,4

Table. 1.1 Linkbudget Calculus

As we have mentioned before, OOCRAN can work in two different modes:
 a) Virtualization of the fronthaul.
 b) Virtualization of the whole system.

The virtualization of the whole system provides a powerful simulation tool
without wasting power resources in radio transmission. Moreover, it opens the
way to scenarios, mixing simulations and real RF links that can provide
interesting results at lower development/deployment cost.

Besides, the fact of creating a system chaining several NVFs allows us to
decouple the implementation of each one of them. These changes in each NVF
without it affecting the others. On the other hand, if we implement a new
software module following the characteristics described in the section 3.7 we
could send the signal to a RRH or a RRH of another manufacturer just by
changing the drivers without modifying the SDR code.

Virtualizating the fronthaul ,we can send IQ samples and remove the
processing chain of the RRH. If in the future we wanted to compress data
between the BT and the RRH it would be as easy as add a new element that
would do such operation.

CHAPTER 4. Testbed 37

Therefore, the fact of implementing the communications in several elements
provides us additional flexibility.

4.2. LTE processing chain

The first step is to test a common communication system composed by

transmitter, channel and receiver. As mentioned before, our goal is to
implement two kind of virtualized components/subsystems: fronthaul
virtualization and full chain virtualization. It is important to test and characterize
the signal on both communication systems.

For this test, we transmitted a the data from a text file using a LTE downlink with
a bandwidth of 1,4 MHz and a MCS of 1 (QPSK). We are just using only the
physical layer of the downlink of the base station, because other layers do not
contribute to improve the received wireless signal.

4.2.1. Real channel transmission

In this scenario the NVF sends IQ samples to the RRH using a a UDP protocol
that requires up to a throughput of 80 Mbps. Our initial processing cluster
infrastructure was designed with CAT 5 Ethernet cables, which support 1Gbps.

At this point we found a bottleneck on the cluster infrastructure. These
bottleneck is produced because all traffic needs to pass through the controller
node in order to reach the RRHs. This fact allows to create virtual networks
between VM attached in different compute nodes but introduce an unnecessary
loop on the cluster.

The signal transmitted by the RRH and captured by an spectrum analyzer at 5
meters from the source is shown in , the following figure:

Development of an Orchestrator layer for a Wireless Cloud 38

Fig. 4.1 LTE channel captured

We can see that the ACLR (adjacent channel leakage ratio) is around 49dB ,
the bandwidth close the expected value of 1,4 MHz and the noise floor around
49dBs [26] what can be considered as a good enough generated signal. The
receiver can demodulate the signal with a resulting BLER (Block Error Rate) of
0.02 which indicate that the channel is good and the system is robust.

4.2.2. Full virtualized processing chain

Once we have seen the results of the front-haul virtualization, we experienced
the same routing problems with the “Controller”. Thus in order to avoid the
bottleneck installed all the software modules (transmitter, channel and receiver)
on the same NVF. To execute this NVF has been necessary to reconfigure the
ports and assign localhost to all IPs addresses involved. With this configuration
the traffic flow is not routed outside the computing network avoiding the
bottleneck.

The signal transmitted in this case has the same configuration than the previous
real RRH system, but we emulate the channel with a SNR around 5dB. The
channel introduce degradation on the signal producing errors on the
demodulation process. Even assuming the channel effect the resultant BLER is
around 0,02 good enough for the LTE communication system. The following

CHAPTER 4. Testbed 39

figure, illustrate the results, where the yellow window is the transmitter, the blue
window is the channel and finally the green one the receiver.

Fig. 4.2 Full virtualized communication system test

In order to allow communication between all system modules, it was necessary
to make a port reconfiguration without repeat ports.

4.3. Radio frequency resources Scenario

Once the communication system was tested is time to implement a mobile
infrastructure with multiples base stations and applying techniques of mobile
deployment. One of the important objective of this project is the analysis the
frequency reuse under a cloud environment. This tested has been specially
designed to study it.

