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Introduction

The objective of this thesis is to make a theoretical and formal study of the Fourier Transform and

to introduce some of its many applications. In particular, the Fourier Transform will allow us to

solve, analyze and understand more two of the most well-known and important Partial Di�erential

Equations: the Heat equation and the Wave equation. Finally, we will introduce and study the most

relevant properties of �lters. In order to give the most general results and exploit the full potential of

the Fourier Transform, we will introduce the distributions, their basic properties and the theory of the

Fourier Transform for distributions.

We have divided this bachelor thesis in three parts. In the �rst part, called �Fourier Transform of
functions in L1 and L2�, we study the Fourier Transform in L1 (R) and L2 (R), the convolution and all
its properties. Moreover, we generalize the results on Rd, d ∈ N, with the aim of providing the most
general results in the second part of the work, �Application of the Fourier transform to the resolution
of the Heat Equation and the Wave Equation�. Finally, in the last part of the thesis, named �Fourier
Transform of distributions: application to �lters�, we have studied the �lters after introducing and
stating the Theory of the Fourier Transform for distributions. We have done all this in a total of 12
chapters in which we have studied:

� In chapter one, we have introduced the de�nition of the Fourier Transform in L1 (R). We have
also seen that the Fourier Transform is a linear continuous operator from L1 (R) to L∞ (R) and
we have analyzed its behavior respect some basic operations like the conjugation, the re�exion
and the derivation. Finally, we have stated the inverse Fourier Transform in L1(R) and the
principal value Fourier inversion formula.

� The second chapter introduces the Schwartz Space S (R) which is a dense subspace of Lp (R). We
will see that the restriction of the Fourier Transform to this subspace de�nes a bijective mapping.
We will use this property and the density of the Schwartz Space in L2 (R) to extend the Fourier
Transform operator to L2 (R) in chapter four. Hence, the Schwartz Space will play a key role in
this thesis.

� In chapter three, we de�ne the convolution of two functions and we study it in several spaces.
All the results that we introduce in this chapter are also true in the multidimensional case.
Convolution will be fundamental when we study the applications of the Fourier Transform to
the Heat equation and the Wave equation, since the solutions will be given in terms of the
convolution.

� The fourth chapter extends the Fourier Transform and the Inverse Fourier Transform to L2 (R)
using the density of the Schwartz Space S (R) in L2 (R). Moreover, we state some analogous
properties as the ones we saw for the Fourier Transform on L1 (R). Finally, we conclude that the
Fourier Transform on L1 (R) and the one obtained by extension to L2 (R) coincide in L1 (R) ∩
L2 (R).
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� In chapter �ve, we analyze the behavior of the Fourier Transform respect to the convolution. We
will see that it has the remarkable property that it interchanges convolution and multiplication.
We will formalize the results in L1 (R) and L2 (R).

� In chapter six, we study the multidimensional Fourier Transform in L1
(
Rd
)
, L2

(
Rd
)
and S

(
Rd
)
.

In particular, we prove in Rd some key results shown in the previous chapters. The aim is to
apply these results to the resolution of the Heat Equation and the Wave Equation in Rd.

� The seventh chapter studies the solution and the properties of the Heat Equation. First, we use
the Fourier Transform to derive a solution of the homogeneous time-dependent Heat Equation on
Rd and later, we introduce Duhamel's Principle to deduce the inhomogeneous solution. We also
show the uniqueness of the solution in several cases using the Energy Method and the Maximum
Principle. Finally, we solve the steady-state Heat Equation in the upper half-plane and we state
the mean-value formulas for Laplace's equation in order to show uniqueness.

� In chapter eight, we derive the solution of the Wave Equation in terms of Fourier Transform
and we see that the energy is conserved in time. However, we will see that this formula is quite
indirect and involves the calculation of several Fourier Transforms. Hence, we use other methods
to �nd a more explicit formula and to have a better understanding of the properties of the Wave
Equation. First, we will apply these methods in dimension 2 and 3 to derive Poisson's and
Kirchho�'s Formula respectively. Later, we will generalize these arguments in the d-dimensional
case, distinguishing the case odd and even. Finally, we will be able to study some properties of
the Wave Equation such that Huygen's Principle and Finite Speed Propagation.

� The ninth chapter introduces the notion of distribution and all the properties we need to do a
further study in the following chapters. We de�ne the space of distributions D∗ (R) and we state
the elementary operations, the derivative and the primitive of distributions and the notion of
convergence of a sequence of distributions.

� In chapter ten we generalize the concept of Fourier Transform to distributions. To do that, we
de�ne the space of tempered distributions S∗ (R), which is a subspace of D∗ (R). We de�ne the
Fourier Transform on S∗ (R) and we show that it is a linear, bijective and bicontinuous mapping.
Finally, we introduce a particular case of tempered distributions, the subspace K∗ (R) formed by
the distributions with compact support.

� The eleventh chapter introduces the notion of convolution for distributions. We study the con-
volution in several cases using the spaces K∗ (R), S∗ (R) and D∗ (R). Furthermore, we analyze
the behavior of the Fourier Transform and the convolution of distributions. Finally, we de�ne
the space D∗+ (R) which is the space of distributions whose supports lie to the right of some �nite
point. This space will be fundamental in our later study of �lters.

� In chapter twelve, we apply the Theory of the Fourier Transform of distributions to study �lters
and their properties. We introduce the concept of analog �lter, impulse response and Transfer
function. We use it to study the tempered solutions and the causal solutions of linear di�erential
equations.

I would like to note that we have included an appendix where it can be found concepts and theorems
of real analysis that are essential for the development of this thesis. Moreover, we have also included a
section of notation. Finally, I would like to apologize beforehand for the possible mistakes this thesis
contains.



Part I

Fourier Transform of functions in L1 and

L2
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Chapter 1

The Fourier Transform of integrable

functions

1.1 De�nition

De�nition 1.1. Let f ∈ L1 (R). We de�ne its Fourier transform as:

f̂ (ξ) :=

ˆ
R
e−2iπξxf (x) dx

Note that computing ξ = 0 we get f̂ (0) =
´
R f (x) dx , that is the integral of the function f .

De�nition 1.2. Let f ∈ L1 (R). We de�ne its conjugate Fourier transform as:

f̌ (ξ) :=

ˆ
R
e2iπξxf (x) dx

We will see later that f̌ is the inverse of the Fourier transform f̂ whenever f̂ ∈ L1 (R) .

Remark 1.1. The previous de�nitions are well-de�ned, i.e. the (conjugate) Fourier transform of f

makes sense if and only if f ∈ L1 (R). In e�ect:

We have that f̂ (ξ) and f̌ (ξ) are well-de�ned if and only if the integrals
´
R e
−2iπξxf (x) dx and´

R e
2iπξxf (x) dx are well-de�ned. Hence, we need that e±2iπξxf (x) ∈ L1 (R). But notice that∣∣∣e±2iπξxf (x)

∣∣∣ = |f(x)|

Thus, we conclude that e±2iπξxf (x) ∈ L1 (R) if and only if f ∈ L1 (R).

1.2 Basic properties

In this section we consider f , h and g integrable functions and f̂ , ĝ and ĥ their respective Fourier

transforms. We state the following basic properties:

Property 1.1. (Linearity) Let a, b ∈ C, if h(x) = af(x) + bg(x) then ĥ(ξ) = af̂(ξ) + bĝ(ξ).

7
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PROOF. ĥ (ξ) =
´
R e
−2iπξxh (x) dx =

´
R e
−2iπξx (af(x) + bg(x)) dx = a

´
R e
−2iπξxf (x) dx

+ b
´
R e
−2iπξxg (x) dx = af̂(ξ) + bĝ(ξ).

Property 1.2. (Translation) Let x0 ∈ R, if h(x) = f (x− x0) then ĥ(ξ) = e−i 2π x0 ξ f̂(ξ).

PROOF. ĥ (ξ) =
´
R e
−2iπξxh (x) dx =

´
R e
−2iπξxf (x− x0) dx. Making the change of variables

y = x− x0 we get ĥ (ξ) =
´
R e
−2iπξ(y+x0)f (y) dy = e−2iπξx0

´
R e
−2iπξyf (y) dy = e−i 2π x0 ξ f̂(ξ).

Property 1.3. (Modulation) Let ξ0 ∈ R, if h(x) = ei 2π x ξ0f(x), then ĥ(ξ) = f̂(ξ − ξ0).

PROOF. ĥ (ξ) =
´
R e
−2iπξxh (x) dx =

´
R e
−2iπξxei 2π x ξ0f(x)dx=

´
R e
−2iπ(ξ−ξ0)xf(x)dx = f̂(ξ − ξ0).

Property 1.4. (Time Scaling) Let a ∈ R\ {0} , if h(x) = f(ax), then ĥ(ξ) = 1
|a| f̂

(
ξ
a

)
. The

particular case a = −1 leads to the time-reversal property, which states: if h(x) = f(−x), then ĥ(ξ) =
f̂(−ξ).
PROOF. ĥ (ξ) =

´
R e
−2iπξxh (x) dx =

´
R e
−2iπξxf(ax)dx. Making the change of variables y = ax

we get ĥ(ξ) = 1
|a|

´
R e
−2iπξ y

a f(y)dy = 1
|a| f̂

(
ξ
a

)
.

Property 1.5. (Continuity and boundedness) f̂(ξ) is continuous and bounded for all ξ ∈ R.
PROOF.

• The boundedness of f̂ is consequence of f ∈ L1 (R) and the following estimation:∣∣∣f̂ (ξ)
∣∣∣ =

∣∣∣∣ˆ
R
e−2iπξxf (x) dx

∣∣∣∣ ≤ ˆ
R

∣∣∣e−2iπξxf (x)
∣∣∣ dx =

ˆ
R
|f (x)| dx = ‖f‖1 <∞ for all ξ ∈ R.

• For the continuity we apply Theorem A.4.: we de�ne F (ξ, x) := e−2iπξxf (x). We observe that:

1. The function ξ 7−→ F (ξ, x) is continuous for all ξ ∈ R, for almost all x ∈ R.

2. F is dominated by an integrable function: |F (ξ, x)| =
∣∣e−2iπξxf (x)

∣∣ = ∣∣e−2iπξx
∣∣ |f (x)| = |f (x)|

for almost all x ∈ R. And by hypothesis f is integrable.

Under these conditions, Theorem A.4. holds and we get f̂ (ξ) =
´
R F (ξ, x)dx is continuous for all

ξ ∈ R.

Property 1.6. (Interpretation as a Operator) ·̂ is a continuous linear operator from L1 (R) to

L∞ (R) and
∥∥∥f̂∥∥∥

∞
≤ ‖f‖1.

PROOF. Let us consider the operator ·̂ : L1 (R) −→ L∞ (R). We should show:

1. ·̂ is well-de�ned, i.e., if f ∈ L1 (R) then f̂ ∈ L∞ (R) : we have seen in Property 1.5.
∣∣∣f̂(ξ)

∣∣∣ ≤
‖f‖1 < +∞ for all ξ ∈ R. Thus f̂ ∈ L∞ (R).

2. ·̂ is linear: we have already shown it in property 1.1.

3.
∥∥∥f̂∥∥∥

∞
≤ ‖f‖1: taking supremums in

∣∣∣f̂(ξ)
∣∣∣ ≤ ‖f‖1, we get immediately the inequality. Note

that the inequality shows that the operator is continuous.
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Property 1.7. lim
|ξ|→+∞

∣∣∣f̂ (ξ)
∣∣∣ = 0.

PROOF.

• First, we show the result for a characteristic function f(x) = 1[a, b](x):

f̂(ξ) =

ˆ
R
e−2iπξx1[a, b](x)dx =

ˆ b

a
e−2iπξxdx =

[x]ba if ξ = 0[
e−2iπξx

−2iπξ

]b
a

if ξ 6= 0
=

{
b− a if ξ = 0
ie−2iπξb−ie−2iπξa

2πξ if ξ 6= 0

Hence, if ξ 6= 0:

∣∣∣f̂(ξ)
∣∣∣ = ∣∣∣ ie−2iπξb−ie−2iπξa

2πξ

∣∣∣ ≤ |ie−2iπξb|+|ie−2iπξa|
2π|ξ| = 1

π|ξ|
|ξ|→+∞−→ 0.

• Now, let f ∈ L1(R). Using the fact that simple functions are dense in L1 (R), we get that there
exists a sequence {ϕn}n∈N of simple functions such that lim

n→∞
‖f − ϕn‖1 = 0.

Moreover, �xing n and applying the result for the simple function ϕn , it holds lim
|ξ|→+∞

|ϕ̂n (ξ)| = 0.

By property 1.6.:∣∣∣f̂(ξ)− ϕ̂n(ξ)
∣∣∣ ≤ ‖f − ϕn‖1 =⇒ lim

|ξ|→+∞

∣∣∣f̂(ξ)− ϕ̂n(ξ)
∣∣∣ ≤ lim

|ξ|→+∞
‖f − ϕn‖1 =⇒

∣∣∣∣ lim
|ξ|→+∞

f̂(ξ)

∣∣∣∣
≤ ‖f − ϕn‖1 =⇒ lim

n→∞

∣∣∣∣ lim
|ξ|→+∞

f̂(ξ)

∣∣∣∣ ≤ lim
n→∞

‖f − ϕn‖1 = 0 =⇒ lim
|ξ|→+∞

f̂(ξ) = 0.

Property 1.8. Let f and g be two functions in L1 (R) . Then f̂g and fĝ are in L1 (R) and
ˆ
R
g(x)f̂(x)dx =

ˆ
R
f(t)ĝ(t)dt (1.2.1)

PROOF.

• To show that f̂g is in L1 (R) note that
´
R

∣∣∣f̂ (x) g(x)
∣∣∣ dx= ´

R

∣∣∣f̂ (x)
∣∣∣ |g(x)| dx

(Prop.1.6.)

≤
´
R ‖f‖1 |g(x)| dx

= ‖f‖1
´
R |g(x)| dx = ‖f‖1 ‖g‖1 < +∞ (because f and g are in L1 (R)). Analogously one shows that

fĝ is in L1 (R).

• To show (1.2.1), we will apply Theorem A.6. (Fubini), since e−2iπtxf(t)g(x) is integrable in R×R :

ˆ
R
f(t)ĝ(t)dt =

ˆ
R
f(t)

(ˆ
R
e−2iπtxg(x)dx

)
dt

T.A.6.
=

ˆ
R
g(x)

(ˆ
R
e−2iπtxf(t)dt

)
dx =

ˆ
R
g(x)f̂(x)dx.

1.3 Rules for computing with the Fourier transform

Lemma 1.1. Let f ∈ Cn(R)∩L1(R) , n ≥ 1, such that the derivatives f (k) ∈ L1(R) for k = 1, .., n.
Then lim

a−→+∞

∣∣f (k)(±a)
∣∣ = 0 for k = 0, .., n− 1.

PROOF. Let us take k ∈ {0, .., n− 1}.
• First, we show that lim

a−→+∞
f (k)(±a) exists and is �nite. In e�ect, by hypothesis f (k+1) is continuous.

Hence

f (k)(a) = f (k)(0) +

ˆ a

0
f (k+1)(x)dx =⇒ lim

a−→+∞
f (k)(a) = f (k)(0) +

ˆ +∞

0
f (k+1)(x)dx.



CHAPTER 1. THE FOURIER TRANSFORM OF INTEGRABLE FUNCTIONS 10

Then, the existence of
´ +∞

0 f (k+1)(x)dx proves that lim
a−→+∞

f (k)(a) exists and is �nite. Analogously,

we see this result for lim
a−→+∞

f (k)(−a).

• Now, suppose that lim
a−→+∞

f (k)(a) = K 6= 0. Then for 0 < ε < |K| there exists Mε ≥ 0 s.t.

−
∣∣f (k)(x)

∣∣+ |K| ≤
∣∣f (k)(x)−K

∣∣ < ε for all x ≥Mε. Thus
∣∣f (k)(x)

∣∣ > −ε+ |K| for all x ≥Mε:

ˆ
R

∣∣∣f (k)(x)
∣∣∣ dx =

ˆ Mε

−∞

∣∣∣f (k)(x)
∣∣∣ dx+

ˆ +∞

Mε

∣∣∣f (k)(x)
∣∣∣ dx > (−ε+ |K|)

ˆ +∞

Mε

dx = +∞

But f (k) ∈ L1(R), so we get a contradiction. Thus, we conclude lim
a−→+∞

f (k)(a) = 0. Analogously, we

see lim
a−→+∞

f (k)(−a) = 0.

Proposition 1.1. (Derivation) The following statements hold:

1. If xkf(x) is in L1(R) for k = 0, 1, .., n, then f̂ is n times di�erentiable (f̂ ∈ Cn (R)) and:

f̂ (k) (ξ) =
̂[

(−2iπx)k f (x)
]

(ξ) for k = 1, .., n

2. If f ∈ Cn(R) ∩ L1(R) and if all the derivatives f (k) ∈ L1(R) for k = 1, .., n. Then:

f̂ (k) (ξ) = (2iπξ)kf̂ (ξ) for k = 1, .., n

3. If f ∈ L1(R) has bounded support, then f̂ ∈ C∞(R).

PROOF.

• Proof 1: we de�neG(ξ, x) := e−2iπξxf(x) and check that its n �rst derivatives satisfy the assumptions
of Theorem A.5.:

1. Note that ξ 7−→ G(ξ, x) is in�nitely times continuously di�erentiable for almost all x ∈ R and
for all ξ.

2. Note that ∂k

∂ξk
G(ξ, x) = (−2iπx)ke−2iπξxf(x). Then

∣∣∣ ∂k∂ξkG(ξ, x)
∣∣∣ ≤ (2π)k

∣∣xkf(x)
∣∣ which is

integrable. This holds for k = 1, .., n.

Therefore, applying the di�erentiation under the integral sign Theorem

f̂ (k) (ξ) =

ˆ
R

∂k

∂ξk
G(ξ, x)dx =

ˆ
R

(−2iπx)ke−2iπξxf(x)dx = (−2iπ)k
ˆ
R
e−2iπξxxkf(x)dx

= (−2iπ)k ̂[xkf (x)] (ξ) for k = 1, .., n

• Proof 2: note �rst that f (k) ∈ L1(R) implies that the respective Fourier Transforms are well-de�ned.
We prove the result by induction. For k = 1:

f̂ ′(ξ) = lim
a−→+∞

ˆ +a

−a
e−2iπξxf

′
(x)dx

parts
=

[
u = e−2iπξx −→ du = −2iπξe−2iπξx

dv = f
′
(x) −→ v = f(x)

]
= lim

a−→+∞

[
e−2iπξxf(x)

]+a
−a

+ lim
a−→+∞

(2iπξ)

ˆ +a

−a
e−2iπξxf(x)dx

(lemma 1.1)
= (2iπξ)

ˆ
R
e−2iπξxf(x)dx = (2iπξ)f̂ (ξ)
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Suppose the result holds for (k − 1) ∈ {1, 2, .., n− 1}. We show that it also holds for k:

f̂ (k)(ξ) = lim
a−→+∞

ˆ +a

−a
e−2iπξxf (k)(x)dx

parts
=

[
u = e−2iπξx −→ du = −2iπξe−2iπξx

dv = f (k)(x) −→ v = f (k−1)(x)

]
=

lim
a−→+∞

[
e−2iπξxf (k−1)(x)

]+a
−a

+ lim
a−→+∞

(2iπξ)

ˆ +a

−a
e−2iπξxf (k−1)(x)dx

(lemma 1.1)
= (2iπξ)

ˆ
R
e−2iπξxf (k−1)(x)dx

= (2iπξ)f̂ (k−1)(ξ)
(induc.hyp.)

= (2iπξ)kf̂ (ξ)

• Proof 3: f has bounded support, i.e., there exists M > 0 large enough such that f(x) = 0 for
x /∈ [−M, M ]. Hence:

ˆ
R

∣∣xkf(x)
∣∣ dx =

ˆ +M

−M

∣∣xkf(x)
∣∣ dx ≤ Mk

ˆ +M

−M
|f(x)| dx = Mk

ˆ
R
|f(x)| dx < +∞ for k ∈ N

Consequently, xkf(x) ∈L1(R) for all k ∈ N and we can apply statement 1 to conclude that f̂ ∈ C∞(R).

Proposition 1.2. (Conjugation and parity) Let f ∈ L1(R). Then, the following statements

hold:

1. Conjugation: f̂(−ξ) =
[̂
f̄
]
(ξ).

2. Re�exion: f̂(−ξ) = f̂σ(ξ).

3. f even (odd) =⇒ f̂ even (odd).

4. f real and even =⇒ f̂ real and even.

5. f real and odd =⇒ f̂ purely imaginary and odd.

PROOF.

• Proof 1: it holds e−2iπξx = cos(−2πξx) + i·sin(−2πξx) = cos(2πξx)− i·sin(2πξx) = e2iπξx. Hence:

[̂
f̄
]
(ξ) =

ˆ
R
e−2iπξxf(x)dx =

ˆ
R
e2iπξxf(x)dx =

ˆ
R
e2iπξxf(x)dx = f̂(−ξ)

• Proof 2: f̂(−ξ) =
´ +∞
−∞ e2iπξxf(x)dx

y=−x
= −

´ −∞
+∞ e−2iπξyf(−y)dy =

´
R e
−2iπξyfσ(y)dy = f̂σ(ξ)

• Proof 3: let us suppose f is even, i.e. f = fσ. Applying statement 2: f̂(−ξ) 2.
= f̂σ(ξ) = f̂(ξ), that is

f̂ is even.
Let us suppose f is odd. i.e f = −fσ. Applying statement 2: f̂(−ξ) 2.

= f̂σ(ξ) = ̂[−f ](ξ) = −f̂(ξ), that
is f̂ is even.

• Proof 4: applying statement 3, it su�ces to show that f̂ is real: f̂(ξ)
1.
= ̂̄f(−ξ) (f real)

= f̂(−ξ)
(f̂ even)

= f̂(ξ).
Hence, f̂ is real.

• Proof 5: applying statement 3, it su�ces to show that f̂ is imaginary: f̂(ξ)
1.
= ̂̄f(−ξ) (f real)

= f̂(−ξ)
(f̂ odd)

= −f̂(ξ). Hence, f̂ is purely imaginary.

Example 1.1. As an example of the utility of the previous properties, we consider the function
f(x) = e−ax

2
, a > 0 and we compute its Fourier transform.

If we apply the direct method, i.e. we compute f̂(ξ) =
´
R e
−2πxiξf(x)dx =

´
R e
−2πxiξ−ax2dx, we will

need to evaluate a contour integral in the complex plane.
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However, there is another way to proceed: we di�erentiate the function and we obtain the relation

f
′
(x) = −2axf(x) =⇒ [̂f ′ ](ξ) = ̂[−2axf(x)](ξ) =

a

iπ
̂[−2iπxf(x)](ξ)

Prop. 1.1.2. (left)
=⇒

Prop. 1.1.1. (right)
(2iπξ) ·f̂(ξ) =

a

iπ
f̂
′
(ξ)

Hence, we obtain an ordinary di�erential equation of �rst order: f̂
′
(ξ) = −2π2

a ξf̂(ξ). We can solve it
by separation of variables:

df̂

dξ
= −2π2

a
ξf̂ =⇒ df̂

f̂
= −2π2

a
ξdξ =⇒ ln

(
f̂
)

= −π
2

a
ξ2 + K =⇒ f̂(ξ) = K ′e

−π2
a ξ2

K ′ = f̂(0) =

ˆ
R
e−ax

2
dx =

√
π

a
=⇒ f̂(ξ) =

√
π

a
e
−π2
a ξ2

1.4 The inverse Fourier Transform

Lemma 1.2. For n > 0, we de�ne gn(x) = e−
2π
n |x|. Then its Fourier transform is ĝn(ξ) = n

π(1+n2ξ2)

and it holds that gn and ĝn are in L1(R). Moreover:

ˆ
R
ĝn(ξ)dξ =

ˆ
R

n

π (1 + n2ξ2)
dξ =

1

π
[arctan(nξ)]+∞−∞ = 1

Lemma 1.3. Let gn(x) := e−
2π
n
|x| and f ∈ L1 (R). Then lim

n−→+∞

´
R f(u)ĝn(u − t)du = f(t) at all

the points where f is continuous.

PROOF.

