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Reliability versus Mass Optimization of CO2 Extraction Technologies for Long Duration 

Missions 

The aim of this paper is to optimize reliability and mass of three CO2 extraction 

technologies/components: the 4-Bed Molecular Sieve, the Electrochemical Depolarized Concentrator 

and the Solid Amine Water Desorption. The first one is currently used in the International Space 

Station and the last two are being developed, and could be used for future long duration missions. 

This work is part of a complex study of the Environmental Control and Life Support System (ECLSS) 

reliability. The result of this paper is a methodology to analyze the reliability and mass at a 

component level, which is used in this paper for the CO2 extraction technologies, but that can be 

applied to the ECLSS technologies that perform other tasks, such as oxygen generation or water 

recycling, which will be a required input for the analysis of an entire ECLSS. The key parameter to 

evaluate any system to be used in space is mass, as it is directly related to the launch cost. Moreover, 

for long duration missions, reliability will play an even more important role, as no resupply or rescue 

mission is taken into consideration. Each technology is studied as a reparable system, where the 

number of spare parts to be taken for a specific mission will need to be selected, to maximize the 

reliability and minimize the mass of the system. The problem faced is a Multi-Objective Optimization 

Problem (MOOP), which does not have a single solution. Thus, optimum solutions of MOOP, the ones 

that cannot be improved in one of the two objectives, without degrading the other one, are found 

for each selected technology. The solutions of the MOOP for the three technologies are analyzed and 

compared, considering other parameters such as the type of mission, the maturity of the technology 

and potential interactions/synergies with other technologies of the ECLSS. 
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4BMS 4-Bed Molecular Sieve 

ALiSSE  Advanced Life Support System Evaluator 

CDRA Carbon Dioxide Removal Assembly 

ECLSS Environmental Control and Life Support System 

EDC Electrochemical Depolarized Concentrator 

ELISSA Environment for Life Support System Analysis 

ESM Equivalent System Mass 

HPP Homogeneous Poisson Process 

ISS International Space Station 

LiOH Lithium Hydroxide 

MOOP Multi-Objective Optimization Problem 

RELISSA Reliability ELISSA 

SAWD Solid Amine Water Desorption 

TRL Technology Readiness Level 
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1. Introduction 

The manned space missions carried out since the beginning of the space era have been either short 

missions (14-days missions to the Moon surface) or long duration missions in Earth “proximity” (400-

km Low Earth Orbit). Space agencies and private companies are planning long duration missions to 

further destinations in the coming decades, with destinations such as an asteroid or Mars, which 

could have a mission duration ranging from a year and up to three years.  

It is well known that mass is a design-driver for any space mission, as the launch cost is proportional 

to the mission mass. However, not only the actual mass of the technology/component is important, 

but also, which implication it has, regarding its volume, required power and cooling, and the time the 

crew will need for operation and maintenance. Therefore, in the last years, the Equivalent System 

Mass (ESM) system has been used. The ESM translates these parameters in mass, using equivalency 

parameters, that depend on the mission and the technologies used in other subsystems (Levri et al. 

2000, 2003). 

However, for long duration missions, due to its distance to Earth, other parameters gain more 

importance, for example sustainability or reliability. It is necessary to ensure that all systems will 

work during the entire mission, as resupply or a rescue mission are not considered as an option. An 

example of it is the ALiSSE (Advanced Life Support System Evaluator) program by the European Space 

Agency. (Sherpa Engineering, 2015) This tool allows the evaluation and comparison of different ECLSS 

architectures, considering relevant criteria such as mass, power, energy, efficiency, reliability or risk 

for humans. This paper focuses in the analysis of one of these parameters, reliability and its influence 

on the system mass.  

In manned missions an Environmental Control and Life Support System (ECLSS) is needed to ensure 

the required conditions for human survival in space are met. An ECLSS has to fulfill different tasks: 

oxygen production, CO2 extraction, water recycling, etc. Several technologies have already been used 

or are under development to carry out each of these tasks. Several publications (Eckart, 1996; 

Messerschmid and Bertrand, 1999; Norberg, 2013; Wieland 1998) summarize the different 

technologies developed in the last years. Each technology has different inputs and outputs, and 

depending on the technologies selected for a specific ECLSS, synergies will appear within the system. 