In the section 4.1. (Scenario description), we supposed that all the antennas are
omnidirectional. With this configuration we can approximate the cell effective
range by an hexagon, where in each side there are a frequency overlapping
with other base stations. Taking this in mind, the best way to implement a
frequency reuse without waste radio resources is using three frequencies as
like the following figure illustrate:

Development of an Orchestrator layer for a Wireless Cloud 40

Fig. 4.3 Frequency reused applied [27]

By the other side, this frequencies reuse is particular for that TSP. If another
TSP works on the same area, he will need three new frequencies as well.

4.3.1. Frequency bands reuse

In this case study we will deploy a mobile infrastructure like to the cluster
showed on the figure 4.3. As we can observe in that figure each base station
has at least three interference except the central base station who experience
six interference. Thus our main goal is to provide LTE services in the area using
just three frequency carriers.

 In fact this problem is a coloring graph theory, therefore we search about this
theory in order to implement the frequency reuse algorithm.

The orchestrator knows the base station location, his base station
neighbors and the assigned frequencies. Thereby when a TSP request for
frequencies carriers the orchestrator must do a overview of the network and
decide the best frequency carrier for each base station.

Note that InP is who provides the frequency carrier and the TSP just request for
a frequency carrier with 1.4 MHz of bandwidth.

Data: neighbors_assigned, bt_assigned,
Result: Assigned carrier frequency

freC = 2.39 GHz #starting available radio frequency band

While (True)
 If not carrier in neighbors_assigned do #look for neighbor assigned
frecs
 If not carrier in bt_assigned do #look for actual BT assigned frecs
 assign_freC = freC

CHAPTER 4. Testbed 41

 break
 Else
 freC=freC+1.4MHz
 Else
 freC=freC+1.4MHz
end

The next figure indicates that the frequency reuse is correct, using three
frequencies for the deployment. The resultant frequencies are 2.3907 GHz,
2.3921 GHz and 2.3935 GHz, the distance between carriers is 1.4 MHz and the
useful spectrum starts on 2.39 GHz.

Fig. 4.4 Frequency reuse applied on OOCRAN

4.4. Dynamic deployment under demand

In the previous two sections, we tested the communication system and the
infrastructure network. The next step has been to make periodical updates of
the mobile infrastructure. The modifications can be done following two
methodologies:

a) Reconfiguring the NVFs one by one.
b) Delete the entire mobile infrastructure and deploy a new one.

Selecting the second methodology it is necessary to create a new mobile
infrastructure from scratch and this process takes some additional time. In this
section we will focus on the advantages of making a new mobile infrastructure
from scratch. This test will be useful to analyze the radio resource savings.

Development of an Orchestrator layer for a Wireless Cloud 42

For this test study, we tried to follow two time-geographical traffic patterns: the
residential and business ones. These two patterns are commonly observed in
any mobile infrastructure.

Fig. 4.5 Time pattern used on OOCRAN [28]

In the traditional deployment the best way to provide a good service for the
customers is to design the infrastructure for endure the “busy hour” (the hour of
the day when there are more connecting and more traffic demand). With this
deployment is easy to see that in a lot of cases we are wasting a lot of
resources. One of the options is to shut down base stations, saving power
consumption but the TSP is still paying for the radio spectrum not being used at
in that moment.

In C-RAN, we can shutdown the RRH and eliminate NVF for saving resources.
The question is how faster we can react to the changes in the traffic pattern. It is
well known that a good characterization makes possible to enhance energy and
spectrum resource savings. Remember that in C-RAN the TSP paid for the use
of resources not for buying them.

4.4.1. Out Rate study

The cell load can suffer modifications every 1ms (processing time of LTE), if we
can reconfigure the base station at that speed the bit rate demanded will be
equal to the offered bit rate. In that situation there are not radio resources
wasting, but it is impossible to achieve this requirement if the mobile
infrastructure requires to be expanded or reduced (create or delete NVFs).