As f is continuous in t: for all ε > 0 there exists δε > 0 s.t if |y − t| < δε then |f(y)− f(t)| < ε.∣∣∣∣ˆ
R
f(u)ĝn(u− t)du − f(t)

∣∣∣∣ u= ξ+t

≤
Lemma 1.2

ˆ
|ξ|≤δε

|f(ξ + t)− f(t)| |ĝn(ξ)| dξ +

ˆ
|ξ|>δε

|f(ξ + t)− f(t)| |ĝn(ξ)| dξ

(1.4.1)

• On the one hand, it holds that

ˆ
|ξ|≤δε

|f(ξ + t)− f(t)| |ĝn(ξ)| dξ
continuity
≤ ε

ˆ
|ξ|≤δε

|ĝn(ξ)| dξ ≤ ε

ˆ
R
|ĝn(ξ)| dξ Lemma 1.2

= ε.

• On the other hand, we have that

ˆ
|ξ|>δε

|f(ξ + t)− f(t)| |ĝn(ξ)| dξ
triang. ineq.
≤

ˆ
|ξ|>δε

|f(ξ + t)ĝn(ξ)| dξ +

ˆ
|ξ|>δε

|f(t)ĝn(ξ)| dξ
(1)

≤

|ĝn(δε)| ‖f‖1 + |f(t)|
ˆ
|ξ|>δε

|ĝn(ξ)| dξ =

∣∣∣∣ n

π (1 + n2δ2
ε )

∣∣∣∣ ‖f‖1 + |f(t)| (1 − 2

π
arctan(nδε))

n→+∞−→ 0.

Where in (1) we have used that ĝn is even and decreasing in R+.
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Taking the limit in the inequality (1.4.1), we get that

lim
n−→+∞

∣∣∣∣ˆ
R
f(u)ĝn(u− t)du − f(t)

∣∣∣∣ ≤ ε ∀ε > 0 =⇒ lim
n−→+∞

ˆ
R
f(u)ĝn(u− t)du = f(t)

Theorem 1.1. Let f ∈ L1(R) and let us suppose f̂ ∈ L1(R). Then
ˇ̂
f(t) = f(t) at all the points

where f is continuous.

PROOF.

Let gn(x) := e−
2π
n
|x|. By Lemma 1.2, gn, ĝn ∈ L1(R), so we can apply Property 1.8.:

ˆ
R
f̂(x)gn(x)e2πitxdx

Property 1.8
=

ˆ
R
f(u) ̂[gn(x)e2πitx](u)du

Property 1.3.
=

ˆ
R
f(u)ĝn(u− t)du (1.4.2)

Now, we apply Theorem A.2. (Convergence Dominated Theorem) to the function f̂(x)gn(x)e2πitx,

since for all x, it holds that
∣∣∣f̂(x)gn(x)e2πitx

∣∣∣ ≤ ∣∣∣f̂(x)
∣∣∣ (which is integrable by hypothesis). Then:

lim
n−→+∞

ˆ
R
f̂(x)gn(x)e2πitxdx =

ˆ
R

lim
n−→+∞

f̂(x)gn(x)e2πitxdx =

ˆ
R
f̂(x)e2πitxdx =

ˇ̂
f(t)

Finally, taking the limit in (1.4.2), and using Lemma 1.3 in the right hand side, we conclude:

ˇ̂
f(t) = f(t)

Corollary 1.2. Let f ∈ L1(R) be a continuous function except for a jump discontinuity at x = a.
Then f̂ /∈ L1(R).

PROOF.

Let us suppose f̂ ∈ L1(R). Then, theorem 1.1. implies
ˇ̂
f(x) = f(x) except for x = a. And since

f(x) has a jump of discontinuity at x = a. It holds

lim
x−→a−

ˇ̂
f(x) = lim

x−→a−
f(x) 6= lim

x−→a+
f(x) = lim

x−→a+
ˇ̂
f(x) (1.4.3)

However, property 1.5. implies
ˇ̂
f(x) is continuous everywhere. This is a contradiction with the previous

fact (1.4.3).

Remark 1.2. f ∈ L1(R) ; f̂ ∈ L1(R). In e�ect, we consider the characteristic function f(x) =

1[a, b](x) ∈ L1(R). Its Fourier Transform is not in L1(R):

f̂(ξ) =

{
b− a if ξ = 0
ie−2iπξb−ie−2iπξa

2πξ if ξ 6= 0
=⇒

ˆ
R

∣∣∣f̂(ξ)
∣∣∣ dξ = 2

ˆ ∞
0

∣∣∣∣sin(π (b− a) ξ)

πξ

∣∣∣∣ dξ = +∞

Proposition 1.3. If f ∈ C2(R) and f, f
′
, f
′′ ∈ L1(R), then f̂ ∈ L1(R).

PROOF.

Under the hypothesis of the statement, we can apply Proposition 1.1.2 to see that f̂ ′′ (ξ) = −4π2ξ2f̂ (ξ) .

Moreover, as f
′′ ∈ L1(R), by property 1.7.: lim

|ξ|−→+∞

∣∣∣f̂ ′′ (ξ)∣∣∣ = 0.
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Consequently lim
|ξ|−→+∞

∣∣∣4π2ξ2f̂ (ξ)
∣∣∣ = 0. Then for ε = 1 , there exists K > 0 such that for all |ξ| > K:∣∣∣4π2ξ2f̂ (ξ)

∣∣∣ < 1. Furthermore, as f̂ is continuous in the compact |ξ| ≤K, there exists A > 0 such that∣∣∣f̂(ξ)
∣∣∣ ≤ A for all |ξ| ≤K. Thus

ˆ
R

∣∣∣f̂(ξ)
∣∣∣ dξ ≤ ˆ

|ξ|≤K

∣∣∣f̂(ξ)
∣∣∣ dξ +

ˆ
|ξ|>K

1

4π2ξ2
dξ ≤ 2KA +

1

2π2

[
−1

ξ

]∞
K

= 2KA+
1

2π2K
< +∞

Hence, f̂ ∈ L1(R).

Proposition 1.4. If f ∈ C(R) ∩ L1(R) and f̂ ∈ L1(R), then
̂̂
f(x) = fσ(x).

PROOF.

̂̂
f(x) =

ˆ
R
e−2iπxξ f̂(ξ)dξ

Proposition 1.2.2
=

ˆ
R
e2iπxξ f̂σ(ξ)dξ =

ˇ̂
fσ(x)

Theorem 1.1.
= fσ(x)

1.5 The principal value Fourier inversion formula

If f̂ /∈ L1(R) then the integral
´
R e

2iπtξ f̂(ξ)dξ is not de�ned. However, as we will see, this does not
exclude the possible existence of:

lim
a−→+∞

ˆ +a

−a
e2iπtξ f̂(ξ)dξ

Lemma 1.4. Let us consider the function sin(x)
x . It has the following properties:

1.
´ +∞

0
sin(x)
x dx = π

2

2. s(y) :=
´ +∞
y

sin(x)
x dx is well-de�ned and di�erentiable on R. Moreover, s

′
(y) = − sin(y)

y and

lim
y−→+∞

s(y) = 0.

3. There exists M > 0 such that M = sup
y≥0
|s(y)|.

PROOF.

• Proof 1: the application of Fubini's Theorem gives us the result:

ˆ +∞

0

sin(x)

x
dx =

ˆ +∞

0

(ˆ +∞

0

e−xt sin(x)dt

)
dx

TheoremA.6
=

ˆ +∞

0

(ˆ +∞

0

e−xt sin(x)dx

)
dt =

ˆ +∞

0

[
−e−xt cos(x)

t2 + 1
− te−xt sin(x)

t2 + 1

]+∞
0

dt =

ˆ +∞

0

1

t2 + 1
dt = [arctan(t)]

+∞
0 =

π

2

• Proof 2: we have s(y) is well-de�ned. In e�ect, as sin(x)
x is continuous on [y, 0] then there exists

K > 0 s.t sin(x)
x ≤ K on [y, 0]. Then

s(y) =

ˆ +∞

0

sin(x)

x
dx +

ˆ 0

y

sin(x)

x
dx ≤ π

2
+

ˆ 0

y

Kdx =
π

2
− Ky < +∞
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What is more, sin(x)
x ∈ C(R) =⇒ s ∈ C1(R). And

s
′
(y) =

d

dy

ˆ +∞

y

sin(x)

x
dx = − sin(y)

y
and lim

y−→+∞
s(y) = lim

y−→+∞

ˆ +∞

y

sin(x)

x
dx = 0

• Proof 3: since lim
y−→+∞

s(y)= 0, then for ε = 1 there exists M1 > 0 s.t. |s(y)| < 1 for all y > M1.

Moreover, since s is continuous, then there exists K > 0 s.t |s(y)| ≤ K on [0,M1]. Hence, we conclude

|s(y)| ≤max{K, 1} ∀y ∈ R+ and the supremum exists.

Theorem 1.2. Let f ∈ L1(R) such that f
′ ∈ L1(R). Assume that there exists a �nite number of

real numbers a1, a2, ..., ap such that f is continuously di�erentiable on (−∞, a1) , ..., (ap, +∞) . Let

f(t+) := lim
x−→t+

f(x) and f(t−) := lim
x−→t−

f(x). Then

lim
a−→+∞

ˆ +a

−a
e2iπtξ f̂(ξ)dξ =

1

2

(
f(t+) + f(t−)

)
PROOF.

Note �rst that the hypothesis imply that the limits f(t+) and f(t−) exist for all t. Let g(ξ) :=

e2iπtξ1[−a, a](ξ). The properties of the Fourier Transform imply that: ĝ(x) = sin(2πa(x−t))
π(x−t) . Since

f, g ∈ L1(R), it follows from Property 1.8.

v(a) :=

ˆ +a

−a
e2iπtξ f̂(ξ)dξ =

ˆ
R
g(ξ)f̂(ξ)dξ =

ˆ
R
ĝ(x)f(x)dx =

ˆ
R

sin(2πa(x− t))
π(x− t)

f(x)dx =

x= t+u
=

ˆ
R

sin(2πau)

πu
f(t+ u)du =

ˆ +∞

0

sin(2πau)

πu
f(t+ u)du +

ˆ +∞

0

sin(2πau)

πu
f(t− u)du =

=

ˆ +∞

0

sin(2πau)

πu
(f(t+ u) + f(t− u)) du

Let us de�ne ht(u) := f(t + u) + f(t − u). By the properties of f , we conclude that this function
is integrable in [0, +∞), has at most a �nite number of discontinuities b1, b2, ..., bq, is continuously
di�erentiable on (0, b1), (b1, b2), ..., (bq,+∞) (it can happen b1 = 0) and h

′
t is integrable. Let us take

b0 := 0 and bq+1 := +∞. Thus, using the notation of Lemma 1.4.

v(a) =

ˆ +∞

0

sin(2πau)

πu
(f(t+ u) + f(t− u)) du = −2a

ˆ +∞

0
s
′
(2πau)ht(u)du =

= −2a

q∑
j=0

ˆ bj+1

bj

s
′
(2πau)ht(u)du

parts
=

[
u = ht(u) −→ du = h

′
t(u)

dv = s
′
(2πau) −→ v = s(2πau)

2πa

]
=

= − 1

π

q∑
j=0

[
s(2πabj+1)ht(b

−
j+1)− s(2πabj)ht(b+j )−

ˆ bj+1

bj

s(2πau)h
′
t(u)du

]
(1.5.1)

Now, we apply the limit when a −→ +∞ to the di�erent terms of the previous sum:

1. For the terms s(2πabj+1)ht(b
−
j+1) − s(2πabj)ht(b+j ) with j = 1...q: as bj+1 6= 0 and bj 6= 0, then we

can apply the Lemma 1.4.2 and we have

lim
a−→+∞

s(2πabj+1) = lim
a−→+∞

s(2πabj) = 0 =⇒ lim
a−→+∞

[
s(2πabj+1)ht(b

−
j+1)− s(2πabj)ht(b+j )

]
= 0
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2. The term s(2πab1)ht(b
−
1 ) has limit 0 for the same reason as before.

3. For the terms
´ bj+1

bj
s(2πau)h

′

t(u)du with j = 0...q: we apply theorem A.2. (Dominated Con-

vergence Theorem) since lim
a−→+∞

s(2πau)h
′

t(u) = 0 (a.e.),
∣∣∣s(2πau)h

′

t(u)
∣∣∣ Lemma 1.4.3

≤ M
∣∣∣h′t(u)

∣∣∣ and
h
′

t(u) ∈ L1(R). Hence

lim
a−→+∞

ˆ bj+1

bj

s(2πau)h
′

t(u)du =

ˆ bj+1

bj

lim
a−→+∞

s(2πau)h
′

t(u)du = 0 for j = 0...q

Hence, the remaining term in (1.5.1) is 1
π s(0)ht(0

+)
Lemma 1.4.1

= 1
π
π
2 (f (t+) + f(t−)). We conclude:

lim
a−→+∞

ˆ +a

−a
e2iπtξ f̂(ξ)dξ = lim

a−→+∞
v(a) =

1

2

(
f(t+) + f(t−)

)

Corollary 1.3. Under the conditions of the previous theorem, if t is a point of continuity of f then:

lim
a−→+∞

ˆ +a

−a
e2iπtξ f̂(ξ)dξ = f(t)

Example 1.2. Let f(x) = π1[− 1
2π
, 1
2π ](ξ). We saw that f̂(ξ) = sin(ξ)

ξ . We see f, f
′ ∈ L1(R) and f

is continuous on
(
−∞,− 1

2π

)
,
(
− 1

2π ,
1

2π

)
,
(

1
2π ,+∞

)
. Thus, theorem 1.2. says:

lim
a−→+∞

ˆ +a

−a
e2iπtξ f̂(ξ)dξ =


π if |t| < 1

2π
π
2 if |t| = 1

2π

0 if |t| > 1
2π



Chapter 2

The Schwartz Space

2.1 Rapidly decreasing functions

De�nition 2.1. A function f : R −→ C is said to decay rapidly, or be rapidly decreasing, if

lim
|x|→+∞

|xpf(x)| = 0 for all p ∈ N

It is important to note that in spite of the name, this de�nition does not imply that the function is

monotonic in a neighborhood of in�nity (f(x) = e−|x| sin(x)).

Proposition 2.1. If f is locally integrable, f ∈ L1
loc(R), and rapidly decreasing, then xpf(x) ∈ L1(R)

for all p ∈ N.
PROOF.

Since f decays rapidly, lim
|x|→+∞

∣∣xp+2f(x)
∣∣ = 0 =⇒ for ε = 1 , there existsM > 0 such that for all |x| > M

we have
∣∣xp+2f(x)

∣∣ < 1. Hence:
ˆ
R
|xpf(x)| dx ≤

ˆ
|x|≤M

|xpf(x)| dx +

ˆ
|x|>M

1

x2

∣∣xp+2f(x)
∣∣ dx ≤ Mp

ˆ
|x|≤M

|f(x)| dx

+

ˆ
|x|>M

1

x2
dx = Mp

ˆ
|x|≤M

|f(x)| dx +
2

M
< +∞

Where we have used that
´
|x|≤M |f(x)| dx < +∞ because f ∈ L1

loc(R). Thus, xpf(x) ∈ L1(R).

Corollary 2.1. If f ∈ L1(R) decays rapidly, then f̂ ∈ C∞(R).

PROOF.

By the previous proposition, it holds xpf(x) ∈ L1(R) for all p ∈ N. This implies by Proposition 1.1.1
that f̂ is in�nitely times di�erentiable.

Proposition 2.2. Assume that f is in C∞(R). If f (k) ∈ L1(R) for all k ∈ N, then f̂ decays rapidly.

PROOF.

Proposition 1.1.2 implies that f̂ (k) (ξ) = (2iπξ)kf̂ (ξ) for k ∈ N. And by Property 1.7.

lim
|ξ|−→+∞

∣∣∣[̂f (k)
]

(ξ)
∣∣∣ = lim

|ξ|−→+∞
2π
∣∣∣ξkf̂ (ξ)

∣∣∣ = 0 for k ∈ N

17



CHAPTER 2. THE SCHWARTZ SPACE 18

Hence, lim
|ξ|−→+∞

∣∣∣ξkf̂ (ξ)
∣∣∣ = 0 for k ∈ N and we conclude f̂ decays rapidly.

Remark 2.1. We can conclude from the previous propositions:

1. The faster f decreases at in�nity, the greater the regularity of f̂ .

2. The more regular f is, the faster f̂ decays.

In particular, if f ∈ C∞(R) and decreases rapidly, then the same is true for f̂ .

2.2 The space S(R) (Schwartz Space)

De�nition 2.2. We de�ne the space S(R), also known as Schwartz Space, as the set of functions

f : R −→ C such that f is in�nitely times di�erentiable and f and all of its derivatives decay

rapidly. It holds that S(R) is a vector space.

Proposition 2.3. The space S(R) has the following properties:

1. S(R) is invariant under multiplication by a polynomial.

2. S(R) is invariant under derivation.

3. S(R) ⊂ L1(R)

PROOF.

• Proof 1: let p ∈ C [X] (polynomial with complex coe�cients) and f ∈ S(R). We want to show that

pf ∈ S(R). It is clear that pf ∈ C∞(R) since f and p ∈ C∞(R). It remains to see pf and all its

derivatives decay rapidly. Let us suppose p(x) = anx
n + ...+a1x+a0 where a0, a1, ..., an ∈ C. Then

p(x)f(x) = anx
nf(x) + ...+ a1xf(x) + a0f(x) and hence

lim
|x|→+∞

|xpp(x)f(x)| ≤ lim
|x|→+∞

(
|an|

∣∣xn+pf(x)
∣∣ + ...+ |a1|

∣∣xp+1f(x)
∣∣+ |a0| |xpf(x)|

)
= 0 for all p ∈ N

For the derivatives of pf the argument will be same. But in these cases, there will be products of

polynomials and derivatives of f . However, the limit will be 0 due to f ∈ S(R).

• Proof 2: let f ∈ S(R). We want to show f
′ ∈ S(R). As f ∈ C∞(R) then f

′ ∈ C∞(R). And as all
the derivatives of f decay rapidly, then all the derivatives of f

′
decay rapidly.

• Proof 3: let f ∈ S(R). In consequence, f decay rapidly and is C∞(R) (and hence, is L1
loc(R)).

Therefore, we can apply Proposition 2.1 and conclude that f ∈ L1(R). Thus, S(R) ⊂ L1(R).
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Theorem 2.1. The space S(R) is invariant under the Fourier Transform. That is, if f ∈ S(R)
then f̂ ∈ S(R).

PROOF.

• First, we show that f̂ ∈ C∞(R). In e�ect, as f ∈ S(R) ⊂ L1 (R) and decays rapidly, we conclude
by Corollary 2.1. that f̂ ∈ C∞(R).

• Next, we prove that f̂ is rapidly decreasing: as f ∈ S(R) then by Proposition 2.3. f (k) ∈ S(R) ⊂
L1(R) for all k ∈ N. Moreover f ∈ C∞(R). Hence we can apply Proposition 2.2. and conclude that

f̂ is rapidly decreasing.

• Finally, we shall show that all the derivatives of f̂ decays rapidly. Let q ≥ 0 and let g(x) :=

(−2iπ)qxqf(x). As f ∈ S(R), we can apply Proposition 2.3.1 and conclude g ∈ S (R) . Moreover, by

Proposition 2.3.2 g(p) ∈ S (R) for p ≥ 0. Therefore, we can apply Proposition 1.1.2 to the function g(p)

ĝ(p) (ξ)
Prop. 1.1.2

= (2iπξ)pĝ (ξ) =⇒
(

1

2πi

)p ̂[
((−2iπx)qf(x))(p)

]
(ξ) = ξp ̂[(−2iπx)qf(x)] (ξ) (2.2.1)

Moreover, as xqf(x) ∈ L1(R) for all q ≥ 0, we can apply Proposition 1.1.1 on the right-hand side of

(2.2.1) and we get:(
1

2πi

)p ̂[
((−2iπx)qf(x))

(p)
]

(ξ) = ξpf̂ (q) (ξ) =⇒ lim
|ξ|→+∞

∣∣∣ξpf̂ (q) (ξ)
∣∣∣ =

=

(
1

2πi

)p
lim

|ξ|→+∞

∣∣∣∣ ̂[
((−2iπx)qf(x))

(p)
]

(ξ)

∣∣∣∣ Property 1.7.= 0

De�nition 2.3. We will say that a sequence (fn)n∈N of elements in S(R) tends to 0 as n tends to

in�nity, and we will write fn −→ 0 in S(R), if

lim
n−→+∞

sup
x∈R

∣∣∣xpf (q)
n (x)

∣∣∣ = 0 for all p, q ∈ N

Remark 2.2. Note that if fn −→ 0 in S(R), then
(
f

(q)
n

)
n∈N

converges uniformly on R to 0 for all

q ∈ N . In e�ect, taking p = 0 in the de�nition 2.3., we get that

lim
n−→+∞

sup
x∈R

∣∣∣f (q)
n (x)

∣∣∣ = 0 for all q ∈ N

De�nition 2.4. We will say that a sequence (fn)n∈N of elements in S(R) tends to f in S(R) as n
tends to in�nity if fn − f −→ 0 in S(R).

Proposition 2.4. Let (fn)n∈N be a sequence of elements in S(R). Let us suppose fn −→ 0 in S(R).
Then, the following statements hold

1. f
′
n −→ 0 in S(R) (continuity of derivation).

2. Pfn −→ 0 in S(R) for all polynomials P with complex coe�cients.
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3. fn −→ 0 in L1 (R).

4. f̂n −→ 0 in S(R) (continuity of the Fourier transform).

PROOF.

• Proof 1: it is consequence of the de�nition. In e�ect, for all p and q in N:

lim
n−→+∞

sup
x∈R

∣∣∣∣xp (f ′n)(q)
(x)

∣∣∣∣ = lim
n−→+∞

sup
x∈R

∣∣∣xpf (q+1)
n (x)

∣∣∣ = 0 =⇒ f
′
n −→ 0 in S(R)

• Proof 2: it is su�cient to prove this for P (x) = xk, k ∈ N, i.e., we should prove

lim
n−→+∞

sup
x∈R

∣∣∣∣xp (xkfn(x)
)(q)

∣∣∣∣ = 0 for all p, q ∈ N

But this follows immediately from the Leibniz's formula for the derivatives of a product. Hence, if we

have a general polynomial P (x) =
m∑
i=0

aix
i. It holds

∣∣∣xp ((Pfn) (x))(q)
∣∣∣ ≤ m∑

i=0

|ai|
∣∣∣xp (xifn(x)

)(q)∣∣∣ =⇒ lim
n−→+∞

sup
x∈R

∣∣∣xp ((Pfn) (x))(q)
∣∣∣ ≤

≤
m∑
i=0

(
|ai| lim

n−→+∞
sup
x∈R

∣∣∣xp (xifn(x)
)(q)∣∣∣) = 0 for all p, q ∈ N

• Proof 3: let us consider P (x) = (1 + x2). It holds by 2 that Pfn −→ 0 in S(R). In particular, it
holds (for p = q = 0) that lim

n−→+∞
sup
x∈R

∣∣(1 + x2)fn(x)
∣∣ = 0. Then for ε > 0, there exists N > 0 such

that for all n ≥ N and x ∈ R,
∣∣(1 + x2)fn(x)

∣∣ < ε. Thus, for all n ≥ N :

ˆ
R
|fn(x)| dx ≤

ˆ
R

ε

1 + x2
dx = επ =⇒ fn −→ 0 in L1 (R)

• Proof 4: we use (2.2.1) from Theorem 2.1.:
∣∣∣ξpf̂n(q)

(ξ)
∣∣∣ =

(
1

2π

)p−q ∣∣∣∣ ̂[
(xqfn(x))(p)

]
(ξ)

∣∣∣∣ . Let us de�ne
now gn(x) = (xqfn(x))(p). By Proposition 2.3. we get that gn ∈S(R) and by 1. and 2. we get that
gn −→ 0 in S(R). Now, applying 3. we get ‖gn‖1 −→ 0. Finally, using Property 1.6.∣∣∣ξpf̂n(q)

(ξ)
∣∣∣ =

(
1

2π

)p−q
|ĝn(ξ)| ≤

(
1

2π

)p−q
‖ĝn‖∞

Property 1.6.
≤

(
1

2π

)p−q
‖gn‖1 −→ 0

for all p, q ≥ 0. Hence we conclude f̂n −→ 0 in S(R).

2.3 The inverse Fourier transform on S(R)

Theorem 2.2. Let us consider the mapping ·̂ : S(R) −→ S(R) de�ned by f̂ (ξ) =
´
R e
−2iπξxf (x) dx.

Then, it holds that ·̂ is bijective and ·̂−1 = ·̌. In other words, the following relations hold

f̂(ξ) =

ˆ
R
e−2iπξxf(x)dx and f(x) =

ˆ
R
e+2iπξxf̂(ξ)dξ for all f ∈ S(R) and x, ξ ∈ R
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Moreover, ·̂ and ·̌ are continuous in the sense of convergence on S(R).