As a consequence, it is necessary to analyze the ECLSS as a whole, both regarding mass and 

reliability. A methodology to carry out this analysis has been developed, as a PhD thesis, by the main 

author of this paper (Detrell 2015). The result is a simulation software, Reliability ELISSA (RELISSA) 

(Detrell et al., 2011), based on the ECLSS simulation software from the Institute of Space Systems – 

University of Stuttgart, ELISSA. In RELISSA, the user can select from a wide range of technologies, 

with choices according to specific mission requirements. The simulations result is the system 

reliability, which is estimated using a Stochastic Dynamic Discrete-Event simulation methodology. In 

order to make this analysis, the reliabilities of each technology need to be estimated. This paper 

shows how this problem has been addressed with the technologies intended to extract the CO2 from 

the atmosphere, and how a methodology can also be applied to technologies in charge of performing 

other tasks of the ECLSS. 
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For CO2 extraction, only two types of technologies have been used so far: the non-regenerable LiOH, 

and the 4-Bed Molecular Sieve (4BMS). However, many new technologies have been investigated in 

the last decades. These technologies may offer a lower system mass, and therefore, even if they have 

not been used in space yet, are potential technologies to be used for future long duration missions. 

The parameter to evaluate the technology maturity is the Technology Readiness Level (TRL) 

(Mankins, 1995). 

Current studies show that presently used ECLSS technologies reveal a low reliability for long duration 

missions. (Jones, 2009) Thus, it is necessary to take into account that for such long duration missions, 

the system will need to be repaired, and as a consequence, replacement parts are needed to be 

taken. The more replacement parts are taken for each possible part in the system, the higher the 

reliability of the system, but also the higher the total system mass. As a consequence, it is crucial to 

find a balance between “desired” reliability and maximum allowable mass. 

In this paper, CO2 technologies are compared regarding reliability and mass. A mission of 1000 days, 

for a crew of six has been selected. First, the components are analyzed individually to optimize the 

spares required and then the synergies that may appear with other subsystems are analyzed. The 

objective of the presented methodology is to provide a mean of comparison at a very initial design 

phase, in order to select the technology that better fits the requirements for a specific mission. 

Further studies, providing an absolute value of reliability for the selected component will be required 

once the design process moves forward. 

2. CO2 extraction technologies 

The ECLSS task analyzed in this paper is CO2 extraction from the atmosphere. Astronauts produce 

about 1 kg CO2 per day that would accumulate in the atmosphere. CO2 in high concentrations is toxic 

for humans. The maximum allowable CO2 partial pressure is 1.01 kPa, although higher levels are 

permitted for limited time exposure (Law et al., 2000). Therefore, it is necessary to have an 

extracting system, and to ensure it works during the entire mission. 

2.1. Selected technologies  

The different technologies (in general for ECLSS), can be divided into three groups: non-regenerable, 

physico-chemical and biological. Different types of technologies can be combined, obtaining thus a 

regenerative hybrid system (using both physico-chemical and biological technologies). 

Non-regenerable options, such as Lithium Hydroxide (LiOH), have been widely used in manned 

missions, and have proved their robustness. Each cartridge (including structure) weights 7 kg and is 

able to extract 4 kg of CO2. (Larson and Pranke, 2000) Considering an average daily production of 1 

kg/person, a mission of 1000 days, with a crew of six, would require 10.5 tons of LiOH. Regenerable 

technologies can reduce this mass considerably. Therefore, the use of non-regenerable systems as 

the main technology is discarded, and can only be considered as a back-up or system contingency. 

In the International Space Station (ISS), today a regenerable technology, the 4BMS, is used. 

Moreover, two other technologies have been developed in the last decades, which might be used in 

future long duration missions, the Electrochemical Depolarized Concentrator (EDC) and the Solid 

Amine Water Desorption (SAWD). 