CHAPTER 4. Testbed 43

Then, the proposed solution is using a moving average, normally making the
average every hour. Therefore, normally we are covering the area, however,
there are period of time where we are wasting resources and others where the
cell is overload. The following graph illustrate this situation:

Fig. 4.6 Out rate example

Then we could build a mobile infrastructure above the average, avoiding the cell
overload and wasting more resources or build the mobile infrastructure below
the average saving resources but making the subscriber wait in order to get
services. We would like to maximaze the following formula:

𝐶 𝑡 = 𝑅𝑢 𝑡 − 𝑅𝑤 𝑡 + 𝑈𝑆(𝑡)

 C(t): cost-benefit function.
 Ru(t): resources used.
 Rw(t): resources wasted.
 US: unattended subscribers leads to unsatisfied clients and that generate

losses.

The Ru(t) generate profits, the Rw(t) and unattended subscribers generate
losses. Thus, it is necessary to found a suitable point on the C(t) function that
allows save resources providing the maximum profits without unattended
subscribers. It is easy to see that depending on the speed of the mobile
infrastructure modifications this costs will be higher or lower.

With our own physical infrastructure we took VM creation speed measurements,
and we saw that the launching and configuration of the base station, takes at

Development of an Orchestrator layer for a Wireless Cloud 44

least 30s for one VM. And if we desire to reconfigure several of them this time
increases following a polynomial function. The following graph illustrate this fact:

Fig. 4.7 VM time creation study

The VM time creation make impossible to follow the bit rate demand, but we
can do a partial reconfiguration of the infrastructure in order to reduce the radio
resources waste. In this study we delete the whole mobile infrastructure an
launch again with the new reconfiguration.

In our scenario the deployment area is the EETAC campus with around 419m x
139m = 58241m², where making a deployment from scratch requires:

Number of BT Area Time

1 3.14*30²x1 = 2826 m² 30,12s

5 14130 m² 33,49s

10 28260 m² 45,87s

20 56520 m² 60,19

21 59346 m² 60,23s

30 84780 m² 84,63s

Table. 4.2 Time reconfiguration according to the area

In addition, we need one minute to implement the a new infrastructure from
scratch. During this process all the subscribers attached to each base station

CHAPTER 4. Testbed 45

are released and the connection freed are not recovered until the creation of the
new infrastructure finished.

As a result we should avoid updating the mobile infrastructure for small periods
of times. The common time-geographic patterns are represented in periods of
time of an hour, during this time the traffic demanded do not have a lot of
variations. So we can assume that updating the infrastructure each hour is
technologically possible.

OOCRAN allows to do this reconfiguration in automatic way, making a
repository of infrastructure and according to the traffic demand forecasting
launch or delete infrastructure depending on the hour of the day. OOCRAN
calculates the traffic offered by each infrastructure and decide what is the most
suitable according to the current demand.

The algorithm used are the following:

Data: forecast, catalog, select
Result: array of best deployments
for sample in forecast:
 Select = x
 for deploy in catalog:
 if deploy == sample:
 select = deploy
 continue
 if deploy > sample and deploy < select:
 select = deploy
 continue

With this algorithm the results provided with a repository with four deployments
saved was:

Fig. 4.8 Dynamic deployment using OOCRAN

A preliminary objective has been to create a repository with a number of
deployments with enough granularity where to find the the best suitable one
according to the requirements.

Development of an Orchestrator layer for a Wireless Cloud 46

4.4.2. Infrastructure Management Strategies

On the previous section, the results obtained indicated that we can achieve a
reconfiguration time of one minute in our scenario. However, this is not true
because if we setup this configuration the mobile infrastructure will be updated
every minute, hence there will be no time to provide service. Therefore, first it is
necessary to apply more relaxed time scheduler and look for a softer
reconfiguration algorithm that allows to reconfigure the mobile infrastructure
without call faults.

An enhanced methodology for updating the infrastructure is doing a partial
reconfiguration and force the attached subscriber to do a handover to new
auxiliary cell. With this process we avoid the call failure making more profitable
the mobile infrastructure. However we increase the reconfiguration time
(subscriber must do two handovers in each reconfiguration) and increase the
radio and compute resources using a auxiliary cell. Moreover the auxiliary cell
must have enough capacity in order to provide services to the new subscribers,
making this process more complicated (reduce bit rate by subscriber in order to
attach more subscriber, etc)

4.4.3. Comparative dynamic vs traditional infrastructures

It is obvious that dynamic deployments introduce a lot of flexibility to the
infrastructure but clearly become more difficult to administrate. This problems
increase with big infrastructures where it is necessary to perform multiples
partial reconfiguration.