PROOF.

• First of all, we observe that the mapping if well-de�ned. In e�ect, if f ∈ S(R) then by Theorem

2.1. f̂ ∈ S(R). Moreover, by Proposition 2.3.3 f̂ ∈ S(R) ⊂ L1(R) and as f ∈ C∞(R) we can apply

Theorem 1.1. and conclude that f(x) =
ˇ̂
f(x) for all x ∈ R. On the other hand, note that

̂̌f(x) =
̂[
f̂(−ξ)

]
(x)

Proposition 1.2.2
=

̂[
f̂σ(ξ)

]
(x) =

ˇ[
f̂σ(ξ)

]
(−x) = fσ(−x) = f(x)

Hence, we have proved f =
ˇ̂
f(x) = ̂̌f (x) ∀x ∈ R. Hence we conclude that ·̂ is bijective and ·̂−1 = ·̌

on S(R).

• Finally, it remains to prove the continuity of ·̂ and ·̌ . Let us prove that ·̂ is continuous (for ·̌ is
analogous). We should show that given (fn)n∈N a sequence of elements in S(R) and f ∈ S(R) such

that fn −→ f in S(R) then f̂n −→ f̂ in S(R). In e�ect

fn → f in S(R) =⇒ fn − f → 0 in S(R)
Proposition 2.4.4

=⇒ ̂[fn − f ] → 0 in S(R)

=⇒ f̂n → f̂ in S(R)

Proposition 2.5. Let us consider g(x) = e−πx
2
. Then it holds that g is in S(R) and is a �xed point

of the Fourier transform, that is ĝ(ξ) = g(ξ) = e−πξ
2
.

PROOF.

• We start showing that g is in S(R). It is clear that g is in�nitely times di�erentiable. Moreover,

its derivatives are of the form g(n)(x) = P (x)e−πx
2
where P is a polynomial. Hence, g and all its

derivatives are rapidly decreasing since lim
|x|→+∞

∣∣∣xpP (x)e−πx
2
∣∣∣ = 0. We conclude g ∈ S(R).

• Finally we show that ĝ(ξ) = g(ξ). We apply example 1.1. taking a = π and we get the result.



Chapter 3

The convolution of functions, derivation

and regularization

3.1 De�nitions

De�nition 3.1. We de�ne the convolution of two functions f, g : R −→ C as the function f ∗ g, if
it exists, de�ned by

(f ∗ g) (x) =

ˆ
R
f(x− t)g(t)dt =

ˆ
R
f(u)g(x− u)du

De�nition 3.2. (support of a measurable function) Let f : R −→ C be a measurable function.

Let θi, i ∈ I, be the family of open sets in R such that f = 0 a.e. on θi, for all i ∈ I. Let θ = ∪
i∈I
θi.

We de�ne the support of f , supp(f), as the closed set R \ θ, that is

supp (f) := R \ θ

Remark 3.1. Let f, g : R −→ C with supp (f) = R \ θ and f = g a.e., then it holds that supp(f) =
supp(g).

PROOF.

Suppose supp(f) 6= supp(g), then there exists a set A with µ(A) 6= 0 such that f = 0 and g 6= 0 a.e.
on A (or viceversa). Then, f 6= g on A with µ(A) 6= 0. That is a contradiction with the assumption
that f = g almost everywhere.

Lemma 3.1. Let f, g : R −→ C be two functions for which f ∗ g exists. Then:

supp (f ∗ g) ⊆ supp (f) + supp (g)

PROOF.

Let us de�ne S := R\ (supp (f) + supp (g)) and let S̊ denote the interior of S. Let x ∈ S, i.e.
x /∈ supp (f) + supp (g). Then for all t ∈ supp (f), we have (x− t) /∈ supp (g) . Hence g(x − t) = 0
and (f ∗ g) (x) =

´
R g(x− t)f(t)dt = 0.

Let us denote θf∗g the largest open set on which f ∗ g = 0 a.e. We have seen that x ∈ S̊ implies
x ∈ θf∗g. Thus,

S̊ ⊆ θf∗g =⇒ supp (f ∗ g) = R \ θf∗g ⊆ R \ S̊ = R \ S = supp (f) + supp (g)

22
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3.2 The Convolution of functions in L1(R)

Proposition 3.1. Let f, g be in L1(R). Then, the following statements hold:

1. f ∗ g is de�ned almost everywhere and belongs to L1(R).

2. The convolution is a continuous bilinear operator from L1(R)× L1(R) to L1(R) with:

‖f ∗ g‖1 ≤ ‖f‖1 ‖g‖1

PROOF.

• Proof 1: let us consider the function F (y, t) := f(y)g(t). As f, g ∈ L1(R), Theorem A.6. (Fubini)
implies that F (y, t) ∈ L1(R2). Moreover:

ˆ
R
|(f ∗ g) (x)| dx =

ˆ
R

∣∣∣∣ˆ
R
f(x− t)g(t)dt

∣∣∣∣ dx ≤ ˆ
R

ˆ
R
|f(x− t)g(t)| dtdx

x=y+t
=

ˆ
R

ˆ
R
|f(y)g(t)| dtdy

Fubini
< +∞ (3.2.1)

Hence, we conclude f ∗ g is de�ned almost everywhere and belongs to L1 (R) .

• Proof 2: we have seen in (3.2.1) that:

‖f ∗ g‖1 =

ˆ
R
|(f ∗ g) (x)| dx ≤

ˆ
R

ˆ
R
|f(y)g(t)| dtdy Fubini

=

(ˆ
R
|f(y)| dy

)(ˆ
R
|g(t)| dt

)
= ‖f‖1 ‖g‖1

Moreover, from the statement 1 we deduce that the operator f ∗ g : L1(R) × L1(R) −→ L1(R) is

well-de�ned and the previous inequality shows that the operator is continuous with respect the two

variables. Finally, it is bilinear since the linearity of the integral implies:

[(λ1f1 + λ2f2) ∗ (µ1g1 + µ2g2)] (x) = λ1µ1 (f1 ∗ g1) (x) + λ1µ2 (f1 ∗ g2) (x) +

+λ2µ1 (f2 ∗ g1) (x) + λ2µ2 (f2 ∗ g2) (x)

Proposition 3.2. Let f ∈ L1
loc(R) and g ∈ L1(R). Then, the following statements hold:

1. If supp (g) is bounded, then f ∗ g exists almost everywhere and belongs to L1
loc(R).

2. If f is bounded, then f ∗ g exists everywhere and belongs to L∞(R). Moreover, ‖(f ∗ g)‖∞ ≤
‖f‖∞ ‖g‖1.

PROOF.

• Proof 1: as supp(g) is bounded, there exists an interval [−a, a] such that g is zero a.e. outside this
interval. Let us take x in a �nite interval [α, β]. Then for all t ∈ [−a, a] and for all x ∈ [α, β]

f (x− t) g (t) = 1[α−a, β+a](x− t)f(x− t)g(t)

and thus, for all x ∈ [α, β]

(f ∗ g) (x) =

ˆ
R
f(x− t)g(t)dt =

ˆ +a

−a
f(x− t)g(t)dt =

ˆ
R
1[α−a, β+a](x− t)f(x− t)g(t)dt =
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=
(
1[α−a, β+a]f ∗ g

)
(x)

Hence, f ∗ g coincides on [α, β] with the convolution of two functions in L1(R) since g ∈ L1(R) and

1[α−a, β+a]f ∈ L1(R) because f ∈ L1
loc(R). Thus, by Proposition 3.1.1 f ∗ g is de�ned almost every-

where and is integrable on all compacts sets.

• Proof 2: if f is bounded, then |f | ≤ ‖f‖∞. Thus

|(f ∗ g) (x)| =

∣∣∣∣ˆ
R
f(u)g(x− u)du

∣∣∣∣ ≤ ˆ
R
|f(u)| |g(x− u)| du ≤ ‖f‖∞

ˆ
R
|g(x− u)| du

= ‖f‖∞ ‖g‖1 < +∞

Consequently, f ∗ g exists everywhere and belongs to L∞(R). Moreover, taking supremums in the
previous inequality: ‖(f ∗ g)‖∞ ≤ ‖f‖∞ ‖g‖1.

3.3 The Convolution of functions in Lp(R)

De�nition 3.3. Let p and q be two real numbers belonging to [1, +∞]. We say that p and q are

conjugates if 1
p + 1

q = 1.

Proposition 3.3. Assume that f ∈ Lp(R) and g ∈ Lq(R), where p and q are conjugates. Then, the

following statements hold:

1. f ∗ g is de�ned everywhere and is continuous and bounded on R.

2. ‖f ∗ g‖∞ ≤ ‖f‖p ‖g‖q

PROOF.

• Inequality, well de�nition and boundedness: as f ∈ Lp(R) and g ∈ Lq(R), we can use Inequality A.1.
(Hölder's inequality). Then

|(f ∗ g) (x)| ≤
ˆ
R
|f(x− t)| |g(t)| dt

Ineq.A.1.
≤

(ˆ
R
|f(x− t)|p dt

) 1
p
(ˆ

R
|g(t)|q dt

) 1
q

= ‖f‖p ‖g‖q < ∞

Hence, f ∗ g is de�ned everywhere. Moreover, taking supremums in both sides of the inequality we get
‖f ∗ g‖∞ ≤ ‖f‖p ‖g‖q < ∞ and we conclude that f ∗ g is bounded.

• Continuity : �rst note that the following inequality holds

|(f ∗ g) (x)− (f ∗ g) (y)| ≤
ˆ
R
|f(x− t)− f(y − t)| |g(t)| dt

Ineq.A.1.
≤

Ineq.A.1.
≤ ‖g‖q

(ˆ
R
|f(x− t)− f(y − t)|p dt

) 1
p

(3.3.1)
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- Step 1: we will prove the continuity of f ∗ g when f is continuous with compact support contained

in an open interval (−a, a). As the support is compact, for δ1 > 0 small enough it holds that

supp (f) ⊂ (−a+ δ1, a− δ1).

Moreover, f is continuous in [−a, a] and by Theorem A.8 we conclude that f is uniformly continuous

in [−a, a]. Hence, for all ε > 0, there exists δ2,ε > 0 such that for all x, y ∈ [−a, a] with |x− y| < δ2,ε

|f(x)− f(y)| < ε

(2a)
1
p ‖g‖q

=⇒ |f(x)− f(y)|p < εp

2a ‖g‖pq

In particular sup
|u|≤a

|f(x− y + u)− f(u)|p < εp

2a‖g‖pq
. Thus, taking δε = min(δ1, δ2,ε) and |x− y| < δε

ˆ
R
|f(x− t)− f(y − t)|p dt t=y−u=

ˆ
R
|f(x− y + u)− f(u)|p du =

ˆ +a

−a
|f(x− y + u)− f(u)|p du

≤ 2a · sup
|u|≤a

|f(x− y + u)− f(u)|p <

(
ε

‖g‖q

)p
Hence, we have seen that for all ε > 0 there exists δε > 0 such that for all x, y ∈ R with |x− y| < δε,

it holds using (3.3.1) that |(f ∗ g) (x)− (f ∗ g) (y)| < ε. Thus, we conclude that (f ∗ g) is uniformly

continuous on R and particularly continuous.

- Step 2: now let us suppose f ∈ Lp(R). From Theorem A.9., we know that C0
c (R) (space of continuous

functions with compact support in R) is dense in Lp(R). Hence, there exists a sequence (fn)n∈N of

functions of C0
c (R) such that lim

n−→∞
‖fn − f‖p = 0. Adding and subtracting fn ∗ g at x and y

|(f ∗ g) (x)− (f ∗ g) (y)| ≤ |[(f − fn) ∗ g] (x)| + |(fn ∗ g) (x)− (fn ∗ g) (y)| +

+ |[(f − fn) ∗ g] (y)| ≤ 2 ‖g‖q ‖f − fn‖p + |(fn ∗ g) (x)− (fn ∗ g) (y)| (3.3.2)

As lim
n−→∞

‖fn − f‖p = 0, we have that for all ε > 0, there exists Nε > 0 such that for all n ≥ Nε

‖fn − f‖p <
ε

4 ‖g‖q

Moreover, for each n �xed, we have seen in step 1 that (fn ∗ g) is uniformly continuous. In particular,

it is true for n = Nε. Hence, there exists δε > 0 such that for all x, y ∈ R with |x− y| < δε, it holds

|(fNε ∗ g) (x)− (fNε ∗ g) (y)| < ε
2 . Thus, we conclude that for all ε > 0 there exists δε > 0 such that

for all x, y ∈ R with |x− y| < δε

|(f ∗ g) (x)− (f ∗ g) (y)|
(3.3.2)

≤ 2 ‖g‖q ‖f − fNε‖p + |(fNε ∗ g) (x)− (fNε ∗ g) (y)| < ε

2
+

ε

2
= ε

In conclusion, f ∗ g is uniformly continuous in R and in particular is continuous.
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Corollary 3.1. Assume that f ∈ Lp(R) has bounded support and g ∈ Lqloc(R), where p and q are

conjugates. Then, the convolution f ∗ g is de�ned and continuous for all x ∈ R.

PROOF.

As f has bounded support, there exists an interval [−a, a] such that the function is zero a.e. outside

this interval. Let x be in an arbitrary compact interval [α, β]. Then

(f ∗ g) (x) =

ˆ
R
f(u)g(x− u)du =

ˆ +a

−a
f(u)g(x− u)du =

ˆ
R
1[α−a, β+a](x− u)f(u)g(x− u)du

=
(
f ∗ 1[α−a, β+a]g

)
(x)

Moreover, as f ∈ Lp(R) and 1[α−a, β+a]g ∈ Lq(R), then by Proposition 3.3. f ∗ 1[α−a, β+a]g is de�ned

and continuous everywhere in R. Hence, f ∗ g coincides in all compact sets with a continuous function

de�ned everywhere. Consequently, we conclude f ∗ g is de�ned and continuous for all x ∈ R.

Lemma 3.2. Let f ∈ Lp(R) and g ∈ Lq(R), with p and q conjugates. Then fg ∈ L1(R).

PROOF.

As 1
p + 1

q = 1, we can apply Inequality A.1. (Hölder's inequality) and we see that

ˆ
R
|f(x)g(x)| dx ≤

(ˆ
R
|f(x)|p dx

) 1
p
(ˆ

R
|g(x)|q dx

) 1
q

= ‖f‖p ‖g‖q < +∞

Proposition 3.4. If f ∈ L1(R) and g ∈ L2(R). Then, the following statements hold:

1. f ∗ g exists almost everywhere in R.

2. f ∗ g is in L2(R) and ‖f ∗ g‖2 ≤ ‖f‖1 ‖g‖2

PROOF.

• Proof 1: �rst of all note that we can write

|f(u)g(x− u)| =
(
|f(u)| |g(x− u)|2

) 1
2

(|f(u)|)
1
2

Since |f | , |g|2 ∈ L1(R), then by Proposition 3.1.1 |f | ∗ |g|2 is de�ned almost everywhere. Hence´
R |f(u)| |g(x− u)|2 du < +∞ a.e. and then |f(u)| |g(x− u)|2 (as a function of u) is in L1(R) for

almost every x. Thus,
(
|f(u)| |g(x− u)|2

) 1
2
(as a function of u) is in L2(R).

Moreover, |f(u)|
1
2 is in L2(R). In consequence, we can apply Lemma 3.2. (with p = q = 2) and

we conclude that |f(u)g(x− u)| =
(
|f(u)| |g(x− u)|2

) 1
2

(|f(u)|)
1
2 is in L1(R) for almost all x. Then,

f ∗ g exists almost everywhere.

• Proof 2: using Hölder's inequality with p = q = 2 to the functions |f(u)|
1
2 and |f(u)|

1
2 |g(x− u)|

|(f ∗ g) (x)| ≤
ˆ
R
|f(u)g(x− u)| du =

ˆ
R

(
|f(u)| |g(x− u)|2

) 1
2

(|f(u)|)
1
2 du ≤
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≤
(ˆ

R
|f(u)| |g(x− u)|2

) 1
2
(ˆ

R
|f(u)| du

) 1
2

=
([(
|f | ∗ |g|2

)
(x)
]
‖f‖1

) 1
2

Consequently, |(f ∗ g) (x)|2 ≤
[(
|f | ∗ |g|2

)
(x)
]
‖f‖1 and integrating both sides of this inequality

‖f ∗ g‖22 =

ˆ
R
|(f ∗ g) (x)|2 dx ≤ ‖f‖1

ˆ
R

(
|f | ∗ |g|2

)
(x)dx

Proposition 3.1.2
≤

≤ ‖f‖1 ‖f‖1
∥∥g2
∥∥

1
= ‖f‖21 ‖g‖

2
2 < +∞

Hence, we conclude that f ∗g is in L2(R) and taking the square root we see that ‖f ∗ g‖2 ≤ ‖f‖1 ‖g‖2.

Remark 3.2. The previous result can be generalized as follows: if f ∈ Lp(R) and g ∈ Lq(R), where
1
p + 1

q − 1 = 1
r and p, q, r ≥ 1, then f ∗ g is in Lr(R). Proposition 3.4. is a particular case with

p = 1, q = 2 and r = 2.

3.4 Convolution and derivation

Proposition 3.5. Let f ∈ L1(R) and let g ∈ Cp(R). Assume that g(k) is bounded in R for

k = 0, 1, .., p. Then, the following statements hold:

1. f ∗ g ∈ Cp (R)

2. (f ∗ g)(k) = f ∗ g(k) for k = 1, .., p

PROOF.

Note that the assumptions imply that g(k) ∈ L∞(R) for k = 0, 1, .., p. As f ∈ L1(R), we can apply
Proposition 3.3.1 and conclude that f ∗ g(k) is continuous for k = 0, 1, .., p. Let us consider the
function x 7−→ f(t)g(k)(x − t) for k = 0, 1, .., p − 1 and let us check that satis�es the hypothesis of
Theorem A.5.:

1. x 7−→ f(t)g(k)(x− t) is continuously di�erentiable for almost every t.

2. As g(k) is bounded in R, let us de�neMk = sup
x∈R

∣∣g(k)(x)
∣∣. Then, ∣∣f(t)g(k+1)(x− t)

∣∣ ≤ Mk+1 |f(t)|

for all x ∈ R and for a.e. t which is integrable.

Thus, Theorem A.5. can be applied and we conclude, (f ∗ g)(k) is di�erentiable for k = 0, 1, .., p− 1

(f ∗ g)(k+1) (x) =

ˆ
R
f(t)g(k+1)(x− t)dt =

(
f ∗ g(k+1)

)
(x)

Remark 3.3. In the conditions of the previous proposition, it holds that (f ∗ g)(k) is bounded on R
for k = 0, 1, .., p because (f ∗ g)(k) = f ∗ g(k) is a convolution of a function of L1(R) with a function

of L∞(R).
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3.5 Convolution and regularization

De�nition 3.4. We de�ne the space D (R) as the space of functions in C∞(R) that have bounded

support.

De�nition 3.5. A sequence of functions (ρn)n∈N in D (R) is called a regularizing sequence if it

satis�es the following conditions:

1. ρn(x) ≥ 0 for all x ∈ R

2.
´
R ρn(x)dx = 1

3. The support of ρn is in [−εn, εn], εn > 0, and lim
n−→+∞

εn = 0

To see that such a sequence exists, we take ρ ∈ D (R) de�ned by:

ρ(x) =

{
1
ce
− 1

1−x2 if |x| ≤ 1

0 if |x| > 1
with c :=

ˆ +1

−1
e
− 1

1−x2 dx > 0

And we de�ne ρn(x) = nρ(nx). Then it holds that (ρn)n∈N is a regularizing sequence. In e�ect,
clearly ρn is in D (R) since is the composition of two in�nitely times di�erentiable functions and ρ has
bounded support. Moreover, ρn satis�es the three conditions of de�nition 3.5.:

1. ρn(x) =

{
n
c e
− 1

1−n2x2 if |x| ≤ 1
n

0 if |x| > 1
n

is positive for all x ∈ R

2.
´
R ρn(x)dx =

´
R nρ(nx)dx

y=nx
=

´
R ρ(y)dy = 1

c

´ +1
−1 e

− 1
1−x2 dx = 1

3. The support of ρn is in
[
− 1
n ,

1
n

]
and lim

n−→+∞
1
n = 0

De�nition 3.6. Let f ∈ L1(R) and let (ρn)n∈N be a regularizing sequence. We will de�ne the

functions f ∗ ρn as regularizations of f .

Remark 3.4. As f ∈ L1(R), ρn ∈ C∞(R) and all its derivatives are bounded, we conclude by

Proposition 3.5. that the regularizations of f are in C∞(R).

Theorem 3.1. The space D (R) is dense in Lp(R) for 1 ≤ p <∞. In other words, given f ∈ Lp(R),
there exists a sequence (gn)n∈N in D (R) such that for all ε > 0, ‖f − gn‖p < ε for n large enough.

PROOF.

Let us take ε > 0. Using Theorem A.9., we choose fε in C
0
c (R) such that ‖f − fε‖p <

ε
2 . Now consider

the regularization sequence (ρn)n∈N built in de�nition 3.5. and the regularizations of fε : gn = fε ∗ρn.
Assume that supp (fε) ⊂ [a, b] and supp (ρn) ⊂ [−1, 1], then by Lemma 3.1.:

supp (gn) = supp (fε ∗ ρn) ⊆ supp (fε) + supp (ρn) ⊆ [a− 1, b+ 1]

Hence gn has bounded support and is C∞(R) by Remark 3.4. Consequently, gn ∈ D (R).
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Moreover, since
´
R ρn(x)dx = 1, we can write

|fε(x)− gn(x)|p =

∣∣∣∣fε(x)

ˆ
R
ρn(t)dt−

ˆ
R
fε(x− t)ρn(t)dt

∣∣∣∣p =

∣∣∣∣ˆ
R

(fε(x)− fε(x− t)) ρn(t)dt

∣∣∣∣p ≤
≤

(
sup
|t|≤εn

|fε(x)− fε(x− t)|
ˆ
R
ρn(x)dx

)p
≤ sup
|t|≤εn

|fε(x)− fε(x− t)|p

Using this inequality, we get

‖fε − gn‖pp =

ˆ
R
|fε(x)− gn(x)|p dx =

ˆ b+1

a−1
|fε(x)− gn(x)|p dx ≤ (b− a+ 2) sup

x∈[a−1, b+1]

|fε(x)− gn(x)|p ≤

≤ (b− a+ 2) sup
x∈[a−1, b+1]

sup
|t|≤εn

|fε(x)− fε(x− t)|p = (b− a+ 2) sup
|t|≤εn

x∈[a−1, b+1]

|fε(x)− fε(x− t)|p

We have seen in Proposition 3.3. (step 1) that fε is uniformly continuous in compacts. Hence, there
exists δε > 0 such that for all x, y ∈ R with |x− y| < δε hold |fε(x)− fε(y)| < ε

2(b−a+2)
1
p
and then

|fε(x)− fε(y)|p < εp

2p(b−a+2) . Thus, taking n large enough such that |t| ≤ εn < δε:

‖fε − gn‖pp ≤ (b− a+ 2) sup
|t|≤εn

x∈[a−1, b+1]

|fε(x)− fε(x− t)|p <
( ε

2

)p
(3.5.1)

Consequently, for n su�ciently large, we conclude

‖f − gn‖p ≤ ‖f − fε‖p + ‖fε − gn‖p <
ε

2
+

ε

2
= ε

Corollary 3.2. S (R) is dense in Lp (R) for p ∈ [1, ∞).

PROOF.

• First, we see that D(R) ⊂ S (R). In e�ect, let f ∈ D(R), then f ∈ C∞ (R). Moreover, f and all its

derivatives decay rapidly. In e�ect, as f has compact support, then all its derivatives will also have

compact support. Hence, for |x| su�ciently large, f and all its derivatives will be zero and consequently

lim
|x|→+∞

∣∣xpf (q)(x)
∣∣ = 0 for all p, q ∈ N. Thus, f ∈ S (R).

• Finally, we observe that D(R) ⊂ S (R) ⊂ Lp(R) and by Theorem 3.1. D(R) is dense in Lp(R).

Consequently, we conclude S (R) is dense in Lp(R).

Lemma 3.3. Let f ∈ L1(R) and g ∈ Lp(R), p ∈ [1, ∞). Then f ∗ g exists almost everywhere,

f ∗ g ∈ Lp(R) and ‖f ∗ g‖p ≤ ‖f‖1 ‖g‖p
PROOF.

Let us �rst de�ne q such that 1
p + 1

q = 1. Then q := 1
1− 1

p

.