The 4BMS is a technology currently in use, in the American Carbon Dioxide Removal Assembly (CDRA) 

(ElSherif and Knox, 2005) and the Russian system Vozdukh (Matty, 2010). Therefore, it is a well-

known technology, with a TRL of 8-9. Two molecular sieve beds (of synthetic zeolites) are used 

alternately to adsorb and desorb carbon dioxide. Two extra beds to extract water from the air are 

required, as moisture would reduce the molecular-sieve CO2 adsorption capacity. In the desorption 

phase, heat and vacuum are required to extract the trapped CO2. Its main disadvantage is the high 

mass and power requirement. 
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The EDC working principle is similar to a fuel cell. Carbon dioxide reacts with oxygen and hydrogen, 

producing two separate streams, CO2 and H2 in the anode side and clean air in the cathode side. 

Similar to fuel cells, it produces electrical energy. It requires 0.36 kg O2, 0.05 kg H2 and produces 0.41 

kg water vapor per day per person. This technology is still under development and has a current TRL 

of 6 (prototype demonstration in a relevant environment). However, its low mass makes it a 

potential future solution. 

The SAWD working principle is similar to the 4BMS. By using granulated amine resin beds, the need 

of extracting water is eliminated, and thus, reducing the number of beds required. The adsorbing 

beds need to be humidified, as water reacts with the resin, creating amine hydrates that react with 

the carbon dioxide, forming bicarbonate. In the desorption phase, a water stream is used, the heat 

breaks the bicarbonate bond, and the bed gets humidified for the next adsorption phase. Compared 

to the 4BMS, it requires a lower mass, as only 2 beds and no vacuum are required. However, its TRL 

is currently 6. 

Biological systems can also be used to extract CO2, using algae and plants. The use of plants requires 

a high volume of plants (up to 15 - 20 m
2
 per Astronaut) (Eckart, 1996), which could also provide 

enough oxygen and food for the crew, allowing to create a completely closed system. The use of 

plants poses another challenge, namely to maintain the balance in the closed system. Experiments of 

a closed environment have been carried out on Earth and small experiments using plants have taken 

place in space. However, further studies are required, in order to use plants as a full system for an 

ECLSS. For the mission duration to be analyzed, algae systems have similar mass requirements as 

physico-chemical systems (Belz et al., 2010). Biological systems have a self-repair ability, which allows 

them to restore after being damaged (for example after a mechanical failure). (Drysdale, 1996; 

Gitelson and Lisovsky, 2003) However, they add complexity to the system, as the mechanisms of 

instability might be less known for space applications. 

Although biological systems might be used for future missions, and even required for a human 

settlement, this paper will focus on physico-chemical technologies, which fit within the type of 

missions to be studied. 

3. Analysis approach 

Ideally, to define the reliability of a component, historical failure data for the specific technology 

used with the same environment conditions should be applied. Space, and specially, manned space 

missions, are rather unique, and such failure data is not available. 

The only possible available data of a regenerative CO2 extraction technology is for the 4BMS, as it is 

the only one that has (and currently is) being used in space.  Several problems have been reported in 

the American CO2 extraction system the CDRA (NASA Spaceflight, 2015). A study on growth rate, 

analyses the failure rate of the CDRA, using published data from the last decade (Jones, 2014). 

However, for other components, still in development phase, such information does not exist, and 

other methods are required, in order to compare the different options. 

Providing a component reliability without actually testing and measuring the product capabilities is 

defined as reliability prediction (European Power Supply Manufacturers Association, 2004). As it 

assumes that only random failures occur, that the failure of every part will cause a component failure 

and the failure data used are valid, it does not provide an absolute figure for reliability. A reliability 

estimation can be used at a first design phase to compare different technology options. 

There are four methods generally used to predict reliability for mechanical parts, depending on how 

the failure data is obtained: a part failure data analysis (use of historical data of the parts of the 

system), empirical reliability techniques (use of empirical correlation between reliability and different 

parameters such as dimensions or materials), stress-strength interface analysis (characterization of 
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statistical distributions for stress applied in a part and its strength) and handbook databases (use of 

generic failure rates of parts in different environments). The required information to carry out the 

first three methods is not available for the three studied components at this point, and therefore 

handbook databases will be used. 