The most advantage of the dynamic infrastructures are on the radio spectrum
usage where for example in the figure 2, with a repository with 4 infrastructures
we achieve a radio spectrum saving around the 40%.

In a traditional infrastructures, we can just reconfigure base station changing the
bandwidth, power supply and frequency carrier but for example it is not possible
to change the wireless standard or apply algorithms in order to improve the
service. These are additional flexibility that must be taken into account in the
cost equation. Moreover the business model of the traditional mobile
infrastructure do not allow to do a good spectrum usage making the OPEX
investments higher.

4.5. Implementation cost

The final case study is the cost of investment of the C-RAN infrastructure. In
this section we analyze the cost of the CAPEX/OPEX and we propose a cost
models for the use of the infrastructure. The calculation has done in eur/Mbps
which allows to make a comparison between both infrastructures (traditional vs
C-RAN).

CHAPTER 4. Testbed 47

4.5.1. CAPEX

In this cluster infrastructure two conventional computers has been used, one for
management and the other for computing purposes. The code to process LTE
is open source, so the derived development cost has not been taken into
account. The price of the rental and cooling system are not taken into account
because we rent a place then the price will be included on the OPEX. The
equipment considered have the following features and price:

 Feature Price

Intel i7 3 generation 2,67 GHz, 8 cores 1000 euros

Intel Xeon 2,37 GHz, 48 cores, 52GB RAM 10000 euros

USRP 210N 100MS/s at 8 bits with a BW of
20MHz

1810 euros

Ethernet wires CAT 6 (10Gbps) 6 x 5 =35 euros

Total price 7845 euros

Table. 4.3 Hardware specification and price

The infrastructure can be created using multiples compute nodes reducing the
price of the infrastructure. This asseveration is not totally true. The use of more
compute nodes requires to occupy more space. Equipment footprint should also
be taken into account.

Note that we are not taking into account the RRHs installation setup, which can
be expensive in some cases.

Fig. 4.9 LTE speed in function of the modulation and BW [29]

Development of an Orchestrator layer for a Wireless Cloud 48

According to the table LTE with a bandwidth of 1,4MHz using a QPSK
modulation total Mbps provided are 1,7 Mbps, therefore the total cost in
eur/Mbps is:

Total cost = 7845/1,7 = 4614,70 eur/Mbps

At the end, the total price for MBps is quite lower if we compare with the
traditional one, the main reason is the implementation in GPPs are more
cheaper than ASICs.

4.5.2. OPEX

To calculate OPEX maintenance costs of computer and USRP are checked.
Once this step is done, a cost will be assigned to each resource and according
to the use given the user will pay a different price.

The costs are:

 Electricity tariff: 0,15 eur*KW.
 Useful life of the component around 2 years.
 Cooling electricity consumption: 2KWh.
 Rental around 400 eur*mouth.

Maintenance costs are:

Resource Feature Total price

Compute
node

2 CPU with maximum
usage 85 W

2*(85/1000)*0,15*3600= 91,8
eur*h

USRP N210 Maximum usage 35 W (35/1000)*0,15*3600 = 18,9
eur*h

Repairment 2 years new compute 5000/(2*12*30*24) =0,2893
eur*h

Rent Normal room with cooling
provided

400/(30*24) = 0,56 eur*h

Total 111,4 eur*h

Table. 4.4 OPEX price by element

The total price of OPEX that the InP must paid is around 111,4 eur*h. With this
infrastructure the InP can offer 44 cores, 50GB of RAM and 240GB of disk. Own
VNF consume 20% of the one core, 1GB of RAM, 6GB of disk. With this
configuration the InP can provide 40 NVF, the limitation is on the disk space.