• Proof 1: note that we can write:

|f(u)g(x− u)| = (|f(u)| |g(x− u)|p)
1
p (|f(u)|)1− 1

p = (|f(u)| |g(x− u)|p)
1
p (|f(u)|)

1
q

Since |f | , |g|p ∈ L1(R), then by Proposition 3.1.1 |f | ∗ |g|p is de�ned almost everywhere.
Hence

´
R |f(u)| |g(x− u)|p du < +∞ a.e. and then |f(u)| |g(x− u)|p (as a function of u) is in L1(R)
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for almost every x. That implies that (|f(u)| |g(x− u)|p)
1
p (as a function of u) is in Lp(R).

Moreover, |f(u)|
1
q is in Lq(R). In consequence, as p and q are conjugates, we can apply Lemma 3.2.

and we conclude that |f(u)g(x− u)| = (|f(u)| |g(x− u)|p)
1
p (|f(u)|)

1
q is in L1(R) for almost all x.

Then f ∗ g exists almost everywhere.

• Proof 2: using Hölder's Inequality to the functions |f(u)|
1
q and |f(u)|

1
p |g(x− u)| (so are in Lq(R)

and Lp(R) respectively)

|(f ∗ g) (x)| ≤
ˆ
R
|f(u)g(x− u)| du =

ˆ
R
|f(u)|

1
p |g(x− u)| |f(u)|

1
q du ≤

≤
(ˆ

R
|f(u)| |g(x− u)|p

) 1
p
(ˆ

R
|f(u)| du

) 1
q

= [(|f | ∗ |g|p) (x)]
1
p ‖f‖

1
q

1

Hence, we get that |(f ∗ g) (x)|p ≤ [(|f | ∗ |g|p) (x)] ‖f‖
p
q

1 . Now, integrating both sides of this inequality

‖f ∗ g‖pp =

ˆ
R
|(f ∗ g) (x)|p dx ≤ ‖f‖

p
q

1

ˆ
R

[(|f | ∗ |g|p) (x)] dx
Proposition 3.1.2

≤ ‖f‖
p
q

1 ‖f‖1 ‖g
p‖1

= ‖f‖p1 ‖g‖
p
p < +∞

And �nally we conclude that f ∗ g is in Lp(R) and ‖f ∗ g‖p ≤ ‖f‖1 ‖g‖p.

Lemma 3.4. Let f ∈ D(R) and let ρn be a regularizing sequence. Then

lim
n−→∞

‖f − f ∗ ρn‖p = 0

PROOF. The result follows immediately from the proof of Theorem 3.1. In e�ect, in (3.5.1) we have
shown this result when f ∈ C0

c (R). But as D (R) ⊂ C0
c (R), the result also holds for f ∈ D(R).

Proposition 3.6. Let f ∈ Lp (R), p ∈ [1, ∞) and let ρn be a regularizing sequence. Then:

lim
n−→∞

‖f − f ∗ ρn‖p = 0

PROOF.

Let ε > 0. By Theorem 3.1., there exists fε ∈ D (R) such that ‖f − fε‖p <
ε
4 . As f − fε ∈ Lp(R)

and ρn ∈ L1(R), we have from Lemma 3.3.

‖f ∗ ρn − fε ∗ ρn‖p = ‖(f − fε) ∗ ρn‖p
Lemma 3.3
≤ ‖f − fε‖p ‖ρn‖1 = ‖f − fε‖p

Moreover, from Lemma 3.4. lim
n−→∞

‖fε − fε ∗ ρn‖p = 0, i.e. there exists N > 0 such that for all

n ≥ N holds that ‖fε − fε ∗ ρn‖p <
ε
2 . Then, for n ≥ N

‖f − f ∗ ρn‖p ≤ ‖f − fε‖p + ‖fε − fε ∗ ρn‖p + ‖f ∗ ρn − fε ∗ ρn‖p ≤ 2 ‖f − fε‖p

+ ‖fε − fε ∗ ρn‖p <
ε

2
+

ε

2
= ε
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3.6 The convolution in S (R)

Proposition 3.7. Let f, g be in S(R). Then, f ∗ g is de�ned almost everywhere and belongs to

S(R).

PROOF.

As S(R) ⊂ L1(R), then f, g ∈ L1(R) and by Proposition 3.1. f ∗ g is de�ned almost everywhere and

is in L1 (R) . Moreover, f, g ∈ C∞(R) and its derivatives are bounded. Then, by Proposition 3.5., we

conclude that f ∗ g ∈ C∞(R). It remains to prove that f ∗ g and all its derivatives decay rapidly.

• Note that |f(x− t)g(t)| ≤ ‖f‖∞ |g(t)| which is integrable. Thus, we can apply the Dominated
Convergence Theorem (Theorem A.2.)

lim
|x|→+∞

(f ∗ g) (x) = lim
|x|→+∞

ˆ
R
f(x− t)g(t)dt

Dom.Conv. Th.
=

ˆ
R

lim
|x|→+∞

f(x− t)g(t)dt
f decays rapidly

= 0

• Now, we take p, q ≥ 0 and we use the formula

xp (f ∗ g)(q) (x) =

p∑
j=0

βj(x
p−jf) ∗ (xjg(q)) where βj are binomial coe�cients

Thus, xp (f ∗ g)(q) (x) is written as a sum of convolutions of elements in S(R) which is invariant under
di�erentiation and multiplication by polynomials (Proposition 2.3.1 and 2.3.2). Thus, applying the
same argument for each element as for f ∗ g we conclude

lim
|x|→+∞

xp (f ∗ g)(q) (x) = 0 for all p, q ≥ 0
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The Fourier Transform on L2 (R)

4.1 Extension of the Fourier Transform

Proposition 4.1. S (R) is a dense linear subspace of L2 (R).

PROOF.

First, we show that S (R) ⊂ L2 (R). Let us take f ∈ S (R) then by Proposition 2.3.1,
(
1 + x2

)
f(x) ∈

S (R) . Consequently:
lim

|x|−→+∞

∣∣(1 + x2
)
f(x)

∣∣ = 0

Then for ε = 1, there exists M > 0 such that
∣∣(1 + x2

)
f(x)

∣∣ < 1 for all |x| > M . Moreover, as(
1 + x2

)
f(x) is continuous in |x| ≤ M then, there exists A > 0 such that

∣∣(1 + x2
)
f(x)

∣∣ < A for all
|x| ≤M . De�ning K := max{1, A}:∣∣(1 + x2

)
f(x)

∣∣ < K =⇒ |f(x)| < K

1 + x2
for all x ∈ R

Using this, we get that f ∈ L2(R), since:
ˆ
R
|f(x)|2 dx ≤ K2

ˆ
R

1

(1 + x2)2dx < +∞

Consequently, as S (R) is a linear space, we conclude that S (R) is a linear subspace of L2(R).

The density follows from Corollary 3.2. with p = 2.

Proposition 4.2. (The Plancherel-Parseval equality) Let f, g ∈S (R). Then, it holds:

1.
´
R f̂(ξ)ĝ(ξ)dξ =

´
R f(x)g(x)dx

2.
∥∥∥f̂∥∥∥

2
= ‖f‖2

PROOF.

• Proof 1: let us de�ne h(ξ) := ĝ(ξ). Note that g ∈ S (R), the by Theorem 2.1. ĝ ∈ S(R) and hence
h = ĝ ∈ S(R). Finally, as by Proposition 2.3.3 S (R) ⊂ L1 (R) we get f, h ∈ L1 (R) . Now, applying
Property 1.8.: ˆ

R
f̂(ξ)h(ξ)dξ =

ˆ
R
f(x)ĥ(x)dx

32
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But h(ξ) = ĝ(ξ) = ˇ[g](ξ). Thus, by Theorem 2.2. ĥ = g which proves 1.

• Proof 2: now taking f = g and using the previous equality:

ˆ
R
f̂(ξ)f̂(ξ)dξ =

ˆ
R
f(x)f(x)dx =⇒

ˆ
R

∣∣∣f̂(ξ)
∣∣∣2 dξ =

ˆ
R
|f(x)|2 dx =⇒

∥∥∥f̂∥∥∥
2

= ‖f‖2

Proposition 4.3. Let E and F be two normed vector spaces (we will denote the norm ‖·‖). Assume

that F is complete and that G is a dense linear subspace of E. If A : G −→ F is a continuous linear

operator, then there exists a unique continuous linear extension Ã : E −→ F . Furthermore, the norm

of Ã is equal to the norm of A.

PROOF.

Let f ∈ E. Due to the density of G in E, there exists a senquence (fn)n∈N in G s.t. lim
n−→+∞

‖f − fn‖ =

0. Consequently, (fn)n∈N is a Cauchy sequence, and since A is continuous, for each n, m ∈ N

‖A (fn)−A (fm)‖ ≤ ‖A‖ ‖fn − fm‖

showing that (A(fn))n∈N is a Cauchy sequence in F . Since F is complete, there exists g ∈ F s.t.

A(fn)
n−→+∞−→ g. Let us we de�ne Ã : E −→ F as Ã(f) := g = lim

n−→+∞
A(fn). We will show that Ã

is the extension we are looking for. We shall prove:

• Ã is well-de�ned: we have already seen that Ã(f) ∈ F . It remains to show that g doesn't depend on

the sequence fn that converges to f . Let us suppose there exist two di�erent sequences
(
f1
n

)
n∈N and(

f2
n

)
n∈N that converge to f and such that A(f1

n)
n−→+∞−→ g1 and A(f2

n)
n−→+∞−→ g2. Then∥∥A (f1

n

)
−A

(
f2
n

)∥∥ ≤ ‖A‖ ∥∥f1
n − f2

n

∥∥ ≤ ‖A‖ (∥∥f1
n − f

∥∥ +
∥∥f2

n − f
∥∥) n−→+∞−→ 0

Hence lim
n−→+∞

A(f1
n) = lim

n−→+∞
A(f2

n) =⇒ g1 = g2. Thus, Ã is well-de�ned.

• Ã is linear: this is consequence of the linearity of the operator A. In e�ect:

Ã (λ1f1 + λ2f2) = lim
n−→+∞

A(λ1f
1
n+λ2f

2
n) = λ1 lim

n−→+∞
A
(
f1
n

)
+λ2 lim

n−→+∞
A
(
f2
n

)
= λ1Ã (f1) +λ2Ã (f2)

• Ã extends A: i.e. we should show that if f ∈ G then Ã (f) = A(f). By taking fn := f for all

n ∈ N, we have fn
n−→+∞−→ f . Hence, Ã (f) = lim

n−→+∞
A(fn) = lim

n−→+∞
A(f) = A(f).

• Ã is continuous: on the one hand, we have the following inequality∥∥∥Ã (f)
∥∥∥ = ‖g‖ =

∥∥∥∥ lim
n−→+∞

A(fn)

∥∥∥∥ = lim
n−→+∞

‖A(fn)‖
continuity
≤ lim

n−→+∞
‖A‖ ‖fn‖ =

= ‖A‖
∥∥∥∥ lim
n−→+∞

fn

∥∥∥∥ = ‖A‖ ‖f‖ =⇒
∥∥∥Ã∥∥∥ = sup

f∈E\{0}

∥∥∥Ã (f)
∥∥∥

‖f‖
≤ ‖A‖
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On the other hand, since Ã (f) = A(f) for all f ∈ G:

∥∥∥Ã∥∥∥ = sup
f∈E\{0}

∥∥∥Ã (f)
∥∥∥

‖f‖
G⊆E
≥ sup

f∈G\{0}

∥∥∥Ã (f)
∥∥∥

‖f‖
= sup

f∈G\{0}

‖A (f)‖
‖f‖

= ‖A‖

Hence, we conclude
∥∥∥Ã∥∥∥ = ‖A‖ and Ã is continuous.

• Ã is the unique continuous linear extension of A: let us suppose there exist two extensions Ã1 and Ã2

satisfying the previous properties. Let x ∈ E. Since G is dense in E, there exists a sequence (xn)n∈N of

elements in G such that xn
n−→+∞−→ x in G. But, as Ã1 and Ã2 extend A, then Ã1 (xn) = Ã2 (xn) =

A (xn) for all n ∈ N. Hence, taking limits

Ã1 (x)
continuity of Ã1

= lim
n−→+∞

Ã1 (xn) = lim
n−→+∞

Ã2 (xn)
continuity of Ã2

= Ã2 (x)

Thus, Ã1 (x) = Ã2 (x) for all x ∈ E. Hence, the extension is unique.

Theorem 4.1. The Fourier transform ·̂ and its inverse ·̌ extend uniquely to isometries on L2(R). We

will denote these extensions by F and F respectively. Moreover, given f, g ∈ L2 (R), the following

results hold:

1. FF(f) = FF(f) = f almost everywhere.

2.
´
R f(x)g(x)dx =

´
RF (f) (ξ)F (g) (ξ)dξ

3. ‖f‖2 = ‖F (f)‖2. Hence, F de�nes an isometry in L2(R).

PROOF.

Let us de�ne E = F = L2(R) and let G = S (R). We know that ·̂, ·̌ : G −→ G ⊂ F are continuous

linear operators (Theorem 2.2.) and G is dense in E (Proposition 4.1.). Hence, by Proposition 4.3.,

there exist unique continuous linear extensions of ·̂ and ·̌ which we will denote F and F respectively.

On the other hand, since S (R) is dense in L2(R), there exist two sequences (fn)n∈N and (gn)n∈N of

elements in S (R) such that converge to f and g in L2(R) respectively.

Moreover, as fn and gn are in S (R), and F , F are extensions of the Fourier Transform in S (R) then

FF(fn) = FF(fn) = fn and FF(gn) = FF(gn) = gn.

• Proof 1: we show FF(f) = f almost everywhere. The proof FF(f) = f is analogous.

∥∥FF(f) − f
∥∥

2
≤
∥∥FF(f) − FF(fn)

∥∥
2

+
∥∥FF(fn) − f

∥∥
2

F ,F continuous
≤

≤ ‖F‖2
∥∥F∥∥

2
‖fn − f‖2 + ‖fn − f‖2

n−→+∞−→ 0

Hence we conclude FF(f) = f in L2 (R), i.e. FF(f) = f almost everywhere.

• Proof 2: as (fn)n∈N and (gn)n∈N are in S (R), we will use Proposition 4.2.1. to deduce that∣∣∣∣ˆ
R
f(x)g(x)dx −

ˆ
R
F (f) (ξ)F (g) (ξ)dξ

∣∣∣∣ ≤ ∣∣∣∣ˆ
R
f(x)g(x)dx −

ˆ
R
F (fn) (ξ)F (gn) (ξ)dξ

∣∣∣∣ +
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+

∣∣∣∣ˆ
R
F (f) (ξ)F (g) (ξ)dξ −

ˆ
R
F (fn) (ξ)F (gn) (ξ)dξ

∣∣∣∣ Prop. 4.2.1
≤

ˆ
R

∣∣∣f(x)g(x)− fn(x)gn(x)
∣∣∣ dx+

+

ˆ
R

∣∣∣F (f) (ξ)F (g) (ξ)−F (fn) (ξ)F (gn) (ξ)
∣∣∣ dξ n−→+∞−→ 0

• Proof 3: taking g = f in the equality in 2, we get

ˆ
R
f(x)f(x)dx =

ˆ
R
F (f) (ξ)F (f) (ξ)dξ =⇒

ˆ
R
|f(x)|2 dx =

ˆ
R
|F (f) (ξ)|2 dξ =⇒ ‖f‖2 = ‖F (f)‖2

Proposition 4.4. Let f, g ∈ L2(R). Then, the following statements hold:

1. F(f) · g and f · F(g) are in L1(R).

2.
´
RF(f)(t) · g(t)dt =

´
R f(u) · F(g)(u)du

PROOF.

• Proof 1: we have seen in Theorem 4.1. that F(f) is in L2(R). Consequently, by Hölder's Inequality

with p = q = 2, we conclude F(f) ·g is in L1(R). We can apply exactly the same argument to deduce

that f · F(g) ∈ L1 (R).

• Proof 2: as S (R) is dense in L2(R), there exist two sequences (fn)n∈N and (gn)n∈N of elements in
S (R) such that converge to f and g in L2(R) respectively. Moreover, since S (R) ⊂ L1(R), we have
that fn and gn are in L1(R). Hence, we can apply Property 1.8.

ˆ
R
F(fn)(t) · gn(t)dt =

ˆ
R
fn(u) · F(gn)(u)du

Finally, using this last equality, we deduce that∣∣∣∣ˆ
R
F(f)(t) · g(t)dt −

ˆ
R
f(u) · F(g)(u)du

∣∣∣∣ ≤ ∣∣∣∣ˆ
R
F(f)(t) · g(t)dt −

ˆ
R
F(fn)(t) · gn(t)dt

∣∣∣∣ +

+

∣∣∣∣ˆ
R
fn(u) · F(gn)(u)du −

ˆ
R
f(u) · F(g)(u)du

∣∣∣∣ ≤ ˆ
R
|F(f)(t) · g(t)−F(fn)(t) · gn(t)| dt+

+

ˆ
R
|fn(u) · F(gn)(u)− f(u) · F(g)(u)| du n−→+∞−→ 0

Lemma 4.1. Let f ∈ L1
loc(R) such that

´
R f(t)φ(t)dt = 0 for all φ ∈ D (R). Then f = 0 a.e. on R.

PROOF.

We divide the proof in 3 steps:

• Step 1: let (ρn(t))n∈N be the regularizing sequence built in De�nition 3.5. We will show that the
regularizations ρn ∗ f are zero. In e�ect, let x ∈ R and let us consider (ρn(x− t))n∈N. It is clear
ρn(x− t) ∈ D (R) since ρn(t) ∈ D (R). Thus, using the hypothesis

(ρn ∗ f) (x) =

ˆ
R
f(t)ρn(x− t)dx = 0 for all x ∈ R
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• Step 2: let a > 0 and let b := a + 1. We will show that for all |x| ≤ a, (ρn ∗ f) (x) =(
ρn ∗ 1[−b,b]f

)
(x) = 0. Let |x| ≤ a, we know that ρn has the support contained in [−1, 1]. Hence

(ρn ∗ f) (x) =

ˆ
R
f(t)ρn(x− t)dx =

ˆ
R
1[−b,b](t)f(t)ρn(x− t)dx =

(
ρn ∗ 1[−b,b]f

)
(x)

step 1
= 0

where we have used that |x− t| ≤ 1 =⇒ |t| ≤ 1 + |x| ≤ 1 + a = b.

• Step 3: �nally we conclude f = 0 a.e. on R. For this, we note the following fact:

ˆ +a

−a
|f(x)| dx ≤

ˆ +a+1

−a−1
|f(x)| dx =

ˆ
R

∣∣f(x)1[−b,b](x)
∣∣ dx step 2

=

=

ˆ
R

∣∣f(x)1[−b,b](x)−
(
ρn ∗ 1[−b,b]f

)
(x)
∣∣ dx =

∥∥f1[−b,b] −
(
f1[−b,b]

)
∗ ρn

∥∥
1

Now, taking the limit when n goes to +∞ in both sides and using Proposition 3.6. with p = 1, we get

ˆ +a

−a
|f(x)| dx ≤ lim

n−→+∞

∥∥f1[−b,b] −
(
f1[−b,b]

)
∗ ρn

∥∥
1

= 0 =⇒
ˆ +a

−a
|f(x)| dx = 0

Hence f(x) = 0 a.e. for |x| ≤ a. As we have taken a > 0 arbitrary, we conclude f = 0 almost
everywhere in R.

Proposition 4.5. The Fourier Transform de�ned on L1(R) and the one obtained by extension to

L2(R) coincide on L2(R) ∩ L1(R). Moreover, if f ∈ L2(R), then F(f) is the limit in L2(R) of the

sequence gn de�ned by

gn (ξ) :=

ˆ +n

−n
e−2πiξxf(x)dx

PROOF.

• Let f ∈ L2(R) ∩ L1(R) and ψ ∈ S (R). As S (R) ⊂ L1(R) and S (R) ⊂ L2(R) then ψ ∈
L2(R) ∩ L1(R). Consequently, we can apply Property 1.8. and Proposition 4.4.2. Moreover, as for all
functions ψ ∈ S (R) hold that ψ̂ = F (ψ), we get:

ˆ
R
ψ(x)f̂(x)dx

Prop.1.8
=

ˆ
R
ψ̂(u)f(u)du =

ˆ
R
F (ψ) (u)f(u)du

Prop.4.4.2
=

ˆ
R
ψ(x)F (f) (x)dx

Hence,
´
R ψ(x)

(
f̂(x)−F (f) (x)

)
dx = 0 for all ψ ∈ S (R) . Thus, using Lemma 4.1. and the density

of D (R) in S (R), we conclude f̂ = F (f) almost everywhere.

• Let us consider fn := f1[−n,n]. We apply the Dominated Convergence Theorem to the function

(fn − f)2 since we see that converges pointwise to 0 and is dominated by 4f2 ∈ L1(R). Thus:

lim
n−→+∞

‖fn − f‖2 = 0

Moreover, as f and 1[−n,n] are in L2(R), it holds fn = f1[−n,n] is in L1(R) (Hölder's inequality).

Hence fn ∈ L2(R) ∩ L1(R), and consequently we get gn = f̂n = F (fn). Moreover, as we have seen

that F :L2(R) −→ L2(R) is continuous and fn
n−→+∞−→ f in L2(R) then: gn = F (fn)

n−→+∞−→ F (f)
in L2(R).
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Remark 4.1. The previous proposition is also true for the extension of the operator ·̌ on L2(R). The
Inverse Fourier Transform de�ned on L1(R) and the one obtained by extension to L2(R) coincide on

L2(R) ∩ L1(R). Moreover, if f ∈ L2(R), then F(f) is the limit in L2(R) of the sequence hn de�ned

by:

hn (ξ) :=

ˆ +n

−n
e2πiξxf(x)dx

Note that the proof is completely analogous since the extension F has the same properties as the

extension F .

Theorem 4.2. Let f ∈ L2 (R). Suppose that F(f) ∈ L1 (R). Then:

f(x) =

ˆ
R
F (f) (ξ) e2πiξxdξ a.e.

i.e. computing the Inverse Fourier Transform of F (f) on L1 (R), we recover f a.e.

PROOF.

As f ∈ L2 (R), we get by Theorem 4.1. that F (f) ∈ L2 (R). Hence, using the hypothesis of the

statement, we conclude that F (f) ∈ L1 (R) ∩ L2 (R). Now, using the fact that the Inverse Fourier

Transform de�ned on L1(R) and the one obtained by extension to L2(R) coincide on L2(R) ∩ L1(R)

(remark 4.1.) and that FF (f) = f a.e. (Theorem 4.1.1) we conclude:

f(x) =

ˆ
R
F (f) (ξ) e2πiξxdξ a.e.

Remark 4.2. If f ∈ L1 (R), de�nition 1.1. de�nes f̂ (ξ) unambiguously for every ξ ∈ R (since f̂ is

de�ned everywhere and is continuous). However, if f ∈ L2 (R), then the extension F de�nes F (f)

uniquely as an element of the Hilbert space L2 (R), but as a point function is only determined almost

everywhere. This is an important di�erence between the theory of Fourier transforms in L1 (R) and

L2 (R).

4.2 Application to the computation of certain Fourier transforms

Proposition 4.6. The following statements hold:

1. If f ∈ L2(R), then FF (f) = fσ almost everywhere.

2. If f ∈ L1(R) ∩ L2(R), then F
(
f̂
)

= fσ almost everywhere.

PROOF.

• Proof 1: as S(R) is dense in L2(R), there exists a sequence (fn)n∈N of elements of S(R) such that
lim

n−→+∞
‖fn − f‖2 = 0. Now, as S(R) ⊂L1(R), by Proposition 4.5. and Proposition 1.2.2:

F (fn) (ξ)
Prop. 4.5

= f̂n(ξ)
Prop. 1.2.2

= ̂[(fn)σ](−ξ) = ˇ[(fn)σ](ξ)
Remark 4.1.

= F ([fn]σ) (ξ)
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Taking the limit in both sides of this equality and using the continuity F and F on L2(R):

F (f) = F (fσ) =⇒ FF (f) = FF (fσ)
Theorem 4.1.1

=⇒ FF (f) = fσ a.e.

• Proof 2: as f ∈ L1(R)∩L2(R), from Proposition 4.5. it holds f̂ = F (f) almost everywhere. Using

this in 1. we get: F
(
f̂
)

= fσ a.e.