With this analysis the only failure mode considered is the mechanical failures of the component 

parts. However, other failure modes might be of even more importance. As the goal of the analysis 

carried out in this paper is to compare the technologies at a very initial design phase, failure modes 

that will be common for the three technologies do not play an important role at this stage. For 

example, the three studied components require power, thus a failure in the power system, will cause 

a CO2 extraction failure (independently of the chosen technology). However, the failure of other 

components in the system may have a different influence in the CO2 extraction system. Therefore, 

the synergies with other subsystems will also be discussed. 

3.1. Mass and reliability data 

From the three selected technologies, only the 4BMS has been used in space, whereas EDC and 

SAWD have been under development for the last decades. Even for the 4BMS, it is not possible to 

find a significant amount of failure information to estimate its reliability. Moreover, it is to be 

considered that the technologies need to be repaired during the mission, and therefore, it will be 

necessary to split them up in “parts”, such as valves, heat exchangers, etc., i.e. in smaller entities for 

which reliability information can be found in different databases and past studies. 

Each of these technologies will be called from now on a system. To study each system, it will be 

necessary to identify its parts and how they are connected to form the system. The information 

required for each part will be its failure rate and mass.  

A table for each system has been developed (see appendix), including the different type of parts, the 

required number, and their failure rates and masses.  

Information of the system structure has been found in several studies, from the ISS ECLSS (Wieland, 

1998), or analysis of the technologies being developed for future missions (Yakut, 1972). Finding 

reliability data, in this case the parts failure rates, is a complex task. Two different sources have been 

identified: generic databases, such as the Nonelectronic Parts Reliability Data from the Reliability 

Information Analysis Center (RiAC, 2015), or space specific studies (Handford, 2004; Jones, 2011; 

Yakut and Barker, 1968). 

3.2. Reliability estimation 

The reliability of each component/technology, ��, can be easily calculated: from the reliability point 

of view, the three technologies can be considered to be connected in series, as the failure of one of 

its parts will make the system fail. Therefore, the reliability can be estimated using equation 1 and its 

mass, �� , by using equation 2. The parts have been classified in types, each type includes all parts 

with the same mass, 
� , and the same failure rate, ��. Each part type is represented by the sub-index �, being ��, the number of parts of each type included in the system, and �, the total number of 

different types of parts. 

��(�) = � ��������
��� 				(1) 

�� = " ��
�
�

��� 						(2) 
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Table 1 shows how the reliability of each component changes over time. It can be seen that for long 

duration missions (longer than a year), the system will have to be repaired (i.e. parts will need to be 

changed), as after only a month, the reliability would decrease to 70 - 78%.  

Considering the three technologies as non-repairable systems, it can be seen that EDC offers the 

lowest mass, while SAWD offers the highest reliability. It is necessary to evaluate how mass and 

reliability change when spare parts are considered. 

Table 1. Mass and reliability of the three technologies  

  Reliability 

 Mass at a week at a month at a year 

4BMS 202.7 kg 93.38% 73.82% 2.8% 

EDC 71.9 kg 92.33% 70.24% 1.56% 

SAWD 152.6 kg 94.77% 78.82% 6.06% 

 

3.3. Reliability estimation – redundancy 

The use of spares can be considered mathematically as having an extra item in parallel, not working 

until the original one fails. This process is known in the literature as “perfect repair or replacement as 

good as new”. In order to analyze a system formed by one item and its spare items, � is defined as 

the total number of items required (the original one and � $ 1 spares). This system will fail when all 

spares have been used and have failed. If this item has a constant failure rate, �, the failure times are 

independent and exponentially distributed. (Hoyland and Rausand, 2004 

This type of behavior model is called Homogeneous Poisson Process (HPP), and is mathematically 

defined in equation 3. 

�(�) = " (��)%&! ����(��
%�) 				(3) 

The repair or replacement can take place at part or component level. The advantage of replacing the 

entire component is that it does not require a high expertise of the crew on finding the problem and 

changing the required part. However, the required mass will be extremely high, as for each failure, 

the whole component would be replaced. As it can be seen in figure Figure 1, 16 spare components 

would be required in a 1000 days mission, to obtain a reliability higher than 90%. As a consequence, 

the system mass would be 17 times the mass of a single EDC unit.  