CHAPTER 4. Testbed 49

Therefore the OPEX investment for deploy a base station is:

Cost per BT = 111,4/40 = 2,8 eur*h (1 core, 1GB RAM ,6GB disk , 20MHz of
spectrum)

But the VNF is consuming about 20% of the core, 512 of the RAM, 6 GB of disk
and 1,4 MHz of spectrum. The bottleneck in this case is the disk usage, if we
are using 40 VM and each one occupies 6GB we are using 240GB of disk
which is the entire disk.

In orther to do a better resource usage will be necessary to use a more high
disk capacity, we can divide all cores in 5 (20%x5=100%) providing 44*5= 220
virtual CPUs. In this case we have a limitation with the radio spectrum.

Cost per BT = (111,4-18,9)/220 = 0,42 eur*h
Cost of BW = 1,4*18,9/20 = 1,32 eur*h
Total price = 1,74 eur*h

For this case study, we apply this price without profit, making two deployments
during a small period of time.

 Macro: two base station running during two hours = 1,74x2x2= 6,96 eur
 Micro: three base station running during two hours = 1,74x3x2= 10,44 eur

Making a total price around 17,4 euros. The following picture show that
deployment price is included on the OOCRAN platform.

Fig. 4.10 Prices applied to the OOCRAN

The best way to make a comparison between traditional and C-RAN
infrastructure is represent the CAPEX/OPEX in euros/Mbps.

Cost per MB (BT) = 0,42/1,7= 0,247 eur*h/Mbps

Development of an Orchestrator layer for a Wireless Cloud 50

Cost per MB (USRP) = 1,32/1,7 = 0,776 eur*h/Mbps

Total cost = 1,023 eur*h/Mbps

The price changes according to the modulation and the used bandwidth, where
for high modulation scheme the TSP achieve the maximum cost save because
high modulations in the transmitter do not add extra processing time. The
following table shows the costs in eur*h according to the bandwidth and
modulation of the transmitter:

Modulation/BW 1,4MHz (20%) 3MHz (35%) 5MHz (58%)

QPSK 1,023 1,54 2,09

16QAM 0,511 1,21 1,76

64QAM 0,344 1,10 1,65

Table. 4.5 OPEX prize in fucntion of the modulation and BW

The calculations can been found in the annex 3.

As we increase the bandwidth the processing time increases as well. Then, for
high bandwidth the price for a QPSK modulation is doubled.

Even all that, the optimal point is using high bandwidth and dense modulations.
That’s because it allows to sent many more traffic and the price is lower than in
the case we were using multiples NVF with bandwidths equal to 1.4MHz.

4.5.3. Comparative C-RAN vs traditional investments

The comparison just can be done in the same conditions, for that fact we can
compare traditional deployment of LTE License Assisted Access (LAA) vs C-
RAN. LTE LAA works on the free band 5GHz normally used by Wi-Fi. The
following graph show that the price of the radio spectrum and the setup of the
tower is the most expensive part of the infrastructure.

CHAPTER 4. Testbed 51

Fig. 4.11 CAPEX/OPEX price depending of the cell features [30]

The implementation of the C-RAN is the most cheaper one in both sense
CAPEX/OPEX. The price reduction on macro cells will be cheaper as well but
are not in condition to establish a number.

This price can change depending of the infrastructure requirements, own
infrastructure is implemented using common hardware providing a cheaper
deployment [31] [32]. For a more massive deployment and guarantee a
minimum quality of service it is necessary to use more specific hardware as
optical fiber, FPGA, DSP, etc The use of this devices increase a lot the final
price of the infrastructure.

Development of an Orchestrator layer for a Wireless Cloud 52

CONCLUSIONS

This thesis has presented a software platform that represents an attempt to
approximate the ETSI MANO infrastructure to a wireless world.

This project shows that C-RAN can improve the network performance,
implement several standards in one and manage it in a clean and easy way.
Furthermore, new business model can be implemented under this infrastructure
where TSPs benefits from it avoiding the maintenance cost of the infrastructure.

The results presented shows that, C-RAN is a new green network infrastructure
where TSPs do a better use of the radio spectrum sharing it between them and
just paying for the used time. Besides, sharing the infrastructure allows making
a deployment with less base stations saving power consumption without
reducing the quality of service.