Example 4.1. Let us consider the function f(x) = e−axu(x) (a > 0) where u is the Heaviside

function de�ned as:

u(x) =

{
1 if x ≥ 0

0 ifx < 0

Its Fourier Transform is f̂(ξ) = 1
a+2iπξ . This function is not in L1(R) and we can't compute its

Fourier Transform using de�nition 1.1., since the integral is not de�ned. However, it holds that f̂ is

in L2(R). Consequently, we can compute its Fourier Transform using the extension de�ned in

Theorem 4.1. Moreover, as f ∈ L1(R) ∩ L2(R), Proposition 4.6.2 can be applied and we get

F
(
f̂
)

(x) = fσ(x) = f(−x) = eaxu(−x)



Chapter 5

Convolution and the Fourier Transform

5.1 Convolution and the Fourier transform in L1(R)

Proposition 5.1. If f and f̂ are in L1(R), then
ˇ̂
f = f almost everywhere.

PROOF.

From Corollary 3.2., S(R) is dense in L1(R). Hence, there exists a sequence fn in S(R) such that

lim
n→+∞

‖f − fn‖1 = 0. Moreover, by Theorem 2.2. fn =
ˇ̂
fn. Hence, taking ϕ ∈ S(R)

ˆ
R
fn(t)ϕ(t)dt =

ˆ
R

ˇ̂
fn(t)ϕ(t)dt

Property 1.8
=

ˆ
R
f̂n(u)ϕ̌(u)du (5.1.1)

• Moreover, on the one hand, as ϕ ∈ S(R), then it is bounded, that is, ϕ ∈ L∞ (R). Thus:

lim
n→+∞

∣∣∣∣ˆ
R
fn(t)ϕ(t)dt −

ˆ
R
f(t)ϕ(t)dt

∣∣∣∣ ≤ lim
n→+∞

ˆ
R
|fn(t)− f(t)| |ϕ(t)| dt ≤ lim

n→+∞
‖ϕ‖∞

ˆ
R
|fn(t)− f(t)| dt

= ‖ϕ‖∞ lim
n→+∞

‖f − fn‖1 = 0 =⇒ lim
n→+∞

ˆ
R
fn(t)ϕ(t)dt =

ˆ
R
f(t)ϕ(t)dt (5.1.2)

• On the other hand, using Property 1.6.: lim
n→+∞

∥∥∥f̂ − f̂n∥∥∥
∞
≤ lim

n→+∞
‖f − fn‖1 = 0. Applying this:

lim
n→+∞

∣∣∣∣ˆ
R
f̂n(u)ϕ̌(u)du −

ˆ
R
f̂(u)ϕ̌(u)du

∣∣∣∣ ≤ lim
n→+∞

ˆ
R

∣∣∣f̂n(u)− f̂(u)
∣∣∣ |ϕ̌(u)| du ≤

≤ ‖ϕ̌‖1 lim
n→+∞

∥∥∥f̂ − f̂n∥∥∥
∞

= 0 =⇒ lim
n→+∞

ˆ
R
f̂n(u)ϕ̌(u)du =

ˆ
R
f̂(u)ϕ̌(u)du (5.1.3)

Hence, taking the limit in both sides of (5.1.1) and using (5.1.2) and (5.1.3), we get
´
R f(t)ϕ(t)dt =´

R f̂(u)ϕ̌(u)du. Finally, as f̂ is in L1(R) and ϕ ∈ S(R) ⊂ L1(R) we can apply Property 1.8. to the
right hand side. Thus, we get

ˆ
R
f(t)ϕ(t)dt =

ˆ
R

ˇ̂
f(u)ϕ(u)du =⇒

ˆ
R

(
f(u)− ˇ̂

f(u)
)
ϕ(u)du

Last equality is true for all ϕ ∈ S(R). Hence by Lemma 4.1. we conclude that ˇ̂
f = f almost

everywhere.

39



CHAPTER 5. CONVOLUTION AND THE FOURIER TRANSFORM 40

Remark 5.1. The result implies that if f and f̂ are in L1(R), then the equivalence class to which f

belongs (integrable functions that are equal to f almost everywhere), contains a continuous

representative, namely ˇ̂
f .

Proposition 5.2. Given f and g in L1(R), the following statements hold:

1. f̂ ∗ g (ξ) = f̂ (ξ) ĝ (ξ) for all ξ ∈ R

2. If in addition f̂ and ĝ are in L1(R) then f̂g (ξ) =
(
f̂ ∗ ĝ

)
(ξ) for all ξ ∈ R.

PROOF.

• Proof 1: by Proposition 3.1. f ∗ g is in L1(R). Hence the function e−2iπξx (f ∗ g) (x) is in L1(R) for
all ξ ∈ R, and we can apply Theorem A.6. (Fubini):

f̂ ∗ g (ξ) =

ˆ
R
e−2iπξx

(ˆ
R
f(x− t)g(t)dt

)
dx =

ˆ
R
g(t)

(ˆ
R
e−2iπξxf(x− t)dx

)
dt

u=x−t
=

ˆ
R
e−2iπξtg(t)

(ˆ
R
e−2iπξuf(u)du

)
dt = f̂(ξ)

ˆ
R
e−2iπξtg(t)dt = f̂(ξ)ĝ(ξ) for all ξ ∈ R

• Proof 2: note that 1. is also true changing ·̂ by ·̌, we only have to change i by −i in the previous
proof. Thus, since f̂ , ĝ ∈ L1 (R), we can apply statement 1. with ·̌ and we get:

ˇ[
f̂ ∗ ĝ

]
(x) =

ˇ̂
f (x) ˇ̂g (x)

Proposition 5.1.
= f(x)g(x) a.e.

Note now that fg is in L1 (R)∩C (R) since f and g are in L1 (R)∩L∞ (R)∩C (R). Hence, taking the
Fourier transform in both sides of the previous equality and using Theorem 1.1., we conclude(

f̂ ∗ ĝ
)

(ξ) = f̂g(ξ) for all ξ ∈ R

Proposition 5.3. Given f and g in S(R), the following statements hold:

1. f̂ ∗ g (ξ) = f̂ (ξ) ĝ (ξ) for all ξ ∈ R

2. f̂g (ξ) =
(
f̂ ∗ ĝ

)
(ξ) for all ξ ∈ R

PROOF. This result is direct consequence of Proposition 5.2. since S (R) ⊂ L1 (R) and S (R) is invariant
under the Fourier transform.

5.2 Convolution and the Fourier transform in L2(R)

In chapter 4, we extended the Fourier transform from S (R) to L2(R). Moreover, we saw in chapter 3, in

Proposition 3.3., that the convolution is a continuous operator from L2(R)×L2(R) to L∞(R)∩C0 (R).

We will see that a similar result to Proposition 5.3 holds in the case that f, g ∈ L2(R), understanding

the Fourier transform as the extension de�ned in Theorem 4.1.



CHAPTER 5. CONVOLUTION AND THE FOURIER TRANSFORM 41

Proposition 5.4. Given f and g in L2(R), then the following statements hold:

1. (f ∗ g) (t) = ˇ[Ff · Fg] (t) for all t ∈ R

2. f̂g (t) = (Ff ∗ Fg) (t) for all t ∈ R

PROOF.

• Proof 1: using the density of S(R) in L2(R) (Proposition 4.1.), we get that there exist two sequences
(fn)n∈N and (gn)n∈N in S(R) such that:

lim
n−→∞

‖f − fn‖2 = 0 and lim
n−→∞

‖g − gn‖2 = 0

By Proposition 5.3.1. ̂[fn ∗ gn] (ξ) = f̂n (ξ) ĝn (ξ), taking ·̌ and using Theorem 2.2. we get (fn ∗ gn) (x) =
ˇ[

f̂nĝn

]
(x) for all x. Moreover as Ff, Fg, f̂n, ĝn ∈ L2 (R), then Ff · Fg, fngn ∈ L1(R). Thus:∥∥∥Ff · Fg − f̂nĝn∥∥∥

1
=
∥∥∥Ff · Fg − f̂nFg + f̂nFg − f̂nĝn

∥∥∥
1

Hölder Ineq.

≤
∥∥∥Ff − f̂n∥∥∥

2
‖Fg‖2 +

+ ‖Fg − ĝn‖2
∥∥∥f̂n∥∥∥

2

Theor. 4.1.3
= ‖f − fn‖2 ‖g‖2 + ‖g − gn‖2 ‖fn‖2

n−→∞−→ 0

Moreover, applying Property 1.6. we get:

lim
n−→∞

∥∥∥∥ ˇ[Ff · Fg]−
ˇ[

f̂nĝn

]∥∥∥∥
∞
≤ lim

n−→∞

∥∥∥Ff · Fg − f̂nĝn∥∥∥
1

= 0 (5.2.1)

On the other hand, by proposition 3.3. with p = q = 2:

‖f ∗ g − fn ∗ gn‖∞ = ‖f ∗ g − fn ∗ g + fn ∗ g − fn ∗ gn‖∞ ≤ ‖f − fn‖2 ‖g‖2 +

+ ‖g − gn‖2 ‖fn‖2
n−→∞−→ 0 (5.2.2)

Finally, using (5.2.1) and (5.2.2), we get:∥∥∥f ∗ g − ˇ[Ff · Fg]
∥∥∥
∞
≤ ‖f ∗ g − fn ∗ gn‖∞ +

∥∥∥∥fn ∗ gn − ˇ[
f̂nĝn

]∥∥∥∥
∞

+

∥∥∥∥ ˇ[
f̂nĝn

]
− ˇ[Ff · Fg]

∥∥∥∥
∞

n−→∞−→ 0

Hence, as f ∗ g and ˇ[Ff · Fg] are continuous, we conclude that (f ∗ g) (t) = ˇ[Ff · Fg] (t) for all t ∈ R.

• Proof 2: let (fn)n∈N and (gn)n∈N be the sequences de�ned in 1. By proposition 5.3.2 we have

f̂n ∗ ĝn = f̂ngn. Moreover, as Ff, Fg, f̂n, ĝn ∈ L2 (R), by Proposition 3.3. f̂n ∗ ĝn and Ff ∗ Fg are
in L∞(R) ∩ C(R). Thus∥∥∥Ff ∗ Fg − f̂n ∗ ĝn∥∥∥

∞
=
∥∥∥Ff ∗ Fg − f̂n ∗ Fg + f̂n ∗ Fg − f̂n ∗ ĝn

∥∥∥
∞

Prop. 3.3

≤
∥∥∥Ff − f̂n∥∥∥

2
‖Fg‖2 +

+ ‖Fg − ĝn‖2
∥∥∥f̂n∥∥∥

2

Theor. 4.1.3
= ‖f − fn‖2 ‖g‖2 + ‖g − gn‖2 ‖fn‖2

n−→∞−→ 0 (5.2.3)

On the other hand, using Property 1.6:∥∥∥f̂g − f̂ngn∥∥∥
∞
≤ ‖fg − fngn‖1 = ‖fg − fng + fng − fngn‖1

Hölder
≤

≤ ‖f − fn‖2 ‖g‖2 + ‖g − gn‖2 ‖fn‖2
n−→∞−→ 0 (5.2.4)

Finally, using (5.2.3) and (5.2.4), we get:∥∥∥Ff ∗ Fg − f̂g
∥∥∥
∞
≤
∥∥∥Ff ∗ Fg − f̂n ∗ ĝn∥∥∥

∞
+
∥∥∥f̂n ∗ ĝn − f̂ngn∥∥∥

∞
+
∥∥∥f̂g − f̂ngn∥∥∥

∞
−→ 0

Hence, as Ff ∗ Fg and f̂g are continuous, we conclude that f̂g (t) = (Ff ∗ Fg) (t) for all t ∈ R.
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Remark 5.2. Note that with the assumptions of the previous proposition, the formula

(̂f ∗ g) (t) = (Ff · Fg) (t) does not make sense a priori, since f ∗ g is only in L∞(R) ∩ C(R). This
formula is true whenever f ∗ g is in L1 (R) .

Proposition 5.5. If f ∈ L2 (R) and g ∈ L1 (R), then Ff · ĝ ∈ L2 (R) and f ∗ g = F (Ff · ĝ) in

L2 (R).

PROOF.

Let (fn)n∈N and (gn)n∈N in S(R) such that lim
n−→∞

‖f − fn‖2 = 0 and lim
n−→∞

‖g − gn‖1 = 0. Note that

Ff ∈ L2 (R) (Theorem 4.1.) and ĝ ∈ L∞(R) (property 1.6.). Then Ff · ĝ ∈ L2(R) since:

ˆ
R

(Ff(x)ĝ(x))
2
dx ≤ ‖g‖2∞

ˆ
R
Ff(x)2dx = ‖g‖2∞ ‖Ff‖

2
2 = ‖g‖2∞ ‖f‖

2
2 < +∞ (5.2.5)

• Moreover, on the one hand we have∥∥∥F (Ff · ĝ)−F
(
f̂nĝn

)∥∥∥
2

Theor. 4.1.
=

∥∥∥Ff · ĝ − f̂nĝn∥∥∥
2

=
∥∥∥Ff · ĝ − f̂nĝ + f̂nĝ − f̂nĝn

∥∥∥
2

(5.2.5)

≤
∥∥∥Ff − f̂n∥∥∥

2
‖ĝ‖∞

+
∥∥∥f̂n∥∥∥

2
‖ĝ − ĝn‖∞

Theorem 4.1
≤

Property 1.6.
‖f − fn‖2 ‖ĝ‖∞ + ‖fn‖2 ‖g − gn‖1

n−→∞−→ 0 (5.2.6)

• On the other hand, by Lemma 3.3., the convolution is continuous from L2(R) ∗ L1(R) to L2(R).
Hence:

lim
n−→∞

‖f ∗ g − fn ∗ gn‖2 = 0 (5.2.7)

Finally, using (5.2.6), (5.2.7) and fn ∗ gn = F
(
f̂nĝn

)
(Proposition 5.3.1):

∥∥f ∗ g −F (Ff · ĝ)
∥∥
2
≤ ‖f ∗ g − fn ∗ gn‖2 +

∥∥∥fn ∗ gn −F (f̂nĝn)∥∥∥
2

+
∥∥∥F (f̂nĝn)−F (Ff · ĝ)

∥∥∥
2

n−→∞−→ 0

Hence, we conclude f ∗ g = F (Ff · ĝ) in L2 (R).



Chapter 6

The multidimensional Fourier Transform

The previous chapters introduced the theory of the Fourier transform on R. We will use it to study
some applications in Partial Di�erential Equations such as the heat equation. However, we are also
interested in the study of these Partial Di�erential Equations in higher dimensions. For this reason,
the aim of this chapter is to extend the notion of the Fourier transform to Rd with d > 1 and make a
brief study of its properties.

6.1 Preliminaries

- The setting in this chapter will be Rd, the vector space of all d-tuples of real numbers (x1, x2, ..., xd)
with xi ∈ R.
- Given x = (x1, x2, ..., xd), we de�ne its Euclidian norm as:

|x| =
(
x2

1 + ...+ x2
d

) 1
2

- In fact, we equip Rd with the standard inner product:

x · y = x1y1 + ...+ xdyd

- Given a multi-index α = (α1, ..., αn) of non-negative integers, we de�ne the monomial xα and the
operator

(
∂
∂x

)α
by:

xα = xα1
1 xα2

2 ...xαdd and

(
∂

∂x

)α
=

(
∂

∂x1

)α1
(

∂

∂x2

)α2

...

(
∂

∂xd

)αd
=

∂|α|

∂xα1
1 ...∂xαdd

De�nition 6.1. A rotation in Rd is a linear transformation R : Rd −→ Rd which preserves the

inner product. That is:

1. R(ax + by) = aR(x) + bR(y) for all x, y ∈ Rd and a, b ∈ R

2. R(x) ·R(y) = x · y for all x, y ∈ Rd

Equivalently, the last condition can be replaced by |R(x)| = |x| for all x ∈ Rd. Or, Rt = R−1

where Rt and R−1 denote the transpose and inverse of R, respectively. In particular, it holds that
det(R) = ±1. If det(R) = 1 we say that R is a proper rotation. Otherwise, we say that R is an
improper rotation.

43
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De�nition 6.2. A function f : Rd −→ C is said to decay rapidly, or be rapidly decreasing, if for

every multi-index α:
lim

|x|−→+∞
|xαf(x)| = 0

The de�nition implies that for all ε > 0 there exists Mε,α > 0 such that |xαf(x)| < ε for all x ∈ Rd
such that |x| > Mε,α.

Proposition 6.1. Let f : Rd −→ C be a continuous rapidly decreasing function. Then f ∈ L1(Rd).

PROOF.
Let us de�ne QN as the closed cube centered at the origin, with sides of length N parallel to the
coordinate axis, that is,

QN :=

{
x ∈ Rd : |xi| ≤

N

2
for i = 1, ..., d

}
Let us show that IN :=

´
QN
|f(x)| dx de�nes a Cauchy sequence as N tends to in�nity. Let us

take ε > 0 and α = (2, ..., 2). We have seen in de�nition 6.2. that there exists Mε,α > 0 such that

|f(x)| < ε
22d+1|xα| for all x ∈ Rd such that |x| > Mε,α. Hence, for all N, Ñ > 2 max{Mε,α, 1} hold

(assuming Ñ > N):

∣∣IN − IÑ ∣∣ =

∣∣∣∣∣
ˆ
QN

|f(x)| dx−
ˆ
Q
Ñ

|f(x)| dx

∣∣∣∣∣ =

∣∣∣∣∣
ˆ
Rd
|f(x)| dx−

ˆ
Rd\QN

|f(x)| dx−
ˆ
Rd
|f(x)| dx+

+

ˆ
Rd\Q

Ñ

|f(x)| dx

∣∣∣∣∣ =

∣∣∣∣∣−
ˆ
Rd\QN

|f(x)| dx +

ˆ
Rd\Q

Ñ

|f(x)| dx

∣∣∣∣∣ ≤ 2

ˆ
Rd\QN

|f(x)| dx ≤

≤ 2

ˆ
Rd\QN

ε

22d+1 |xα|
dx =

ε

2d

ˆ +∞

+N
2

· · ·
ˆ +∞

+N
2

(
1

x21x
2
2...x

2
d

)
dx1dx2...dxd =

ε

2d

(ˆ +∞

+N
2

1

x2
dx

)d
=

=
ε

2d

([
− 1

x

]+∞
N
2

)d
=

ε

2d
2d

Nd
=

ε

Nd
< ε

Hence, IN is a Cauchy sequence. As Rd with the Euclidean norm is a complete space, we conclude
that lim

N−→+∞
IN exists. Thus:

ˆ
Rd
|f(x)| dx = lim

N−→+∞

ˆ
QN

|f(x)| dx < +∞ =⇒ f ∈ L1(Rd)

Proposition 6.2. Let f : Rd −→ C be a continuous rapidly decreasing function. Then, the following

statements hold:

1.
´
Rd f(x + h)dx =

´
Rd f(x)dx for all h ∈ Rd

2.
´
Rd f(δx)dx = 1

δd

´
Rd f(x)dx for all δ > 0

3.
´
Rd f(Rx)dx =

´
Rd f(x)dx for every rotation R.

PROOF.

Note that all the integrals are well-de�ned since f ∈ L1(Rd) by Proposition 6.1. We will prove the
proposition by using Theorem A.10. (changes of variables).
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1.
´
Rd f(x + h)dx =

[
x = g(y) = y − h

(Dg) (y) = Id =⇒ |det (Dg) (y)| = 1

]
=

´
Rd f(y)dy

2.
´
Rd f(δx)dx =

[
x = g(y) = 1

δy
(Dg) (y) = 1

δ (Id) =⇒ |det (Dg) (y)| = 1
δd

]
= 1

δd

´
Rd f(y)dy

3.
´
Rd f(Rx)dx =

[
x = g(y) = R−1y

(Dg) (y) = R−1 =⇒ |det (Dg) (y)| = 1

]
=

´
Rd f(y)dy

De�nition 6.3. Let f : Rd −→ C. We say that f is a radial function if depends only on |x| . In other

words, f is radial if there exists a function f0(u) de�ned for u ≥ 0 such that f (x) = f0 (|x|) .

Proposition 6.3. Let f : Rd −→ C. Then f is radial if and only if f (Rx) = f(x) for all rotations.

PROOF.

• Let R be a rotation. It holds that |Rx| = |x| . Hence, as f is radial we have: f (Rx) = f0 (|Rx|) =
f0 (|x|) = f(x).

• Conversely, let us de�ne:

f0 (u) =

{
f(0) if u = 0

f(x) if u = |x|

Note that f0 is well de�ned, since if x and x′ are points such that |x| = |x′|, then there exists a
rotation R such that x′ = Rx. Hence f(x′) = f(Rx) = f(x).

Finally, we note that f (x) = f0 (|x|). Consequently, we conclude that f is radial.

6.2 Multidimensional Fourier transform on S
(
Rd
)

De�nition 6.4. We de�ne the space S
(
Rd
)
, also known as Schwartz Space, as the set of functions

f : Rd −→ C such that f is in�nitely times di�erentiable on Rd and f and
(
∂
∂x

)β
f decay rapidly for

every multi-index β.

Proposition 6.4. The space S
(
Rd
)
has the following properties:

1. S(Rd) is invariant under multiplication by a polynomial.

2. S(Rd) is invariant under derivation.

3. S(Rd) ⊂ L1(Rd)

PROOF.

• Proof 1: let p ∈ C [X1, ..., Xd] (polynomial with complex coe�cients) and f ∈ S(Rd). We want to
show that pf ∈ S(Rd). It is clear that pf ∈ C∞(Rd) since f and p ∈ C∞(Rd). It remains to see
that pf and all its derivatives decay rapidly. Let us suppose p(x) =

∑
α∈I

aαx
α where aα ∈ C. Then

lim
|x|→+∞

|xpp(x)f(x)| ≤ lim
|x|→+∞

∑
α∈I
|aα|

∣∣xα+pf(x)
∣∣ = 0 for all multi-index p

For the terms
(
∂
∂x

)β
pf the argument will be the same. But in these cases, there will be products of

polynomials and partial derivatives of f . However, the limit will be 0 due to f ∈ S(Rd).



CHAPTER 6. THE MULTIDIMENSIONAL FOURIER TRANSFORM 46

• Proof 2: let f ∈ S(Rd). We want to show
(
∂
∂x

)β
f ∈ S(Rd). As f ∈ C∞(Rd) then

(
∂
∂x

)β
f ∈

C∞(Rd). And as all the partial derivatives of f decay rapidly, then all the partial derivatives of
(
∂
∂x

)β
f

decay rapidly.

• Proof 3: let f ∈ S(Rd). Then, f decays rapidly and is in C∞(Rd). Therefore, we can apply
Proposition 6.1 and conclude that f ∈ L1(Rd). Thus S(Rd) ⊂ L1(Rd).

De�nition 6.5. We de�ne the Fourier transform of f ∈ S
(
Rd
)
by :

f̂(ξ) =

ˆ
Rd
f(x)e−2πix·ξdx for ξ ∈ Rd

Proposition 6.5. Let f ∈ S
(
Rd
)
. Then, the following properties hold:

1. Let g(x) := f(x + h). Then ĝ(ξ) = f̂(ξ)e2πiξ·h whenever h ∈ Rd.

2. Let g(x) := f(x)e−2πix·h. Then ĝ(ξ) = f̂(ξ + h) whenever h ∈ Rd.

3. Let g(x) := f(δx). Then ĝ(ξ) = 1
δd
f̂(ξδ ) whenever δ > 0.

4. Let g(x) :=
(
∂
∂x

)α
f(x). Then ĝ(ξ) = (2πiξ)α f̂(ξ) for all multi-index α.

5. Let g(x) := (−2πix)αf(x). Then ĝ(ξ) =
(
∂
∂ξ

)α
f̂(ξ) for all multi-index α.

6. Let g(x) := f(Rx). Then ĝ(ξ) = f̂(Rξ) whenever R is a rotation.

PROOF.

Observation: as f ∈ S
(
Rd
)
then f ,

(
∂
∂x

)β
f and (−2πix)αf(x) are in C∞

(
Rd
)
and decay rapidly for ev-

ery multi-index β and α. Consequently, by proposition 6.1., we conclude that are in C∞
(
Rd
)
∩L1

(
Rd
)
.