 

Figure 1. EDC example 
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As explained before, the studied technologies are formed by multiple parts. Thus, another option 

would be to take spare parts, to be replaced in the component. The parts of the components are 

connected in series from a reliability point of view (the failure of a part, implies a failure in the 

system). Combining equation 1 and 3, the reliability of the system using spare parts (���) is defined 

and calculated by equation 4. For each part, the number of items (original part plus spare parts) to be 

used is defined as �+, = [��. �/. … . ��], with �� the number of items to be taken for the i-th part.  

���(�+,; �) = � 3 " (�� �)%&! �����(���
%�) 4

���
��� 							(4) 

The number of spare parts required will define the total mass of the system (���), equation 5. 

���(�+,) = " ����
�
�

��� 						(5) 

From equations 4 and 5, it can be seen that both the reliability of the system and its mass will 

depend on the number of spare parts to be used for each type of part.  

3.4. Spare parts optimization 

To obtain a high system reliability, a high number of spare parts will be required, resulting in an 

increase of system mass. It will be necessary to find a compromise between “desired” reliability and 

mass. 

The number of items to be taken for a specific part, ��, can take integer values from 1 to infinite, and 

is a priory independent from the other parts of the system. However, it is important to consider that 

each part has its specific mass and failure rate. Therefore, it is necessary to find, within the infinite 

combinations of �+,, the combination that maximizes the reliability of the system and minimizes its 

mass.  

The problem to solve is called the Multi-Objective Optimization Problem (MOOP). There are different 

combinations of spares to be taken for each part, which would be feasible solutions. As both criteria, 

maximum reliability and minimum mass, cannot be satisfied at the same time, multiple solutions will 

satisfy that they cannot be improved in one of the objectives, without degrading the other one. Each 

of this options is called a nondominated solution. The problem will have multiple nondominated 

solutions; therefore, a decision maker will be required to select the most optimal one for each case.  

In order to linearize the problem, the logarithm of equation 4 is used, as it satisfies max(���) =max(ln(���)). 

��(�+,) = ln<���(�+,; �)= = " �� · ln	 3 " (���)%&! �����(���
%�) 4�

��� 						(6) 

To solve the MOOP, the matrix @, formed by the contribution (���) to �� for a specific part and a 

specific value of �� = A, is found, see equation 7. Theoretically, A can be any integer value from 1 to 

infinite. However, as the higher the	A, the higher is the system mass, A can take, for this study case, 

values from 1 to 8. 

��� = ln 3" (�� �)%&! �����B��
%�) 4								 � = 1,2, … , �A = 1,2, … , 							(7) 
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To define each combination, it will be necessary to select for each part, which value of A is used, i.e. 

how many spare parts are used. A binary matrix can be used to define the selected value of A Each 

row represents a part type, and the columns, the different values A can take. 

E�� = F1 ��	�� = A0 H�ℎ�JK�L�M										 � = 1,2, … , �A = 1,2, … , 							(8) 

As only one number of spare parts should be selected for each part, the addition of each row must 

equal 1. 

Using the parameters defined in equations 7 and 8, the logarithmic-reliability (��) and the mass 

function (��) are defined as: 

��(E) = " " �����E��
O

���
�

��� 											(9) 

��(E) = " "(A ∙ �� · 
�)E��
O

���
�

��� 										(10) 

The objective is to maximize �� and minimize	��. Both requirements cannot be satisfied, in absolute 

terms, at the same time. Two different type of solutions can be found, providing: 

A) the minimum required mass, for a given reliability value 

B) the maximum achievable reliability, for a given mass value 

In this analysis, for criterion A different values of reliability are used, starting from 0.95, with 

increments of 0.005. 

For criterion B, the initial mass is the one obtained by a reliability of 0.95, with increments of about 

15% of the system’s mass. 

The results for problems A and B are found using the Excel solver. 

4. Results 

The results of implementing this methodology to the three studied CO2 extraction components are 

presented in this section. A discussion of the results, considering further parameters can be found in 

section 5. 

For each studied technology, the methodology presented in 3.4 has been used to solve A and B to 

find the combination of spare parts.  

A) For the criterion A, the required minimum mass to obtain a reliability of at least 0.95 is 

shown in Table 2. An increment of 0.005 in reliability is used to find the minimum required 

mass. 