The VIM implementation has problems with the throughput which can only be
solved using optical fiber between the connections from data center to the
RRHs. However, from the computation part of view OpenStack as a VIM
present several features in order to improve the resource management, being a
very versatile tool for several scenarios.

GPPs have a good performance and are enough flexible in order to run LTE
signals but for the new mobile standard 5G will be necessary to introduce
advanced hardware.

OOCRAN has proved that it is possible to make a better usage of the radio
spectrum, but in this project we have just implemented a first step which is
introduce dynamism to the infrastructure. The dynamism makes the
infrastructure more flexible making it easier to manage and deploy cognitive
infrastructures. Furthermore, with the design of the platform it will be easy to
implement more advanced algorithm like massive MIMO or advance CoMP
features as interface cancellation.

The cost implementation and maintenance of this kind of infrastructure are
cheaper than the traditional ones if we use GPPs. Thereby it will be InP job to
establish a competitive prize in the market. We make a proposal for LTE LAA
small cells. In this project we can observe that the OPEX prize by the TSP is
much lower compare with the traditional ones.

Finally we can say that we have accomplished all the objective proposed in this
project, however, the OOCRAN platform can offer more features than the actual
ones, thus there is room for improvement in this topic.

FUTURE WORK 53

FUTURE WORK

As stated before, this project is merely a first attempt of implement a C-RAN
platform, thus there are many open avenues exploration related with this thesis.
In this section we will discuss some avenues that can be implemented in the
OOCRAN platform that are currently under study.

The first one is the resource management, we have selected a configuration
according to our own requirements but exist a lot of possible configurations.
There are many studies about this topic that search for the best configuration,
saving power consumption without waste resources using the configuration that
yields best performance.

The implementation of the base station is the simplest one, for that reason,
complex signal processing techniques will be difficult to implement without the
use of multithreading and multicore features, the investigation on this topic are
a trending topic. Nowadays, there are several studies about how to share the
resources of the advanced hardware for example the FPGA in the cloud [32].

The dynamism of the mobile infrastructure present a good point of investigation
because there a lot of investigation in that field searching for a better usage of
the radio resources: virtual cells, CoMP algorithm, massive MIMO, etc All this
fields will be more easy to implement in a C-RAN due to that centralized
administration [33] [34] [35].

In our own infrastructure we have just implemented the physical layer of the
communication system, which is the most import from the wireless point of view
but it would be interesting to implement a complete base station. The
implementation of the backhaul and fronthaul in the cloud could be problematic
because of the strict real time requirements of the LTE, making a good point of
investigation.

One important point that we have avoided in this thesis for his complexity is the
communication between NVF. The management of this communications will be
done using Software Defined Network (SDN) which allows a easy
reconfiguration of the routing path which guarantes a minimum quality of
service. This minimum quality of service could be achieved implementing
advanced network administration such as Multiprotocol Label Switching
(MPLS).

There are a lot of topics to study about because there are a lot of problematics
that are not solved yet, for that reason, there are a few implementations of the
C-RAN in a real work. Despite the problems, it is expected that for the new

mobile communication technology 5G, C-RAN becomes a reality.

BIBLIOGRAPHIC

[1] Dawson, Alexander William, Mahesh K. Marina, and Francisco J. Garcia.
"On the benefits of RAN virtualisation in C-RAN based mobile networks." 2014
Third European Workshop on Software Defined Networks. IEEE, 2014

[2] Software-Defined Radio - Wipro Technologies

[3] What is Software Defined Radio - http://www.wirelessinnovation.org

[4] Kivity, Avi, et al. "kvm: the Linux virtual machine monitor." Proceedings of the
Linux symposium. Vol. 1. 2007.

[5] Chen, Clark. "C-RAN: The road towards green radio access network." White
paper (2011).