• Proof 1: ĝ(ξ) =
´
Rd f(x + h)e−2πix·ξdx =

[
x = g(y) = y − h

(Dg) (y) = Id =⇒ |det (Dg) (y)| = 1

]
=

= e2πih·ξ ´
Rd f(y)e−2πiy·ξdy = e2πih·ξf̂(ξ)

• Proof 2: ĝ(ξ) =
´
Rd f(x)e−2πix·ξe−2πix·hdx =

´
Rd f(x)e−2πix·(ξ+h)dx = f̂(ξ + h)

• Proof 3: ĝ(ξ) =
´
Rd f(δx)e−2πix·ξdx =

[
x = g(y) = 1

δy
(Dg) (y) = 1

δ (Id) =⇒ |det (Dg) (y)| = 1
δd

]
=

= 1
δd

´
Rd f(y)e−2πiy

δ
·ξdy = 1

δd
f̂(ξδ )

• Proof 4: let α = (α1, ..., αd) be an arbitrary multi-index. Then we have

ĝ(ξ) =

ˆ
Rd

(
∂

∂x

)α
f(x)e−2πix·ξdx =

ˆ
Rd

[
∂(α1+α2+..+αd)

∂xα1
1 ∂xα2

2 ...∂xαdd
f(x)

]
e−2πi(x1ξ1+x2ξ2+...+xdξd)dx =

=

ˆ
Rd−1

e−2πi(x2ξ2+...+xdξd)

(ˆ
R
e−2πix1ξ1

(
∂α1

∂xα1
1

)[
∂(α2+..+αd)

∂xα2
2 ...∂xαdd

f(x)

]
dx1

)
dx2...dxd



CHAPTER 6. THE MULTIDIMENSIONAL FOURIER TRANSFORM 47

Let us de�ne h(x1) := ∂(α2+..+αd)

∂x
α2
2 ...∂x

αd
d

f(x) . We know that ∂(α2+..+αd)

∂x
α2
2 ...∂x

αd
d

f(x) ∈ C∞
(
Rd
)
∩ L1

(
Rd
)
. Hence

h ∈ C∞ (R) ∩ L1 (R) and all its derivatives are in L1 (R). Thus, we can apply Proposition 1.1.2 and
we get:

ĝ(ξ) =

ˆ
Rd−1

e−2πi(x2ξ2+...+xdξd)
[
(2πiξ1)α1 ĥ(ξ1)

]
dx2...dxd =

=

ˆ
Rd−1

e−2πi(x2ξ2+...+xdξd)

[
(2πiξ1)α1

ˆ
R
e−2πix1·ξ1 ∂

(α2+..+αd)

∂xα2
2 ...∂xαdd

f(x)dx1

]
dx2...dxd =

= (2πiξ1)α1

ˆ
Rd

[
∂(α2+..+αd)

∂xα2
2 ...∂xαdd

f(x)

]
e−2πi(x1ξ1+x2ξ2+...+xdξd)dx1dx2dx3...dxd =

= (2πiξ1)α1

ˆ
Rd−1

e−2πi(x1ξ1+x3ξ3...+xdξd)

(ˆ
R
e−2πix2ξ2

(
∂α2

∂xα2
2

)[
∂(α3+..+αd)

∂xα3
3 ...∂xαdd

f(x)

]
dx2

)
dx1dx3...dxd

Let us de�ne h(x2) := ∂(α3+..+αd)

∂x
α3
3 ...∂x

αd
d

f(x) . We know that ∂(α3+..+αd)

∂x
α3
3 ...∂x

αd
d

f(x) ∈ C∞
(
Rd
)
∩ L1

(
Rd
)
. Hence

h ∈ C∞ (R) ∩ L1 (R) and all its derivatives are in L1 (R). Thus, we can apply Proposition 1.1.2

ĝ(ξ) = (2πiξ1)α1

ˆ
Rd−1

e−2πi(x1ξ1+x3ξ3...+xdξd)
[
(2πiξ2)α2 ĥ(ξ2)

]
dx1dx3...dxd =

= (2πiξ1)α1

ˆ
Rd−1

e−2πi(x1ξ1+x3ξ3...+xdξd)

[
(2πiξ2)α2

ˆ
R
e−2πix2·ξ2 ∂

(α3+..+αd)

∂xα3
3 ...∂xαdd

f(x)dx2

]
dx1dx3...dxd =

= (2πiξ1)α1 (2πiξ2)α2

ˆ
Rd

[
∂(α3+..+αd)

∂xα3
3 ...∂xαdd

f(x)

]
e−2πix·ξdx1dx2dx3...dxd

Doing the same for the coordinates x3, ..., xd we �nally get that:

ĝ(ξ) = (2πiξ1)α1 (2πiξ2)α2 ... (2πiξd)
αd

ˆ
Rd
f(x)e−2πix·ξdx1dx2dx3...dxd = (2πiξ)α f̂(ξ)

• Proof 5: let α = (α1, ..., αd) be an arbitrary multi-index. Then we have:

ĝ(ξ) =

ˆ
Rd

(−2iπx) αf(x)e−2πix·ξdx =

ˆ
Rd

(−2iπx1) α1 ... (−2iπxd)
αdf(x)e−2πix·ξdx1dx2...dxd =

=

ˆ
Rd−1

(−2iπx2) α2 ... (−2iπxd)
αde−2πi(x2ξ2+...+xdξd)

[ˆ
R

(−2iπx1) α1f(x)e−2πix1ξ1dx1

]
dx2...dxd

Let us de�ne h(x1) := f(x) . We know that (−2iπx1) αh(x1) ∈ L1 (R) for all α. Thus, we can apply
Proposition 1.1.1 and we get:

ĝ(ξ) =

ˆ
Rd−1

(−2iπx2) α2 ... (−2iπxd)
αd e−2πi(x2ξ2+...+xdξd)

[
∂α1

∂ξα1
1

ĥ(ξ1)

]
dx2...dxd =

=
∂α1

∂ξα1
1

ˆ
Rd

(−2iπx2) α2 ... (−2iπxd)
αd e−2πi(x1ξ1+x2ξ2+...+xdξd)f(x)dx =

∂α1

∂ξα1
1

ˆ
Rd−1

(−2iπx3) α3 .. (−2iπxd)
αde−2πi(x1ξ1+x3ξ3..+xdξd)

[ˆ
R

(−2iπx2) α2f(x)e−2πix2ξ2dx2

]
dx1dx3..dxd
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Let us de�ne h(x2) := f(x) . We know that (−2iπx2) αh(x2) ∈ L1 (R) for all α. Thus, we can apply
Proposition 1.1.1 and we get:

ĝ(ξ) =
∂α1

∂ξα1
1

ˆ
Rd−1

(−2iπx3) α3 ... (−2iπxd)
αde−2πi(x1ξ1+x3ξ3..+xdξd)

[
∂α2

∂ξα2
2

ĥ(ξ2)

]
dx1dx3...dxd =

=
∂(α1+α2)

∂ξα1
1 ∂ξα2

2

ˆ
Rd

(−2iπx3) α3 ... (−2iπxd)
αde−2πi(x1ξ1+x2ξ2+...+xdξd)f(x)dx

Doing the same for the coordinates x3, ..., xd we �nally get:

ĝ(ξ) =
∂(α1+...+αd)

∂ξα1
1 ...∂ξαdd

ˆ
Rd
f(x)e−2πi(x1·ξ1+...+xd·ξd)dx =

(
∂

∂ξ

)α
f̂(ξ)

• Proof 6: as R is a rotation, it holds that R−1 = Rt. Hence, R−1y · ξ = Rty · ξ = y ·Rξ :

ĝ(ξ) =

ˆ
Rd
f(Rx)e−2πix·ξdx =

[
x = g(y) = R−1y

(Dg) (y) = R−1 =⇒ |det (Dg) (y)| = 1

]
=

=

ˆ
Rd
f(y)e−2πiR−1y·ξdy =

ˆ
Rd
f(y)e−2πiy·Rξdy = f̂(Rξ)

Corollary 6.1. Let f ∈ S
(
Rd
)
. If f is radial, then its Fourier transform f̂ is also radial.

PROOF.

From Proposition 6.3., as f is radial, it holds that f (x) = f (Rx) for any rotation R. Thus, taking
the Fourier transform in both sides and applying Proposition 6.5.6:

f̂ (ξ) = ̂[f (Rx)] (ξ) = f̂(Rξ) for any rotation R

Hence, we conclude by Proposition 6.3. that f̂ is radial.

Proposition 6.6. Let f ∈ L1
(
Rd
)
. Then, its Fourier transform satis�es that lim

|ξ|−→+∞

∣∣∣f̂ (ξ)
∣∣∣ = 0.

PROOF.

• Step 1: we show the result for a simple function f(x) := 1[a1,b1]×...×[ad,bd] (x1, ..., xd). Let us de�ne
fi(x) = 1[ai,bi] (x) for all i = 1...d. Then

f̂(ξ) =

ˆ
Rd
e−2πix·ξ1[a1,b1]×...×[ad,bd] (x) dx =

d∏
i=1

(ˆ bi

ai

e−2πixiξidxi

)
=

d∏
i=1

f̂i(ξ)

Now, using property 1.7. for simple functions in R, we get that lim
|ξ|−→+∞

∣∣∣f̂ (ξ)
∣∣∣ = 0.

• Step 2: we use the density of the simple functions in L1
(
Rd
)
(Theorem A.7.): there exists a sequence

{ϕn}n∈N of simple functions such that lim
n→∞

‖f − ϕn‖1 = 0.

Moreover, �xing n and applying step 1 for the simple function ϕn , it holds lim
|ξ|→+∞

|ϕ̂n (ξ)| = 0. Then:

∣∣∣f̂(ξ)− ϕ̂n(ξ)
∣∣∣ ≤ ˆ

Rd

∣∣∣e−2πix·ξ
∣∣∣ |f (x)− ϕn(x)| dx = ‖f − ϕn‖1 =⇒ lim

|ξ|→+∞

∣∣∣f̂(ξ)− ϕ̂n(ξ)
∣∣∣ ≤
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≤ lim
|ξ|→+∞

‖f − ϕn‖1 = ‖f − ϕn‖1 =⇒
∣∣∣∣ lim
|ξ|→+∞

f̂(ξ)

∣∣∣∣ ≤ ‖f − ϕn‖1 n−→+∞−→ 0

Thus, we �nally conclude that lim
|ξ|−→+∞

∣∣∣f̂ (ξ)
∣∣∣ = 0.

Theorem 6.1. The space S
(
Rd
)
is invariant under the Fourier transform. That is, if f ∈ S

(
Rd
)

then f̂ ∈ S
(
Rd
)
.

PROOF.

• On the one hand, we have seen in Proposition 6.5.5 that the Fourier transform of f is di�erentiable
for all multi-index α. Hence f̂ ∈ C∞

(
Rd
)
.

• On the other hand, let us consider
(
∂
∂ξ

)β
f̂ (ξ) for any multi-index β. We want to see that it decays

rapidly. Let α be another multi-index. As f ∈ S
(
Rd
)
, we have by proposition 6.5.5:

ξα
(
∂

∂ξ

)β
f̂ (ξ) = ξα

̂[
(−2πix)

β
f (x)

]
(ξ)

Now, as by Proposition 6.4.1 (−2πix)β f (x) is in S
(
Rd
)
, we can apply Proposition 6.5.4:

ξα
̂[

(−2πix)
β
f (x)

]
(ξ) =

1

(2iπ)
|α| (2iπξ)α

̂[
(−2πix)

β
f (x)

]
(ξ) =

1

(2iπ)
|α|

̂[(
∂

∂x

)α
(−2πix)

β
f (x)

]
(ξ)

As
(
∂
∂x

)α [
(−2πix)β f (x)

]
∈ S

(
Rd
)
⊂ L1

(
Rd
)
, applying Proposition 6.6.:

lim
|ξ|−→+∞

∣∣∣∣∣ξα
(
∂

∂ξ

)β
f̂ (ξ)

∣∣∣∣∣ =
1

(2iπ)
|α| lim
|ξ|−→+∞

∣∣∣∣∣ ̂[(
∂

∂x

)α
(−2πix)

β
f (x)

]
(ξ)

∣∣∣∣∣ = 0

Proposition 6.7. The Fourier transform of e−π|x|
2

is e−π|ξ|
2

. In other words, e−π|x|
2

is a �x point

of the operator ·̂.

PROOF.

Let us de�ne g(x) := e−π|x|
2

. Note �rst that g is in S
(
Rd
)
. Hence, we can compute its Fourier

transform and we get:

ĝ (ξ) =

ˆ
Rd
e−2πix·ξe−π|x|

2

dx =

ˆ
Rd

(
e−2πix1ξ1e−πx

2
1

)
...
(
e−2πixdξde−πx

2
d

)
dx =

=

(ˆ
R
e−2πix1ξ1e−πx

2
1dx1

)
...

(ˆ
R
e−2πixdξde−πx

2
ddxd

)
=
(
e−πξ

2
1

)
...
(
e−πξ

2
d

)
= e−π|ξ|

2

= g(ξ)

Where we have used example 1.1. with a = π.
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Lemma 6.1.
´
R e
−πx2dx = 1

PROOF.(ˆ
R
e−πx

2

dx

)2

=

(ˆ
R
e−πx

2

dx

)(ˆ
R
e−πy

2

dy

)
Theor.A.6.

=

ˆ
R

ˆ
R
e−π(x2+y2)dxdy =

[
r = x2 + y2

θ= arctan
(
y
x

) ] =

=

ˆ 2π

0

ˆ +∞

0

e−πr
2

rdrdθ = 2π

ˆ +∞

0

e−πr
2

rdr = 2π

[
−e
−πr2

2π

]+∞
0

= 1

De�nition 6.6. Let us consider f, g ∈ S
(
Rd
)
, we de�ne its convolution f ∗ g as:

(f ∗ g) (x) =

ˆ
Rd
f(x− t)g(t)dt

De�nition 6.7. A family of integrable functions {Kδ(x)}δ>0 is said to be a family of good kernels if

it satis�es the following properties:

1. For all δ > 0,
´
Rd Kδ(x)dx = 1

2. There exists M > 0 such that
´
Rd |Kδ(x)| dx ≤M for all δ > 0

3. For every η > 0, we have
´
|x|>η |Kδ(x)| dx −→ 0 as δ −→ 0

Proposition 6.8. Let us consider the family of functions {Kδ(x)}δ>0 de�ned by Kδ(x) := δ−
d
2 e−

π|x|2
δ .

Then, it holds that {Kδ(x)}δ>0 is a family of good kernels:

PROOF.

We should prove the three properties of de�nition 6.7. Note that making the change of variables
y = 1√

δ
x and using Lemma 6.1.:

ˆ
Rd
|Kδ(x)| dx =

ˆ
Rd
Kδ(x)dx =

ˆ
Rd
δ−

d
2 e−

π|x|2
δ dx =

ˆ
Rd
e−π|y|

2

dy =

(ˆ
R
e−πy

2
dy

)d
= 1

which proves property 1 and 2. Finally, making again the change of variables y = 1√
δ
x, we prove

property 3. In e�ect: ˆ
|x|>η

|Kδ(x)| dx =

ˆ
|y|> η√

δ

e−π|y|
2

dy
δ−→0−→ 0

Proposition 6.9. Let {Kδ(x)}δ>0 be a family of good kernels. Let f ∈ S(Rd), then (f ∗Kδ) (x)
tends to f(x) uniformly in x as δ −→ 0.

PROOF.

• First we prove that f is uniformly continuous in Rd. Let us take ε > 0. We make the following
observations:

1. As f ∈ S(Rd), then it decays rapidly. Thus, there exists Rε > 0 such that |f(x)| < ε
4 whenever

|x| ≥ Rε.

2. As f ∈ S(Rd), then it is continuous. Thus, f is uniformly continuous in the compact BRε (0) ={
x ∈ Rd s.t. |x| ≤ Rε

}
. Hence, there exists δε > 0 such that |f(x)− f(y)| < ε

2 for all x, y ∈
BRε (0) satisfying |x− y| < δε.
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We want to �nd ηε > 0 such that |f(x)− f(y)| < ε for all x, y ∈ Rd satisfying |x− y| < ηε. Let us
take ηε = δε. We distinguish the following three cases:

1. If x, y ∈ BRε (0), by observation 2, |f(x)− f(y)| < ε
2 < ε.

2. If x, y ∈ Rd \BRε (0), by observation 1, |f(x)− f(y)| ≤ |f(x)| + |f(y)| < ε
2 < ε

3. If x ∈ BRε (0) and y ∈ Rd \ BRε (0). Let us take z such that |z| = Rε. Then: |f(x)− f(y)| ≤
|f(x)− f(z)| + |f(y)− f(z)| < ε

2 + ε
4 + ε

4 = ε

• Now let us show that (f ∗Kδ) (x) −→ f(x) uniformly in x as δ −→ 0. Let us take ε > 0. First, we
make the following observations:

1. We have seen that for |x− y| < ηε it holds |f(x)− f(y)| < ε

2. As f ∈ S(R) ⊂ L∞ (R), then there exists M > 0 such that |f(x)| ≤M for all x ∈ Rd.

3. By the property 3 of good kernels with ηε, there exists δε > 0 such that
´
|x|>ηε |Kδ(x)| dx < ε

M
for all δ < δε

Using this three observations, for all δ < δε we have:

|(f ∗Kδ) (x)− f(x)| ≤
∣∣∣∣ˆ

Rd
Kδ(t) (f(x− t)− f(x)) dt

∣∣∣∣ ≤ ˆ
|t|>ηε

Kδ(t) |f(x− t)− f(x)| dt+

+

ˆ
|t|≤ηε

Kδ(t) |f(x− t)− f(x)| dt ≤ 2M

ˆ
|t|>ηε

Kδ(t)dt + ε

ˆ
Rd
Kδ(t)dt = 2ε + ε = 3ε

Hence, taking supremums, we get ‖f ∗Kδ − f‖∞ < 3ε for all δ < δε and we conclude (f ∗Kδ) (x)
δ−→0−→

f(x) uniformly in x.

Proposition 6.10. Let f, g ∈ S(Rd). Then, it holds:
ˆ
Rd
f (x) ĝ (x) dx =

ˆ
Rd
f̂ (y) g (y) dy

PROOF.

First, we observe that f, g ∈ S(Rd) ⊂ L1(Rd). Thus ‖f‖1 < +∞ and ‖g‖1 < +∞ . We will use

Theorem A.6. (Fubini). Let us prove �rst that F (x,y) := f(x)g(y)e−2πix·y is integrable in Rd × Rd:
ˆ
Rd

ˆ
Rd

∣∣f (x) g(y)e−2πix·y
∣∣ dydx =

ˆ
Rd

ˆ
Rd
|f (x) g(y)| dydx =

ˆ
Rd
|f (x)|

ˆ
Rd
|g(y)| dydx =

=

ˆ
Rd
|f (x)| ‖g‖1 dx = ‖f‖1 ‖g‖1 < +∞

Thus, applying Fubini's Theorem we conclude that the result of the statement is true. In e�ect,
ˆ
Rd
f (x) ĝ (x) dx =

ˆ
Rd
f (x)

ˆ
Rd
g(y)e−2πix·ydydx =

ˆ
Rd

(ˆ
Rd
f (x) g(y)e−2πix·ydy

)
dx =

=

ˆ
Rd

(ˆ
Rd
f (x) g(y)e−2πix·ydx

)
dy =

ˆ
Rd
g(y)

(ˆ
Rd
f (x) e−2πix·ydx

)
dy =

ˆ
Rd
g (y) f̂ (y) dy
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Theorem 6.2. (Inversion Theorem) Let f ∈ S
(
Rd
)
. Then f(x) =

´
Rd f̂(ξ)e−2πix·ξdξ.

PROOF.

• Step 1: we see that f(0) =
´
Rd f̂ (ξ) dξ. Let us de�ne Gδ (x) := e−πδ|x|

2

. By Proposition 6.7., we

deduce that Ĝδ (ξ) = Kδ (ξ) = δ−
d
2 e−

π|ξ|2
δ . Hence, using Proposition 6.10. with Gδ and f :ˆ

Rd
f (x)Kδ (x) dx =

ˆ
Rd
f̂ (y)Gδ (y) dy

We observe that
´
Rd f (x)Kδ (x) dx = (f ∗Kδ) (0)

δ−→0−→ f(0) (by Proposition 6.9.). Moreover,

as
∣∣∣f̂ (y)Gδ (y)

∣∣∣ ≤ ∣∣∣f̂ (y)
∣∣∣ is integrable (because f̂ ∈ S

(
Rd
)
⊂ L1

(
Rd
)
) we get by the Dominated

Convergence Theorem that
´
Rd f̂ (y)Gδ (y) dy

δ−→0−→
´
Rd f̂ (y) dy. Hence, f(0) =

´
Rd f̂ (ξ) dξ.

• Step 2: let us consider F (y) := f(y + x) for some x ∈ Rd. It holds that F ∈ S
(
Rd
)
. Then by step

1 we get:

f (x) = F (0)
step 1

=

ˆ
Rd
F̂ (ξ) dξ

Prop. 6.5.1
=

ˆ
Rd
f̂ (ξ) e2πix·ξdξ

Proposition 6.11. (convolution) Let f, g ∈ S(Rd). Then, the following statements hold:

1. f ∗ g is in S(Rd) and
(
∂
∂x

)α
(f ∗ g) =

[(
∂
∂x

)α
f
]
∗ g

2. (̂f ∗ g) (ξ) = f̂ (ξ) ĝ (ξ)

PROOF.

• Proof 1: �rst we will see that f ∗ g is in C∞
(
Rd
)
. We will apply Di�erentiation under the integral

sign Theorem (Theorem A.5.). Let us consider the coordinate xi for i ∈ {1, .., d} and let F (xi,y) :=[(
∂
∂xi

)αi
f(x− y)

]
g(y) for a non-negative integer αi. Then, F (xi,y) satis�es:

1. For all y ∈ Rd, xi 7−→ F (xi,y) is continuously di�erentiable in R.

2. Note that
(

∂
∂xi

)αi+1

f(x) ∈ S
(
Rd
)
⊂ L∞

(
Rd
)
. Thus, |F (xi,y)| =

∣∣∣∣[( ∂
∂xi

)αi+1

f(x− y)

]
g(y)

∣∣∣∣ ≤
≤
∥∥∥∥( ∂

∂xi

)αi+1

f

∥∥∥∥
∞
|g(y)| which is integrable for y ∈ Rd.

Hence, applying Theorem A.5. we get that
(

∂
∂xi

)αi
(f ∗ g) (x) =

´
Rd F (xi,y)dy is di�erentiable for

all xi ∈ R and moreover:(
∂

∂xi

)αi+1

(f ∗ g) (x) =

(
∂

∂xi

)ˆ
Rd
F (xi,y)dy =

ˆ
Rd

(
∂

∂xi

)
F (xi,y)dy =

=

ˆ
Rd

[(
∂

∂xi

)αi+1

f(x− y)

]
g(y)dy =

([(
∂

∂xi

)αi+1

f

]
∗ g

)
(x)

Thus, we have seen that f ∗ g ∈ C∞ (R) for each coordinate xi such that i ∈ {1, .., d}, consequently
f ∗ g ∈ C∞

(
Rd
)
. Moreover, we conclude:(

∂

∂x

)α
(f ∗ g) (x) =

([(
∂

∂x

)α
f

]
∗ g
)

(x)
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• Now, let us prove that f and
(
∂
∂x

)α
f decay rapidly for every multi-index α. Let us take a multi-index

β. Then:∣∣∣∣xβ ( ∂

∂x

)α
(f ∗ g) (x)

∣∣∣∣ =

∣∣∣∣xβ ([( ∂

∂x

)α
f

]
∗ g
)

(x)

∣∣∣∣ ≤ ˆ
Rd

∣∣∣∣xβ [( ∂

∂x

)α
f (x− y)

]
g (y)

∣∣∣∣ dy
Now, applying the Dominated Convergence Theorem (Theorem A.2.) we get that

lim
|x|−→+∞

∣∣∣∣xβ ( ∂

∂x

)α
(f ∗ g) (x)

∣∣∣∣ ≤ ˆ
Rd

lim
|x|−→+∞

∣∣∣∣xβ [( ∂

∂x

)α
f (x− y)

]
g (y)

∣∣∣∣ dy = 0

In conclusion, we conclude that f and
(
∂
∂x

)α
f decay rapidly for every multi-index α. Then, f ∈ S

(
Rd
)
.

• Proof 2: let us consider F (x,y) = e−2πiξ·xf (x− y) g (y) for ξ ∈ Rd. Let us prove that F (x,y) is
integrable in Rd × Rd.