B) For the B criteria, the masses shown in Table 2 have been used as initial mass. Increments of 

30kg, 10 kg and 23 kg have been used for the 4BMS, EDC and SAWD respectively. 

Table 2. Required mass for a reliability of 0.95 

 Mass (kg) Times its mass 

4BMS 614.8 3.03 

EDC 197.4 2.74 

SAWD 457 3 
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The results are shown in Figure 2, Figure 3 and Figure 4. 

 

 

 
Figure 2. 4BMS mass and reliability optimization results. 

 

 

Figure 3. EDC mass and reliability optimization results 
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Figure 4. SAWD mass and reliability optimization results 

For the 4BMS, Figure 2, the results from criterion A can be separated in four groups: A0 – A3, A4 – 

A6, A7 – A9 and A10. The results within each group show a small increment in mass, while the groups 

are separated by high increments of mass.  

For example, within the first group the highest mass increment is 9.4 kg, while the difference 

between A3 and A4 is 55.7 kg. This mass difference between the 4 groups can be explained, as the 

parts of the system have very different masses. This system has two parts (i=11, 12) with a mass 17.3 

and 23.6 kg, while the lighter parts of the system (i=1, 2, 3, 4) have a mass of 0.1 kg. 

Results A0 to A3 consider taking two spare parts of the two heaviest elements, and combine 

different number of spares of the lightest parts. However, a point is reached where reliability cannot 

be improved without increasing the spare parts of the heaviest elements. In consequence, results A4 

to A6 consider three spare parts of part i=11, and 2 of i=12.  

In the following group, A7 to A9, a spare part of the heaviest element i=12 is added. As a result, the 

mass increment between A6 and A7 is 80.2 kg.   

Finally, in A10, to obtain a reliability over 0.999, four parts of the two heaviest elements are required. 

The spares of both i=11 and i=12 have incremented, and therefore, the mass difference is higher 

than in the last two previous cases (181.8 kg). 

The results from criterion B follow the same tendency as the results from criterion A.  

In the EDC, the difference in mass between the parts of the system is much smaller than in the 4BMS, 

therefore, the results do not show clearly identifiable groups, as in the previous case. This smooth 

behaviour demonstrates more clearly than in previous cases that for low reliabilities (ranging from 

0.95 to 0.98), a small increment in reliability can be obtained with a small increment in mass. On the 

other hand, for high reliabilities (over 0.99), a high amount of mass is required to slightly increase the 

reliability. 
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The SAWD results present a behavior similar to the 4BMS, where different groups of results can be 

identified. The SAWD has one part with a much higher mass (30 kg).  In this case, A0 to A6 and B0 to 

B5, consider two spare parts of the heaviest element, and different combinations of the other 

elements. A7 to A9 and B6 to B12 consider three spare parts of the heaviest element, and finally A10, 

four spares. 

To compare the three technologies, its mass and number of spares required are listed in Table 3, for 

three different reliabilities at 1000 days.  

It is clear that the lowest mass, in all cases, is provided by the EDC technology. However, the number 

of spare parts required for SAWD, and thus, the number of failures in the system that need to be 

identified and replaced is lower. The maintenance required for the EDC will be more interventionist 

than for the SAWD. 

Table 3. Mass and number of spare parts for different reliability values 

  Reliability at 1000 days 

  0.98 0.99 0.999 

C
O

2
 e

xt
ra

ct
io

n
 

te
ch

n
o

lo
gi

e
s 4BMS 

709 kg 

134 spares 

799 kg 

115 spares 

987 kg 

167 spares 

EDC 
217 kg 

132 spares 

240 kg 

139 spares 

285 kg 

179 spares 

SAWD 
481 kg 

109 spares 

592 kg 

98 spares 

738 kg 

120 spares 

 

 

5. Discussion 

In all technologies, for low reliabilities (95-98%) a high increment in reliability can be obtained with a 

low increment in mass. On the other hand, for high reliabilities (over 99%) a high increment in mass 

is required for a small improvement in reliability. 

The 4BMS is the system with a higher technology maturity, with a TRL 8-9. As a consequence, it is the 

most known technology. However, the required mass for a long duration mission would be between 

four and five times the system mass. Considering that the technology mass required for a crew of six 

would be 202.7 kg, the use of other technologies is advisable. 