[6] Wu J, Zhang Z, Hong Y, Wen Y. Cloud radio access network (C-RAN): a
primer. IEEE Network. 2015

[7] OpenLTE project - https://github.com/osh/openlte

[8] GNU Radio - http://gnuradio.org/

[9] srsLTE webpage - www.softwareradiosystems.com

[10] srsLTE code - https://github.com/srsLTE/srsLTE

[11] USRP N210 dataseet - https://www.ettus.com/product/details/UN210-KIT

[12] OpenStack project - https://www.openstack.org/

[13] ETSI GS NVF-MAN 001 v1.1.1 - ETSI

[14] OPNFV project - https://www.opnfv.org/

[15] OpenMANO project (telefonica) - http://www.tid.es/long-term-
innovation/network-innovation/telefonica-nfv-reference-lab/openmano

[16] GOHAN - http://gohan.cloudwan.io/

[17] Open Air Interface - http://www.openairinterface.org/

[18] OOCRAN project - https://github.com/howls90/master-thesis

[18] Django project - https://www.djangoproject.com/

[20] MVC architecture - https://developer.chrome.com/apps/app_frameworks

http://www.wirelessinnovation.org/
https://github.com/osh/openlte
http://gnuradio.org/
http://www.softwareradiosystems.com/
https://github.com/srsLTE/srsLTE
file:///C:\Users\flori\Desktop\USRP%20N210%20dataseet%20-%20https:\www.ettus.com\product\details\UN210-KIT
https://www.openstack.org/
https://www.opnfv.org/
http://www.tid.es/long-term-innovation/network-innovation/telefonica-nfv-reference-lab/openmano
http://www.tid.es/long-term-innovation/network-innovation/telefonica-nfv-reference-lab/openmano
http://gohan.cloudwan.io/
http://www.openairinterface.org/
https://www.djangoproject.com/
https://developer.chrome.com/apps/app_frameworks

[21] Nova configuration - http://docs.openstack.org/liberty/config-
reference/content/list-of-compute-config-options.html

[22] Nova configuration - https://specs.openstack.org/openstack/nova-
specs/specs/mitaka/implemented/libvirt-real-time.html

[23] Nova configuration - https://specs.openstack.org/openstack/nova-
specs/specs/juno/approved/virt-driver-cpu-pinning.html

[24] Heat templates -
http://docs.openstack.org/developer/heat/template_guide/hot_guide.html

[25] Link budget example - https://sites.google.com/site/lteencyclopedia/lte-
radio-link-budgeting-and-rf-planning

[26] Measuring ACLR performance in LTE transmitters - Agilent Technologies

[27] FRequency reuse - https://www.assignmentexpert.com/blog/wave-
interference-in-the-cellular-network/

[28] How to dimension user traffic in 4G networks (Leonhard korowajczuk) -
CelPlan internacional, Inc

[29] Downlink bit rates - http://www.lte-bullets.com/LTE%20in%20Bullets%20-
%20DL%20Bit%20Rates.pdf

[30] Madden: How Wi-Fi will save LTE ... And how LTE will save Wi-Fi -
http://www.fiercewireless.com/tech/story/madden-how-wi-fi-will-save-lte-and-
how-lte-will-save-wi-fi/2015-08-28

[31] 0.1 cent per MB: Ensuring future data profitability in emerging markets -
Arne Jeroschewski, André Levisse, Alexandre Ménard

[32] Virtualizing FPGAs for Cloud Computing Applications - Stuart A. Byma]

[33] FutureWorks (looking ahead to 5G) - Nokia

[34] Chih-Lin I, Huang J, Duan R, Cui C, Jiang JX, Li L. Recent progress on C-
RAN centralization and cloudification. IEEE Access. 2014;2:1030-9.