ˆ
Rd

ˆ
Rd

∣∣∣e−2πiξ·xf (x− y) g (y)
∣∣∣ dxdy =

ˆ
Rd
|g(y)|

ˆ
Rd
|f (x− y)| dxdy =

= ‖f‖1
ˆ
Rd
|g(y)| dy = ‖f‖1 ‖g‖1 < +∞

Consequently, F satis�es the hypothesis of Fubini's Theorem and we can apply it:

(̂f ∗ g) (ξ) =

ˆ
Rd
e−2πiξ·x

(ˆ
Rd
f (x− y) g (y) dy

)
dx =

ˆ
Rd

(ˆ
Rd
e−2πiξ·xf (x− y) g (y) dy

)
dx =

=

ˆ
Rd

(ˆ
Rd
e−2πiξ·xf (x− y) g (y) dx

)
dy =

[
x = g(u) = u + y

(Dg) (u) = Id =⇒ |det (Dg) (u)| = 1

]
=

ˆ
Rd

(ˆ
Rd
e−2πiξ·ue−2πiξ·yf (u) g (y) du

)
dy =

(ˆ
Rd
e−2πiξ·yg (y) dy

)(ˆ
Rd
e−2πiξ·uf (u) du

)
= f̂ (ξ) ĝ (ξ)

Theorem 6.3. (Plancherel in S
(
Rd
)
) Let f ∈ S

(
Rd
)
. Then

∥∥∥f̂∥∥∥
2

= ‖f‖2.
PROOF.

Note that it holds that
(̂
f
)
σ

(ξ) = f̂ (ξ). Let us de�ne h (x) :=
(
f ∗
(
f
)
σ

)
(x). By Proposition 6.11.2

we have:

ĥ (ξ) = ̂(f ∗ (f)
σ

)
(ξ) = f̂ (ξ)

(̂
f
)
σ

(ξ) = f̂ (ξ) f̂ (ξ) =
∣∣∣f̂ (ξ)

∣∣∣2
Moreover, h(0) =

´
Rd |f (x)|2 dx. Finally, by the Inversion Theorem (Theorem 6.2.):

h(0) =

ˆ
Rd
ĥ (ξ) e−2πi0·udξ =

ˆ
Rd
ĥ (ξ) dξ =

ˆ
Rd

∣∣∣f̂ (ξ)
∣∣∣2 dξ

Hence we conclude: ˆ
Rd
|f (x)|2 dx =

ˆ
Rd

∣∣∣f̂ (ξ)
∣∣∣2 dξ =⇒

∥∥∥f̂∥∥∥
2

= ‖f‖2
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6.3 Multidimensional Fourier transform on L2
(
Rd
)

Let f ∈ L2
(
Rd
)
. We know that S

(
Rd
)
is dense in L2

(
Rd
)
. Hence, there exists a sequence (fn)n∈N

of functions in S
(
Rd
)
such that ‖fn − f‖2

n−→+∞−→ 0. As (fn)n∈N converge in L2
(
Rd
)
, in particular

it is a Cauchy sequence in L2
(
Rd
)
. We are going to see now that

(
f̂n

)
n∈N

is a Cauchy sequence in

L2
(
Rd
)
. In e�ect, by Theorem 6.3. (Plancherel), it holds:∥∥∥f̂n − f̂m∥∥∥

2
=
∥∥∥ ̂fn − fm

∥∥∥
2

= ‖fn − fm‖2
n,m−→+∞−→ 0

Hence,
(
f̂n

)
n∈N

is a Cauchy sequence in L2
(
Rd
)
and as L2

(
Rd
)
is a Hilbert Space, in particular is

complete. Thus,
(
f̂n

)
n∈N

converge to a function g ∈ L2
(
Rd
)
, i.e.

lim
n−→+∞

∥∥∥f̂n − g∥∥∥
2

= 0

De�nition 6.8. Let f ∈ L2
(
Rd
)
. Let (fn)n∈N be a sequence of elements of S

(
Rd
)
such that

‖fn − f‖2
n−→+∞−→ 0. We de�ne the Fourier transform of f as:

Ff (ξ) := g (ξ) = lim
n−→+∞

f̂n (ξ)
(
in L2

(
Rd
))

The Fourier transform of f in L2
(
Rd
)
doesn't depend on the sequence (fn)n∈N of elements of S

(
Rd
)

that ‖fn − f‖2
n−→+∞−→ 0.

Theorem 6.4. (Plancherel in L2
(
Rd
)
) Let f ∈ L2

(
Rd
)
. Then ‖Ff‖2 = ‖f‖2.

PROOF.

Let (fn)n∈N be a sequence of elements of S
(
Rd
)
such that ‖fn − f‖2

n−→+∞−→ 0. It holds by Theorem
6.3.: ˆ

R
fn(x)fn(x)dx =

ˆ
R
f̂n(ξ)f̂n(ξ)dξ

Hence, using this:∣∣∣∣ˆ
Rd
f(x)f(x)dx −

ˆ
Rd
F (f) (ξ)F (f) (ξ)dξ

∣∣∣∣ ≤ ∣∣∣∣ˆ
Rd
f(x)f(x)dx −

ˆ
Rd
fn(x)fn(x)dx

∣∣∣∣ +

+

∣∣∣∣ˆ
Rd
fn(x)fn(x)dx −

ˆ
Rd
f̂n(ξ)f̂n(ξ)ddξ

∣∣∣∣ +

∣∣∣∣ˆ
Rd
F (f) (ξ)F (f) (ξ)dξ −

ˆ
Rd
f̂n(ξ)f̂n(ξ)ddξ

∣∣∣∣ n−→+∞−→ 0

Thus we conclude that ˆ
Rd
|f(x)|2 dx =

ˆ
Rd
|Ff(ξ)|2 dξ =⇒ ‖Ff‖2 = ‖f‖2
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• One of the most important applications of the convolution and the Fourier transform is in solving
di�erential equations. Given a PDE for u(x, t) with x ∈ R, the general strategy will be:

1. Use the Fourier transform to get an ODE for the the transformed û (or a PDE of lower dimen-
sionality) .

2. Solve the ODE.

3. Use the inverse Fourier transform (and operational formulas) to get back to a representation for
u.

• We will explode the property of the Fourier transform proved in Proposition 1.1.2. It states that
under certain hypothesis:

f̂ (k) (ξ) = (2iπξ)kf̂ (ξ)

In general, a di�erential operator can be thought of as a polynomial in d
dx , say of the form:

P

(
d

dx

)
= an

(
d

dx

)n
+ an−1

(
d

dx

)n−1

+ ... + a1

(
d

dx

)
+ a0

and when it is applied to a function f(x), the result is

P

(
d

dx

)
f = anf

(n) + an−1f
(n−1) + ... + a1f

′
+ a0f

Now, if we take the Fourier transform of this expression, we wind up with the Fourier transform of f
multiplied by the corresponding n-th degree polynomial evaluated at 2πiξ. In e�ect,

̂[
P

(
d

dx

)
f

]
(ξ) =

(
an (2πiξ)n + an−1 (2πiξ)n−1 + ... + a1 (2πiξ) + a0

)
f̂ (ξ) = P (2πiξ) f̂ (ξ)

• As an example, let us consider the ordinary di�erential equation.

u
′′ − u = −f

We assume that f is in L1 (R). Then, taking the Fourier transform of both sides of the equation and
applying the mentioned property:

(2πiξ)2 û(ξ) − û(ξ) = −f̂(ξ) =⇒ û(ξ) =
1

1 + 4π2ξ2
f̂(ξ)

We recognize 1
1+4π2ξ2

as the Fourier transform of 1
2e
−|t|. Thus:

û =
̂[1

2
e−|t|

]
· [̂f ]

As 1
2e
−|t| and f are in L1(R), it holds by Proposition 5.2. that the right hand side of the expression is

the Fourier transform of the convolution of this two functions. Hence, using the inversion Theorem:

u(t) =
1

2
e−|t| ∗ f(t) =

1

2

ˆ
R
e−|t−x|f(x)dx



Chapter 7

The Heat Equation

7.1 Derivation of the heat equation

The heat equation describes how heat and particles get transported, (typically) under conduction.
Consequently, we will provide two derivations, one for the di�usion of particles and the other for the
heat. We will use Fourier's Law:

Fourier's Law: the amount of heat (or concentration of particles) �ows from hot (or more
concentrated) regions to cold (or less concentrated) regions at a rate k > 0 proportional to the
temperature gradient (or concentration gradient).

7.1.1. Di�usion

Consider a liquid in which a dye is being di�used through the liquid. Suppose the liquid is contained in a
pipe of length L. By Fourier's Law, the dye will move from higher concentration to lower concentration.

Let u(x, t) be the concentration (mass per unit length) of the dye at the position x ∈ [0, L] in the pipe
at time t. The total mass of dye M in the pipe in [x0, x1] ⊂ [0, L] at time t is given by:

M(t) =

ˆ x1

x0

u(x, t)dx =⇒ dM(t)

dt
=

ˆ x1

x0

ut(x, t)dx

By Fourier's Law, it holds:

dM(t)

dt
= �ow in at x1 − �ow out at x0 = kux(x1, t)− kux(x0, t)

Hence,
´ x1
x0
ut(x, t)dx = kux(x1, t)−kux(x0, t) and di�erentiating with respect to x1 we get ut(x1, t) =

kuxx(x1, t). And as we have take and arbitrary x1 ∈ [0, L] we can conclude:

ut(x, t) = kuxx(x, t) for all x ∈ [0, L]

This is known as the di�usion equation.

7.1.2. Heat Flow

Let D be a region in Rd and let x = (x1, ..., xd)
t be a vector in Rd. Let u(x, t) be the temperature at

point x, time t, and let H(t) be the total amount of heat (in calories) contained in D at time t. Let

57
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c be the speci�c heat of the material and ρ its density (mass per unit volume). Then the amount of
heat and the change in heat is given by:

H(t) =

ˆ
D
cρu(x, t)dx =⇒ dH(t)

dt
=

ˆ
D
cρut(x, t)dx

Fourier's Law says that heat �ows from hot to cold regions at a rate k > 0 proportional to the
temperature gradient. The only way heat will leave D is through the boundary. That is:

dH(t)

dt
=

ˆ
∂D

k∇u · ndS

where ∂D is the boundary of D, n is the outward unit normal vector to ∂D and dS is the surface
measure over ∂D. Therefore, using Theorem A.11. (Divergence Theorem):

ˆ
∂D

k∇u · ndS =

ˆ
D
∇ · (k∇u) dx =

ˆ
D
k4udx

where 4u =
d∑
i=1

uxixi . Hence, as we have taken an arbitrary volume D we get:

ˆ
D
cρut(x, t)dx =

ˆ
D
k4udx =⇒ cρut(x, t) = k4u(x, t)

And, as we suppose c, ρ and k are constants, we are led to the heat equation:

ut(x, t) = k̃4u(x, t)

1.3. Simpli�cation

We will take k = 1. We can do this simpli�cation by rescaling the variables of the equation. In e�ect,
let us de�ne y = 1√

k
x, and let ũ(y, t) := u(

√
ky, t). Then, it holds:

∂

∂yi
ũ(y, t) =

∂

∂xi
u(
√
ky, t)

√
k =⇒ ∂2

∂y2
i

ũ(y, t) =
∂2

∂x2
i

u(
√
ky, t)k

Hence, 4ũ(y, t) = k4u(
√
ky, t) = ut

(√
ky, t

)
= ũt(y, t). Thus:

ũt(y, t) = 4ũ(y, t)

7.2 The Heat Kernel

De�nition 7.1. Let us consider the family of functions {Kδ(x)}δ>0 de�ned in Proposition 6.8. We

de�ne the Heat Kernel of Rd as the family of functions {Ht (x)}t>0 such that:

Ht(x) := K4πt(x) =
1

(4πt)
d
2

e−
|x|2
4t

Proposition 7.1. The Fourier transform of Ht for t > 0 is Ĥt (ξ) = e−4π2t|ξ|2.

PROOF. It follows immediately from Proposition 6.7. by making a change of variable.
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In the following �gure, we have plotted the 1-dimensional Heat Kernel respect the spacial variable x
for times t = 1, t = 0.1 and t = 0.01.

We can see that the curves are becoming more concentrated near x = 0 when t becomes smaller.
Nevertheless, they are doing so in a way that keeps the area under each curve equal to 1.

Lemma 7.1. Let δ > 0 be any real positive number. Then, Ht(x) and all its partial derivatives are
uniformly bounded on (x, t) ∈ Rd × [δ,+∞).

PROOF

• We start showing that Ht(x) is uniformly bounded on (x, t) ∈ Rd × [δ,+∞). In e�ect, note that:

|Ht(x)| =

∣∣∣∣∣ 1

(4πt)
d
2

e−
|x|2
4t

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

(4πt)
d
2

∣∣∣∣∣ ≤ 1

(4πδ)
d
2

for all (x, t) ∈ Rd × [δ,+∞)

• Now, let us take k ∈ N and a multi-index α. One proves that the partial derivatives of Ht(x) can be
written as: (

∂k

∂tk

)(
∂

∂x

)α
Ht(x) =

l∑
i=1

Pi(x)

t
d
2

+ci
e−
|x|2
4t

for some l, ci ∈ N\{0} and polynomials Pi. Note that as e
− |x|

2

4t ∈ S
(
Rd
)
then Pi (x) e−

|x|2
4t ∈ S

(
Rd
)
⊂

L∞
(
Rd
)
. Consequently, there exists Ki > 0 such that

∣∣∣∣Pi (x) e−
|x|2
4t

∣∣∣∣ ≤ Ki. Then,

∣∣∣∣( ∂k

∂tk

)(
∂

∂x

)α
Ht(x)

∣∣∣∣ ≤ l∑
i=1

∣∣∣∣ Pi(x)

t
d
2

+ci
e−
|x|2
4t

∣∣∣∣ ≤ l∑
i=1

∣∣∣∣ K

δ
d
2

+ci

∣∣∣∣ for all (x, t) ∈ Rd × [δ,+∞)

Thus, all the partial derivatives of Ht(x) are uniformly bounded on (x, t) ∈ Rd × [δ,+∞).
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Lemma 7.2. Let δ > 0 be any real positive number. Then, Ht(·) ∈ S
(
Rd
)
for all t ∈ [δ,+∞).

PROOF

• First of all, note that Ht(x) = 1

(4πt)
d
2
e−
|x|2
4t is in C∞(Rd

) respect x for all t ≥ δ.

• Moreover, the function Ht (·) decays rapidly since lim
|x|−→+∞

∣∣∣∣ xα

(4πt)
d
2
e−
|x|2
4t

∣∣∣∣ = 0 for all t ≥ δ. Finally,

its derivatives also decay rapidly, since it holds that
(
∂
∂x

)αHt(x) =
l∑

i=1

Pi(x)

t
d
2+ci

e−
|x|2
4t (where Pi(x) is a

polynomial) for all multi-index α. Hence, lim
|x|−→+∞

∣∣∣∣xα l∑
i=1

Pi(x)

t
d
2+ci

e−
|x|2
4t

∣∣∣∣ = 0 for all t ≥ δ.

7.3 Solution of the time-dependent heat equation on Rd

Let us consider a non-bounded d-dimensional surface, which we model by Rd, and suppose we are
given an initial temperature distribution g(x) on the surface at time t = 0. We wish to determine the
temperature u(x, t) at a point x ∈ Rd at time t > 0. Hence, we need to solve the following initial-value
problem: {

ut(x, t) = 4u(x, t) x ∈ Rd, t > 0

u(x, 0) = g(x) x ∈ Rd
(7.3.1)

Now, let us suppose that the solution u and the function g satisfy the hypothesis of the theorems
proved in the previous chapters and we can apply them freely. Note that we only assume this to �nd
a possible solution of (7.3.1). Later, we will formalize it.

Let us take the Fourier transform respect x in both sides of the heat equation. On the left hand side,
we get:

[̂ut](ξ, t) =

ˆ
Rd
e−2πiξ·xut(x, t)dx =

ˆ
Rd

∂

∂t

(
e−2πiξ·xu(x, t)

)
dx =

Theor A.5.
=

∂

∂t

(ˆ
Rd
e−2πiξ·xu(x, t)dx

)
= ût(ξ, t)

On the right hand side, we apply Proposition 6.5.4. with αi = (0, .., 0, 2, 0, .., 0).

[̂4u](ξ, t) =

̂[
n∑
i=1

(
∂

∂x

)αi
u

]
(ξ, t) =

n∑
i=1

(2πiξ)αi û(ξ, t) = −4π2
n∑
i=1

ξ2
i û(ξ, t) = −4π2 |ξ|2 û(ξ, t)

Hence, �xing ξ, we get an ordinary di�erential equation of the Fourier transform of u with respect the
temporal variable. We can solve it by separation of variables:

ût(ξ, t) = −4π2 |ξ|2 û(ξ, t) =⇒ dû

û
= −4π2 |ξ|2 dt =⇒ ln (û) = −4π2 |ξ|2 t + C

=⇒ û(ξ, t) = A (ξ) e−4π2|ξ|2t

Note that the constant depends on ξ, since we have considered the ODE for a ξ �x. Hence, for each ξ
we will obtain a di�erent constant which we denote by A (ξ) . Moreover, in t = 0 we get:

û(ξ, 0) = A (ξ) =⇒ A (ξ) = ĝ(ξ)
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Finally, using Proposition 7.1. i.e. Ĥt (ξ) = e−4π2t|ξ|2 and the inverse Fourier transform we get:

û(ξ, t) = ĝ(ξ)Ĥt (ξ) = ĝ ∗ Ht (ξ) =⇒ u(x, t) = (g ∗ Ht) (x)

Theorem 7.1. Let us consider the initial-value problem (7.3.1). Assume that g ∈ C(Rd) ∩ L∞
(
Rd
)
.

Then the following statements hold:

1. The function u(x, t) = (g ∗ Ht) (x) is C∞
(
Rd × (0,+∞)

)
2. u(x, t) solves the heat equation for all x ∈ Rd and t > 0.

3. lim
(x,t)−→(x0,0)

u(x, t) = g(x0) where x, x0 ∈ Rd and t > 0.

4. If g ∈ S
(
Rd
)
, then lim

t−→0
‖u(·, t)− g‖∞ = 0 (uniformly convergence in x). Hence, if we set

u(x, 0) = g(x), it holds u ∈ C∞ (R× (0,+∞)) ∩ C0 (R× [0,+∞))

5. If g ∈ S
(
Rd
)
, then lim

t−→0
‖u(·, t)− g‖2 = 0

PROOF.

• Proof 1: if g ∈ L1
(
Rd
)
, we can apply Di�erentiation under the integral sign Theorem. In ef-

fect, let k ∈ N, α be a multi-index and δ > 0. By Lemma 7.1., there exists C > 0 such that∣∣∣( ∂k

∂tk

) (
∂
∂x

)αHt(x)
∣∣∣ < C on (x, t) ∈ Rd × [δ,+∞). Consequently,

∣∣∣[( ∂k

∂tk

) (
∂
∂x

)αHt(x− y)
]
g(y)

∣∣∣ ≤
C |g(y)| which is integrable. Then, we conclude that u ∈ C∞

(
Rd × [δ,+∞)

)
and(

∂k

∂tk

)(
∂

∂x

)α
u(x, t) =

(
∂k

∂tk

)(
∂

∂x

)α
(g ∗ Ht) (x) =

ˆ
Rd

[(
∂k

∂tk

)(
∂

∂x

)α
Ht(x− y)

]
g(y)dy

As we have shown it for any δ > 0, the result is true for (x, t) ∈ Rd× (0,+∞). If g /∈ L1
(
Rd
)
, a similar

argument can be applied but we will have to work the term Ht(x− y).

Alternatively, we can use the Theory of distributions that we introduce in Chapters 9, 10, 11 and 12

(these results can be generalized to Rd). As Ht(x) ∈ S
(
Rd
)
and the generalized function Tg of g is in

S∗
(
Rd
)
(Proposition 10.3.). Then by Proposition 11.2. we conclude that

(Ht ∗ Tg)(x) = < Tg,Ht(x− y) > =

ˆ
Rd
Ht(x− y)g(y)dy = u(x, t)

is in C∞
(
Rd
)
and

(
∂
∂x

)α
u(x, t) =

[(
∂
∂x

)αHt] ∗ Tg(x) =
´
Rd
(
∂
∂x

)αHt(x− y)g(y)dy.

• Proof 2: we shall see that ut(x, t) = 4u(x, t). Note u(x, t)= (g ∗ Ht) (x) =
´
Rd

1

(4πt)
d
2
e−
|x−y|2

4t g(y)dy.

Then, by a straightforward calculation, we get:

ut(x, t) − 4u(x, t) =

ˆ
Rd

[
∂

∂t
−4x

]
Ht (x− y) g(y)dy =

=

ˆ
Rd

(
−d

2t (4πt)
d
2

e−
|x−y|2

4t +
|x− y|2

4t2 (4πt)
d
2

e−
|x−y|2

4t − |x− y|2

4t2 (4πt)
d
2

e−
|x−y|2

4t +
d

2t (4πt)
d
2

e−
|x−y|2

4t

)
g(y)dy = 0
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• Proof 3: let x0 ∈ Rd and ε > 0. We need to show that there exists δ > 0 such that |u (x, t)− g(x0)| < ε
for |(x, t)− (x0, 0)| < δ. Note that by Proposition 6.8. K4πt(x) = Ht(x) is a good kernel. Thus, we
can write:

|u (x, t)− g(x0)| =

∣∣∣∣∣
ˆ
Rd

1

(4πt)
d
2

e−
|x−y|2

4t (g(y)− g(x0)) dy

∣∣∣∣∣
Let B(x0, γ) be the ball of radius γ centered at x0. Using the fact that g is continuous, if we take γ
su�ciently small:∣∣∣∣∣ 1

(4πt)
d
2

ˆ
B(x0,γ)

e−
|x−y|2

4t (g(y)− g(x0)) dy

∣∣∣∣∣ ≤ 1

(4πt)
d
2

ˆ
B(x0,γ)

e−
|x−y|2

4t |g(y)− g(x0)| dy <
ε

2

Now, we look at the integral over the complement of B(x0, γ). Let us take y ∈ Rd \ B(x0, γ) and x
such that |x− x0| < γ

2 . Then:

|y − x0| ≤ |y − x| + |x− x0| < |y − x| +
γ

2
< |y − x|+ 1

2
|y − x0|

Therefore, we have that |y − x0| < 2 |y − x|. Moreover |g(x)| ≤ C for all x ∈ Rd since g ∈ L∞
(
Rd
)
.

Thus ∣∣∣∣∣ 1

(4πt)
d
2

ˆ
Rd\B(x0,γ)

e−
|x−y|2

4t (g(y)− g(x0)) dy

∣∣∣∣∣ ≤ D

t
d
2

ˆ
Rd\B(x0,γ)

e−
|x0−y|2

16t dy =

=

[
y = h(z) = x0 −

√
tz

(Dh) (z) = −
√
t (Id) =⇒ |det (Dh) (y)| = t

d
2

]
= D

ˆ
Rd\B(0, γ√

t
)

e−
|z|2
16 dz

t−→0+−→ 0 where D =
2C

(4π)
d
2

Thus, there exists η > 0 such that for 0 < t < η, it holds

∣∣∣∣ 1

(4πt)
d
2

´
Rd\B(x0,γ)

e−
|x−y|2

4t (g(y)− g(x0)) dy

∣∣∣∣ < ε
2 .