The two potential CO2 extraction technologies for long duration missions, EDC and SAWD have a TRL 

6, which means that some development efforts are still required. However, the reliability versus 

mass results show their clear advantage compared to the 4BMS. 

The SAWD technology has a higher mass than EDC for all reliabilities. For low reliabilities (0.95), 

SAWD mass is twice the required for EDC, but as reliability increases, the difference between both 

technologies also increases, being almost 2.6 times higher. However, the SAWD is more efficient, 

since maintenance needs less intervention, as less spare parts will be required.   

The interactions/synergies of the CO2 extraction technologies with the rest of the ECLSS will depend 

on the technologies selected to fulfil the other ECLSS tasks, and can therefore be different for each 

specific mission design. As a consequence, for each mission scenario, the different ECLSS options 

should be analyzed. However, a first assessment, analyzing the inputs and outputs of each 

component, can provide a first idea of interaction problems or potential synergies with other 

systems. 
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Regarding interaction, the 4BMS requires heat for the deabsorbing phase, the SAWD requires heat to 

convert water in vapor, and the EDC requires heat rejection. An ECLSS external failure could cause 

the system to fail. This external failure probability will depend on the design of different subsystem, 

which will be specific for each mission. 

The EDC and the SAWD require consumables to work, and a lack of them would cause the 

component to stop working. The EDC consumes oxygen from the cabin air (stoichiometric ratio: 0.36 

kg O2/kg CO2) and hydrogen (stoichiometric ratio: 0.05 kg H2/kg CO2), producing water 

(stoichiometric ratio: 0.41 kg H2O/kg CO2). If the EDC is used, the system will be penalized in mass, as 

more oxygen will be required, hydrogen will be necessary and the water, which will condensate, will 

need to be recovered. However, a small amount of water can be provided, which in case of a 

problem with the water recycling system, can ensure a small amount of water per astronaut. The 

SAWD requires water, which can fully be recovered. It will be necessary for each specific mission and 

ECLSS design, to see the influences of the consumables required/produced by the CO2 extraction 

technology on the rest of the ECLSS system. For example, if an EDC wants to be used but the rest of 

the ECLSS does not produce an excess of hydrogen, this will need to be provided (the amount will 

depend on the mission duration), as well as a tank to store it. 

6. Conclusions 

CO2 extraction is a crucial task within the ECLSS. For long duration missions, regenerable technologies 

will be required. Currently the 4 Bed Molecular Sieve is being used in the ISS, but other physico-

chemical technologies, still not used in space systems, could reduce the system mass: the EDC and 

SAWD.  

For the technologies still in a development phase, the information regarding its parts and their failure 

rate are dispersed. Therefore, it has been necessary to develop a table for each studied technology, 

including the required information to evaluate its reliability, from different sources. They include the 

different type of parts of the system, how many are required, and its mass and failure rate.  

A first analysis of the component reliability shows (see Table 1) that the use of spare parts is required 

for long duration missions, as otherwise the reliability of the systems at 1000 days is unacceptable. 

As mass is a key parameter in space systems, a methodology to find the right balance between 

reliability and mass of the system, i.e. answering how many spare parts should be taken for each part 

type, is required. The Multi-Objective Optimization Problem is presented for the proposed 

technologies. The equations to solve this problem have been linearized in order to find 

nondominated solutions. This methodology provides only a study at a component level but can be 

further used for other ECLSS components, in order to analyze for each mission, the reliability of the 

entire ECLSS. 

The results obtained (see Table 3) show that for long duration missions the 4BMS can be discarded 

because the mass is much higher (3.5 times the mass of the EDC), even though the technology is 

more mature. SAWD is the most efficient technology since the maintenance needs fewer 

interventions, but its mass is around 2.5 times the EDC mass. The EDC will require oxygen and 

hydrogen, which will need to be considered in the design of the whole ECLSS for a specific mission. In 

conclusion, from the mass versus reliability analysis, and looking at potential interfaces, the EDC can 

offer the best performance, followed by the SAWD. Therefore, it is suggested to investigate and 

improve them further.  