[35] Haque, Md Mejbaul, Mohammad Shaifur Rahman, and Ki-Doo Kim.
"Performance Analysis of MIMO-OFDM for 4G wireless systems under Rayleigh
Fading channel." International Journal of Multimedia and Ubiquitous
Engineering 8.1 (2013): 29-40.

http://docs.openstack.org/liberty/config-reference/content/list-of-compute-config-options.html
http://docs.openstack.org/liberty/config-reference/content/list-of-compute-config-options.html
https://specs.openstack.org/openstack/nova-specs/specs/mitaka/implemented/libvirt-real-time.html
https://specs.openstack.org/openstack/nova-specs/specs/mitaka/implemented/libvirt-real-time.html
https://specs.openstack.org/openstack/nova-specs/specs/juno/approved/virt-driver-cpu-pinning.html
https://specs.openstack.org/openstack/nova-specs/specs/juno/approved/virt-driver-cpu-pinning.html
http://docs.openstack.org/developer/heat/template_guide/hot_guide.html
https://sites.google.com/site/lteencyclopedia/lte-radio-link-budgeting-and-rf-planning
https://sites.google.com/site/lteencyclopedia/lte-radio-link-budgeting-and-rf-planning
https://www.assignmentexpert.com/blog/wave-interference-in-the-cellular-network/
https://www.assignmentexpert.com/blog/wave-interference-in-the-cellular-network/
http://www.lte-bullets.com/LTE%20in%20Bullets%20-%20DL%20Bit%20Rates.pdf
http://www.lte-bullets.com/LTE%20in%20Bullets%20-%20DL%20Bit%20Rates.pdf

ANNEX

Annex 1. Network creation template

heat_template_version: 2013-05-23

description: Sample one mobile network deployed on the EETAC

resources:
 bar_canal_net:
 type: OS::Neutron::Net
 properties:
 name: bar_canal_net

 bar_canal_subnet:
 type: OS::Neutron::Subnet
 properties:
 network_id: { get_resource: bar_canal_net }
 cidr: 10.0.0.0/24
 gateway_ip: 10.0.0.1
 allocation_pools:
 - start: 10.0.0.3
 end: 10.0.0.254

 bar_router:
 type: OS::Neutron::Router
 properties:
 name: bar_router
 external_gateway_info:
 network: 0e67e979-6fb8-485a-923f-1c5d57351e76

 bar_canal_usrp_interface:
 type: OS::Neutron::RouterInterface
 properties:
 router_id: { get_resource: bar_router }
 subnet_id: { get_resource: bar_canal_subnet }

 bar_bts_net:
 type: OS::Neutron::Net
 properties:
 name: bar_bts_net

 bar_bts_subnet:
 type: OS::Neutron::Subnet
 properties:
 network_id: { get_resource: bar_bts_net }
 cidr: 20.0.0.0/24
 gateway_ip: 20.0.0.1
 allocation_pools:
 - start: 20.0.0.2
 end: 20.0.0.254

 bar_canal_bts_interface:
 type: OS::Neutron::RouterInterface
 properties:
 router_id: { get_resource: bar_router }
 subnet_id: { get_resource: bar_bts_subnet }

Annex 2. NFV allocation and configuration

heat_template_version: 2015-10-15
description: None

resources:
 Bts1:
 type: OS::Nova::Server
 properties:
 name: <name>
 image: <VNF name>
 flavor: <flavor>
 networks:
 - network: <network>
 user_data_format: RAW
 user_data: |
 #cloud-config
 runcmd:
 - <script code>
 - sh /home/nodea/start.sh

 ...

 Channel1:
 type: OS::Nova::Server
 properties:
 name: <name>
 image: <VNF name>
 flavor: <flavor>
 networks:
 - network: <network>
 user_data_format: RAW
 user_data: |
 #cloud-config
 runcmd:
 - <script code>
 - sh /home/nodea/start.sh
 ...

Anex 3. Cost per bit calculs

All results are expresed in eur*h

BW = 3MHz
111,4/44 = 2,48 #euros per core
2,48*0,35 = 0,886 #euros per used core
3*18,9/20 =2,83 #euros by radio usage
0,886+2,83/4,3 =1.54 #QPSK
0,886+2,83/8,6 =1.21 #16QAM
0,886+2,83/13 =1.10 #64QAM

BW = 5MHz
111,4/44= 2,48
2,48*0,58 = 1,438
5*18,9/20 =4,72
1,438+4,72/7,2 = 2.09
1,438+4,72/14,4 =1.76
1,438+4,72/21,6 =1.65