This research was supported by the Escola Tècnica Superior d’Enginyeries Industrial i Aeronàutica de 

Terrassa (Terrassa, Spain) and the Institute of Space Systems (Stuttgart, Germany) 
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APPENDIX 

 

Table 4. 4BMS - Parts' mass and failure rate, adapted 

from Handford (2004); Jones (2011); RiAC (2015); 

Wieland (1998); Yakut (1972); Yakut and Barker (1968). 

4-Bed Molecular Sieve 

i Description N Failure rate 

(1/h) 

Mass 

(kg) 

1 Air check valve 2 6.00E-06 0.1 

2 Humidity sensor 1 1.00E-06 0.1 

3 Temperature sensor 15 1.00E-05 0.1 

4 Sample Port 2 1.00E-05 0.1 

5 P sensor 2 1.00E-05 0.2 

6 Air Selector Valve 6 1.00E-05 2.6 

7 Air Blower 1 8.00E-06 2.3 

8 Pre-cooler 1 5.99E-06 2.7 

9 Heat exchanger 2 5.99E-06 3.3 

10 Pump 1 1.50E-05 9.5 

11 Desiccant Bed 4 1.30E-05 17.3 

12 Sorbent Bed 4 1.30E-05 23.6 

 

 

Table 5. EDC - Parts' mass and failure rate, adapted from 

Handford (2004); Jones (2011); RiAC (2015); Wieland 

(1998); Yakut (1972); Yakut and Barker (1968). 

Electrochemical Depolarized Concentrator 

i Description N Failure rate 

(1/h) 

Mass 

(kg) 

1 Temperature sensor 2 1.00E-05 0.10 

2 Combustible gas 

sensor 1 1.00E-05 0.20 

3 Voltage sensor 7 2.33E-05 0.20 

4 Current sensor 1 2.14E-06 0.20 

5 Humidity sensor 2 1.00E-06 0.20 

6 Pressure sensor 2 1.00E-05 0.20 

7 Valve quick 

disconnect 7 1.00E-05 0.23 

8 Valve selenoid 

liquid 1 1.00E-05 0.45 

9 Heat exchanger 2 6.00E-06 0.80 

10 Valve. electrical 1 1.00E-05 0.91 

11 Accumulator 1 5.00E-07 0.91 

12 Current controller 1 1.00E-06 0.91 

13 Flow sensor 2 1.00E-05 1.00 

14 Valve. electric 2 1.00E-05 1.36 

15 Valve. relief 1 1.00E-05 1.36 

16 Pressure regulator 1 1.00E-05 1.36 

17 Valve 4-way 1 1.00E-05 2.00 

18 Valve 3-way 1 1.00E-05 2.09 

19 Filter 6 5.00E-06 2.09 

20 Flow sensor 

controller 1 1.00E-05 5.90 

21 Pressure controller 1 1.00E-05 6.00 

22 Pump 1 1.50E-05 6.35 

23 Cell 3 3.00E-06 6.80 

 

 

 

Table 6. SAWD - Parts' mass and failure rate, adapted 

from Handford (2004); Jones (2011); RiAC (2015); 

Wieland (1998); Yakut (1972); Yakut and Barker (1968). 

Solid Amine Water Desorption 

i Description N Failure rate 

(1/h) 

Mass 

(kg) 

1 Temperature sensor 4 1.00E-05 0.1 

2 Valve shut off, manual 4 1.00E-05 0.2 

3 Pressure sensor 3 1.00E-05 0.2 

4 Valve 3-way electrical 1 1.00E-05 0.3 

5 Valve 3-way electrical 2 1.00E-05 0.9 

6 Valve press control 1 1.00E-05 1.0 

7 Valve shut off, manual 1 1.00E-05 1.1 

8 Valve press relief 1 1.00E-05 1.1 

9 Valve shut-off 

electrical 2 1.00E-05 1.2 

10 Valve 3 way manual 1 1.00E-05 1.6 

11 Heat exchanger  5 5.99E-06 1.8 

12 Valve 4-way electrical 2 1.00E-05 2.0 

13 3-way electrical 1 1.00E-05 2.1 

14 Blower 1 8.00E-06 6.4 

15 Solid desiccant 4 1.30E-05 30.0 

 