Hence, taking δ = min(γ2 , η), for all x ∈ Rd and t > 0 such that |(x, t)− (x0, 0)| < δ, it holds:

|u (x, t)− g(x0)| ≤

∣∣∣∣∣ 1

(4πt)
d
2

ˆ
B(x0,γ)

e−
|x−y|2

4t (g(y)− g(x0)) dy

∣∣∣∣∣ +

+

∣∣∣∣∣ 1

(4πt)
d
2

ˆ
Rd\B(x0,γ)

e−
|x−y|2

4t (g(y)− g(x0)) dy

∣∣∣∣∣ < ε

• Proof 4: as g ∈ S
(
Rd
)
and Ht(x) = K4πt(x) , we can apply proposition 6.9. and conclude that

u(x, t) = (g ∗ Ht) (x)
t−→0−→ g (x) uniformly in x. That is:

lim
t−→0

‖u(·, t)− g‖∞ = 0

• Proof 5: let us �x t ∈ (0,+∞). Note that g, Ht ∈ S
(
Rd
)
(Lemma 7.2.), then by proposition 6.11.1

u(·, t) ∈ S
(
Rd
)
respect x and by Proposition 6.11.2 û (ξ, t) = ĝ (ξ) Ĥt (ξ) = ĝ (ξ) e−4π2t|ξ|2 . Thus

using Theorem 6.3. we get:

‖u(·, t)− g‖22 = ‖û(·, t)− ĝ‖22 =⇒
ˆ
Rd
|u (x, t)− g(x)|2 dx =

ˆ
Rd
|û (ξ, t)− ĝ(ξ)|2 dξ =

=

ˆ
Rd
|ĝ(ξ)|2

∣∣∣e−4π2t|ξ|2 − 1
∣∣∣2 dξ
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Let us take ε > 0. We note the following facts:

� Let us de�ne In =
´
|ξ|≥n|ĝ(ξ)|2

∣∣∣e−4π2t|ξ|2 − 1
∣∣∣2 dξ for n ∈ N. Note that In < +∞ since∣∣∣e−4π2t|ξ|2 − 1

∣∣∣2 ≤ 4 and ĝ ∈ S
(
Rd
)
⊂ L2

(
Rd
)
. Hence, (In)n∈N de�nes a sequence in R such

that In
n−→+∞−→ 0. Thus, there exists N > 0 such that |In| < ε

2 for all n ≥ N . In particular:

IN =

ˆ
|ξ|≥N

|ĝ(ξ)|2
∣∣∣e−4π2t|ξ|2 − 1

∣∣∣2 dξ <
ε

2

� Note that ĝ ∈ S
(
Rd
)
⊂ L∞

(
Rd
)
. Let us de�ne H(t) := sup

|ξ|≤N

(
|ĝ(ξ)|2

∣∣∣e−4π2t|ξ|2 − 1
∣∣∣2). It holds

that lim
t−→0

H(t) = 0. Hence, there exists δ > 0 such that |H(t)| < ε
2(2N)d

for all |t| < δ. Then:

ˆ
|ξ|≤N

|ĝ(ξ)|2
∣∣∣e−4π2t|ξ|2 − 1

∣∣∣2 dξ ≤ ˆ
|ξ|≤N

H(t)dξ <
ε

2 (2N)
d

(2N)
d

=
ε

2

Then, it holds that there exists δ > 0 such that for all |t| < δ:ˆ
Rd
|u (x, t)− g(x)|2 dx ≤

ˆ
|ξ|≥N

|ĝ(ξ)|2
∣∣∣e−4π2t|ξ|2 − 1

∣∣∣2 dξ +

ˆ
|ξ|≤N

|ĝ(ξ)|2
∣∣∣e−4π2t|ξ|2 − 1

∣∣∣2 dξ < ε

Thus, we conclude that lim
t−→0

‖u(·, t)− g‖2 = 0.

Lemma 7.3. Let (un)n∈N be a sequence in Ck
(
Rd
)
and let f be a function in Ck

(
Rd
)
. Assume that

(un)n∈N converges uniformly to a function u in Rd
. If

(
∂
∂x

)α
un converges uniformly to

(
∂
∂x

)α
f in

Rd for all multi-index α such that 1 ≤ |α| ≤ k, then it holds that
(
∂
∂x

)α
u =

(
∂
∂x

)α
f in Rd for all

multi-index α such that 1 ≤ |α| ≤ k. In particular, u ∈ Ck
(
Rd
)
.

PROOF.

• Step 1: �rst, we prove the lemma for a multi-index α such that |α| = 1. We will apply Theorem
A.14. Let us �x x̂ = (x1, .., xi−1, xi+1, .., xd) and de�ne ũn(xi) := un(xi, x̂), ũ(xi) := u(xi, x̂) and
f̃(xi) := f(xi, x̂). Let us take an arbitrary interval [a, b] ⊂ R. Note that:
- As (un)n∈N is a sequence in C1

(
Rd
)
, then ũn(xi) is C

1(R).

- As (un)n∈N converges uniformly to u in Rd, then (ũn) converges uniformly to ũ in [a, b]. In e�ect:

sup
xi∈[a,b]

|un(xi, x̂)− u(xi, x̂)| ≤ sup
(xi,x̂)∈Rd

|un(xi, x̂)− u(xi, x̂)| = ‖un − u‖∞
n−→∞−→ 0

- As ∂
∂xi
un converges uniformly to a function ∂

∂xi
f in Rd, then ∂

∂xi
ũn converges uniformly to ∂

∂xi
f̃ in

[a, b]. In e�ect:

sup
xi∈[a,b]

∣∣∣∣ ∂∂xiun(xi, x̂)− ∂

∂xi
f(xi, x̂)

∣∣∣∣ ≤ sup
(xi,x̂)∈Rd

∣∣∣∣ ∂∂xiun(xi, x̂)− ∂

∂xi
f(xi, x̂)

∣∣∣∣ n−→∞−→ 0

Thus, by Theorem A.14. we get that (ũn) converges uniformly to a function h ∈ C1 ((a, b)) such that
∂
∂xi
h(xi) = ∂

∂xi
f̃(xi) in [a, b]. However, we have seen that it should be h(xi) = ũ(xi). Hence we

conclude that ∂
∂xi
u(xi, x̂) = ∂

∂xi
f(xi, x̂) in [a, b]. Since we have proved that for an arbitrary interval

[a, b] and x̂ ∈ Rd−1 we conclude that:

∂

∂xi
u(xi, x̂) =

∂

∂xi
f(xi, x̂) for all (xi, x̂) ∈ Rd
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• Step 2: if we have an arbitrary multi-index such that 1 ≤ |α| ≤ k, we get by induction and applying
the argument of step 1 that

(
∂
∂x

)α
u =

(
∂
∂x

)α
f in Rd.

Theorem 7.2. Let us consider the initial-value problem (7.3.1). Assume g ∈ L2
(
Rd
)
. Then the

following statements hold:

1. The function u(x, t) = (g ∗ Ht) (x) is C∞
(
Rd × (0,+∞)

)
2. u(x, t) solves the heat equation for all x ∈ Rd and t > 0.

3. lim
t−→0

‖u(·, t)− g‖2 = 0

PROOF.

We start making the following observations:

� As S
(
Rd
)
is dense in L2

(
Rd
)
, there exists a sequence (gn)n∈N of elements in S

(
Rd
)
such that

lim
n−→∞

‖gn − g‖2 = 0.

� As S
(
Rd
)
⊂ C

(
Rd
)
∩ L∞

(
Rd
)
, Theorem 7.1. holds for each of the functions gn. We de�ne

un = gn ∗ Ht.

• Proof 1: we will apply Lemma 7.3. By Theorem 7.1. un ∈ C∞
(
Rd × (0,+∞)

)
.

1. First, we show that (un)n converges uniformly to u on Rd × (0,+∞). In e�ect, as (gn − g) and
Ht are in L2

(
Rd
)
for all t > 0, we can apply Proposition 3.3.2 (this result can be generalized to

Rd):
|un(x, t)− u(x, t)| ≤ ‖(gn − g) ∗ Ht‖∞ ≤ ‖gn − g‖2 ‖Ht‖2

n−→+∞−→ 0

for all (x, t) ∈ Rd × (0,+∞). Thus, (un)n converges uniformly to u on Rd × (0,+∞).

2. Finally, we prove that
(
∂k

∂tk

) (
∂
∂x

)α
un

Theor. 7.1.
= gn ∗

[(
∂k

∂tk

) (
∂
∂x

)αHt] converges uniformly to

g ∗
[(

∂k

∂tk

) (
∂
∂x

)αHt]. In e�ect, again as (gn − g) and
(
∂k

∂tk

) (
∂
∂x

)αHt are in L2
(
Rd
)
for all t > 0,

we can apply Proposition 3.3.2:∣∣∣∣( ∂k

∂tk

)(
∂

∂x

)α
un(x, t)− g ∗

[(
∂k

∂tk

)(
∂

∂x

)α
Ht
]

(x)

∣∣∣∣ ≤ ∥∥∥∥(gn − g) ∗
[(

∂k

∂tk

)(
∂

∂x

)α
Ht
]∥∥∥∥
∞

≤ ‖gn − g‖2

∥∥∥∥( ∂k

∂tk

)(
∂

∂x

)α
Ht
∥∥∥∥

2

n−→+∞−→ 0

Hence, as we have proved it for an arbitrary multi-index α and k ∈ N, we can apply Lemma 7.3. and
we get that u ∈ C∞(Rd × (0,+∞)) and(

∂

∂t

)k ( ∂

∂x

)α
u(x, t) = g ∗

[(
∂

∂t

)k ( ∂

∂x

)α
Ht

]
(x) = lim

n−→+∞

(
∂

∂t

)k ( ∂

∂x

)α
un(x, t) (7.3.2)

• Proof 2: we will use (7.3.2) and that un solves the heat equation. Thus:

4u(x, t) = lim
n−→+∞

4un(x, t) = lim
n−→+∞

(
∂

∂t

)
un(x, t) = ut(x, t)
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Hence, we get that u(x, t) solves the heat equation for all x ∈ Rd and for all t > 0.

• Proof 3: as Ht ∈S
(
Rd
)
⊂ L1

(
Rd
)
for all t > 0 and g − gn ∈ L2

(
Rd
)
, we can apply Lemma 3.3.

(this result can be generalized in Rd) and we get that:

‖un(·, t)− u(·, t)‖2 = ‖(g − gn) ∗ Ht‖2 ≤ ‖g − gn‖2 ‖Ht‖1 = ‖g − gn‖2

Hence, using the triangular inequality:

‖u(·, t)− g‖2 ≤ ‖u (·, t)− un (·, t)‖2 + ‖un (·, t)− gn‖2 + ‖gn − g‖2 =

= ‖un (·, t)− gn‖2 + 2 ‖gn − g‖2

Now, as by Theorem 7.1. lim
t−→0

‖un(·, t)− gn‖2 = 0, we get that lim
t−→0

‖u(·, t)− g‖2 ≤ 2 ‖gn − g‖2.
Finally, taking the limit as n −→ +∞ in this expression, we conclude:

lim
t−→0

‖u(·, t)− g‖2 = 0

7.4 Properties of the heat equation

1. Smoothness of solutions. As it can be seen from the above theorem, solutions of the heat equation

are in�nitely times di�erentiable. Even if there are singularities in the initial data (for example in

the case that the initial data is in L2
(
Rd
)
) , they are instantly �smoothed out� and the solution

u(x, t) ∈ C∞
(
Rd × (0,+∞)

)
.

2. Domain of dependence. The value of the solution at the point x ∈ Rd, time t > 0 depends on

the value of the initial data on the whole space. In other words, there is an in�nite domain of

dependence for solutions to the heat equation. This is in contrast to hyperbolic equations where

solutions are known to have �nite domains of dependence.

Example 7.1.

Let us consider an in�nite rod with an initial temperature distribution

g(x) :=

{
1

1+x2
x ∈ R \ N

0 x ∈ N

We want to determine the temperature of the rod u(x, t) at a point x ∈ R and time t > 0. It is given
by the solution of (7.3.1). Note that g ∈ L2 (R) since

´
R g(x)2dx = π

2 . Hence, by Theorem 7.2. the

solution is given by u(x, t) = (g ∗ Ht) (x) =
´
R

1
1+y2

1√
4πt
e−

(x−y)2
4t dy. In the following �gures, we show

the temperature of the rod at times t = 0, t = 0.00001, t = 1 and t = 100:
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Figure 7.4.1: t = 0 Figure 7.4.2: t = 0.00001

Figure 7.4.3: t = 1 Figure 7.4.4: t = 100

In the �gures, we can see the property of smoothness of solutions. In e�ect, the initial-condition f is not

continuous and has an in�nite number of discontinuities. However, the solution becomes immediately

in�nitely times di�erentiable, as we can see in the second �gure.

We also note that at t = 0 the rod is very hot near the origin, while the points which are far from the

origin are rather colder. However, as we can notice in �gure 3 and 4, the heat �ows from the origin to

the distant points. In fact, the rod tends to be in thermal equilibrium when t −→ +∞. This fact is

due to the Fourier's Law introduced at the beginning of the chapter.
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7.5 Inhomogeneous heat equation on Rd

Let us consider a non-bounded d-dimensional surface, which we model by Rd, and suppose we are
given an initial temperature distribution g(x) on the surface at time t = 0. Moreover, let us suppose
there is a sink or source of heat on the surface given by f(x, t). We wish to determine the temperature
u(x, t) at a point x ∈ Rd at time t > 0. Hence, we need to solve the following initial-value problem:{

ut(x, t) − 4u(x, t) = f(x, t) x ∈ Rd, t > 0

u(x, 0) = g(x) x ∈ Rd
(7.5.1)

We claim that we can use solutions of the homogeneous equation to construct solutions of the inho-
mogeneous equation.

Duhamel's Principle

Consider the following ODE: {
ut(t) + au(t) = f(t)

u(0) = g

where a is a constant. The solution of this ODE is given by u(t) = e−atg +
´ t

0 e
−a(t−s)f(s)ds. In

other words, the solution u(t) is the propagator e−at applied to the initial data, plus the propagator
�convolved� with the nonlinear term.

Thus, if we let S(t) be the operator which multiplies functions by e−at, we see that the solution of
the homogeneous problem (f(t) = 0) is given by uh(t) = S(t)g = e−atg and the solution of the
inhomogeneous problem is given by:

u(t) = S(t)g +

ˆ t

0
S(t− s)f(s)ds

This same technique will allow us to �nd a solution of the inhomogeneous heat equation. Being able
to construct solutions of the inhomogeneous problem from solutions of the homogeneous problem is
known as Duhamel's principle.

Hence, let us suppose we can solve the homogeneous problem (7.3.1) and that we can express the
solution as uh(x, t) = S(t)g(x). We claim that the solution of the inhomogeneous problem is given
by:

u(x, t) = S(t)g(x) +

ˆ t

0
S(t− s)f(x, s)ds

At least formally, we see that(
∂

∂t
−4

)
u(x, t) =

(
∂

∂t
−4

)
[S(t)g(x)] +

(
∂

∂t
−4

)[ˆ t

0
S(t− s)f(x, s)ds

]
=

= 0 + S(t− t)f(x, s) +

ˆ t

0

(
∂

∂t
−4

)
S(t− s)f(x, s)ds = S(0)f(x, s) = f(x, s)
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Solution of the Inhomogeneous Heat Equation

We have seen that the solution of the homogeneous heat equation is given by uh(x, t) = (g ∗ Ht) (x) =´
Rd Ht (x− y) g (y) dy, when g satis�es certain conditions. That is, we can think of the solution oper-

ator S(t) associated with the heat equation on Rd as de�ned by S(t)g (x) :=
´
Rd Ht (x− y) g (y) dy.

Therefore, by Duhamel's Principle, we expect that the solution of the inhomogeneous heat equation

to be given by

u(x, t) = S(t)g(x) +

ˆ t

0
S(t− s)f(x, s)ds =

ˆ
Rd
Ht (x− y) f (y) dy+

+

ˆ t

0

ˆ
Rd
Ht−s (x− y) f(y, s)dyds

We will show that up(x, t) =
´ t

0

´
Rd Ht−s (x− y) f(y, s)dyds satis�es the inhomogeneous heat equation

with zero initial data. If we can prove this, then u(x, t) = uh(x, t) + up(x, t) will solve (7.5.1).

Theorem 7.3. Assume f ∈ C2
1

(
Rd × [0,+∞)

)
(meaning f is twice continuously di�erentiable in the

spatial variables and once continuously di�erentiable in the time variable) and has compact support.

Then the following statements hold:

1. The function u(x, t) :=
´ t

0

´
Rd Ht−s (x− y) f(y, s)dyds is in C2

1

(
Rd × (0,+∞)

)
.

2. u(x, t) solves ut(x, t) − 4u(x, t) = f(x, t) for all x ∈ Rd and t > 0.

3. lim
t−→0

‖u(·, t)‖∞ = 0 (uniform convergence).

PROOF.

• Proof 1: we make a change of variables as follows: ỹ := x− y and s̃ := t− s. Then, we have:

u(x, t) :=

ˆ t

0

ˆ
Rd
Ht−s (x− y) f(y, s)dyds =

ˆ t

0

ˆ
Rd
Hs̃ (ỹ) f(x− ỹ, t− s̃)dỹds̃ (7.5.2)

Applying Lemma 7.1. and di�erentiating under the integral sign, one gets that

� ut(x, t) =
´
Rd Ht (ỹ) f(x− ỹ, 0)dỹ +

´ t
0

´
Rd Hs̃ (ỹ) ∂

∂tf(x− ỹ, t− s̃)dỹds̃ which is continuous.

� uxi(x, t) =
´ t

0

´
Rd Hs̃ (ỹ) ∂

∂xi
f(x− ỹ, t− s̃)dỹds̃ for 1 ≤ i ≤ d, which is continuous.

� uxixj (x, t) =
´ t

0

´
Rd Hs̃ (ỹ) ∂2

∂xi∂xj
f(x− ỹ, t− s̃)dỹds̃ for 1 ≤ i < j ≤ d, which is continuous.

Therefore, we conclude that u ∈ C2
1

(
Rd × (0,+∞)

)
.

• Proof 2: using the same change of variables of (7.5.2) and the relations deduced in 1, we get:(
∂

∂t
−4x

)
u(x, t) =

ˆ t

0

ˆ
Rd
Hs̃ (ỹ)

(
∂

∂t
−4x

)
f(x− ỹ, t− s̃)dỹds̃ +

ˆ
Rd
Ht (ỹ) f(x− ỹ, 0)dỹ =

=

ˆ t

0

ˆ
Rd
Hs̃ (ỹ)

(
− ∂

∂s̃
−4ỹ

)
f(x− ỹ, t− s̃)dỹds̃ +

ˆ
Rd
Ht (ỹ) f(x− ỹ, 0)dỹ =
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=

ˆ t

ε

ˆ
Rd
Hs̃ (ỹ)

(
− ∂

∂s̃
−4ỹ

)
f(x− ỹ, t− s̃)dỹds̃ +

ˆ ε

0

ˆ
Rd
Hs̃ (ỹ)

(
− ∂

∂s̃
−4ỹ

)
f(x− ỹ, t− s̃)dỹds̃ +

+

ˆ
Rd
Ht (ỹ) f(x− ỹ, 0)dỹ ≡ Iε + Jε + K

- First we check Jε. As f ∈ C2
1

(
Rd × [0,+∞)

)
and has compact support, it holds that ft, 4f are in

L∞
(
Rd
)
. Then:

|Jε| =

∣∣∣∣ˆ ε

0

ˆ
Rd
Hs̃ (ỹ)

(
− ∂

∂s̃
−4ỹ

)
f(x− ỹ, t− s̃)dỹds̃

∣∣∣∣ ≤ (‖ft‖∞ + ‖4f‖∞)

ˆ ε

0

ˆ
Rd
Hs̃ (ỹ) dỹds̃ =

= (‖ft‖∞ + ‖4f‖∞) ε
ε−→0+−→ 0

- For Iε, we use the assumption that f has compact support M ⊂ Rd. And as f ∈ C2
1

(
Rd × [0,+∞)

)
,

then f, ft, 4f, ∇f are zero in ∂M . Integrating by parts:

� ˆ t

ε

ˆ
Rd
Hs̃ (ỹ)

(
− ∂

∂s̃

)
f(x− ỹ, t− s̃)dỹds̃ Fubini

=

ˆ
Rd

ˆ t

ε

Hs̃ (ỹ)

(
− ∂

∂s̃

)
f(x− ỹ, t− s̃)ds̃dỹ =

parts
=

ˆ
Rd

[−Hs̃ (ỹ) f(x− ỹ, t− s̃)]tε dỹ +

ˆ
Rd

ˆ t

ε

∂

∂s̃
Hs̃ (ỹ) f(x− ỹ, t− s̃)ds̃dỹ

� ˆ t

ε

ˆ
Rd
Hs̃ (ỹ)

(
−4ỹ

)
f(x− ỹ, t− s̃)dỹds̃ Theor.A.12

=

ˆ t

ε

ˆ
Rd
∇ỹHs̃ (ỹ)∇ỹf(x− ỹ, t− s̃)dỹds̃ =

Theor.A.12
=

ˆ t

ε

ˆ
Rd

[
−4ỹHs̃ (ỹ)

]
f(x− ỹ, t− s̃)dỹds̃

Hence, using these two equalities, we �nally get that:

Iε =

ˆ t

ε

ˆ
Rd
Hs̃ (ỹ)

(
− ∂

∂s̃
−4ỹ

)
f(x− ỹ, t− s̃)dỹds̃ =

ˆ t

ε

ˆ
Rd

[(
∂

∂s̃
−4ỹ

)
Hs̃ (ỹ)

]
f(x− ỹ, t− s̃)dỹds̃

−
ˆ
Rd
Ht (ỹ) f(x− ỹ, 0)dỹ +

ˆ
Rd
Hε (ỹ) f(x− ỹ, t− ε)dỹ = −K +

ˆ
Rd
Hε (ỹ) f(x− ỹ, t− ε)dỹ

- Finally, we get that:(
∂

∂t
−4x

)
u(x, t) = lim

ε−→0+
(Iε + Jε + K) = lim

ε−→0+

ˆ
Rd
Hε (ỹ) f(x− ỹ, t− ε)dỹ = f(x, t)

where the last equality can be shown using the same technique we used to prove Theorem 7.1.3.

• Proof 3: as f has compact support and is continuous, then is bounded. Note that for all x ∈ Rd and
t > 0 hold:

|u(x, t)| =

∣∣∣∣ˆ t

0

ˆ
Rd
Hs̃ (ỹ) f(x− ỹ, t− s̃)dỹds̃

∣∣∣∣ ≤ ‖f‖∞ ˆ t

0

ˆ
Rd
Hs̃ (ỹ) dỹds̃ = ‖f‖∞

ˆ t

0
ds̃ = ‖f‖∞ t

Taking supremums in x ∈ Rd, we get that:

‖u(·, t)‖∞ ≤ ‖f‖∞ t
t−→0+−→ 0
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7.6 Uniqueness of solutions

Energy Method for the Heat Equation in Rd

We will use the Energy Method to show the uniqueness of solutions for the homogeneous heat equation
in the case that the initial condition is a functions in S

(
Rd
)
.

Lemma 7.4. Let g ∈ S
(
Rd
)
. Then uh(x, t) := (g ∗ Ht) (x) is a solution of the homogeneous

heat equation (7.3.1). Moreover uh ∈ C∞
(
Rd × (0,+∞)

)
∩ C0

(
Rd × [0,+∞)

)
and uh(·, t) ∈ S

(
Rd
)

uniformly in t in the sense that for any T > 0 :

sup
(x,t)∈Rd×(0,T )

|x|β
∣∣∣∣( ∂

∂x

)α
uh(x, t)

∣∣∣∣ < +∞ for any multi-index α, β (7.6.1)

PROOF.

As g ∈ S
(
Rd
)
⊂ C

(
Rd
)
∩L∞

(
Rd
)
, then by Theorem 7.1., uh ∈ C∞

(
Rd × (0,+∞)

)
∩C0

(
Rd × [0,+∞)

)
is a solution of the homogeneous heat equation. Moreover, as for each t �xed, Ht ∈ S

(
Rd
)
, then by

Proposition 6.11.1 uh(x, t) = (g ∗ Ht) (x) is in S
(
Rd
)
for each t ∈ (0,+∞) �xed and

(
∂
∂x

)α
uh(x, t) =([(

∂
∂x

)α
g
]
∗ Ht

)
(x). Finally, as |x|β

(
∂
∂x

)α
g, Ht ∈ S

(
Rd
)
⊂ L1(Rd), we can apply Proposition 3.2.2

and we get that

|x|β
∣∣∣∣( ∂

∂x

)α
uh(x, t)

∣∣∣∣ ≤ |x|β ∥∥∥∥[( ∂

∂x

)α
g

]
∗ Ht

∥∥∥∥
∞

Prop. 3.2.2
≤ |x|β

∥∥∥∥( ∂

∂x

)α
g

∥∥∥∥
∞
‖Ht‖1

≤
∥∥∥∥|x|β ( ∂

∂x

)α
g

∥∥∥∥
∞
< +∞

where we have used that ‖Ht‖1 = 1 and |x|β
(
∂
∂x

)α
g ∈ S

(
Rd
)
. As this inequality holds for all

(x, t) ∈ Rd × (0, T ), we conclude that for any T > 0 :

sup
(x,t)∈Rd×(0,T )

|x|β
∣∣∣∣( ∂

∂x

)α
uh(x, t)

∣∣∣∣ < +∞ for any multi-index α, β

Theorem 7.4. Let g ∈ S
(
Rd
)
. Consider the homogeneous initial-value problem of the heat

equation given by (7.3.1). There exists an unique solution u ∈ C∞
(
Rd × (0,+∞)

)
∩ C0

(
Rd × [0,+∞)

)
such that u(·, t) ∈ S

(
Rd
)
uniformly in t as in (7.6.1).

PROOF.

• The existence has already been proved in Lemma 7.4.

• To show uniqueness, let us suppose there exist two solutions u(x, t) and v(x, t) satisfying the condi-
tions of the statement. Let us consider w(x, t)=u(x, t)− v(x, t). It holds that w ∈ C∞

(
Rd × (0,+∞)

)
∩

C0
(
Rd × [0,+∞)

)
and w(·, t) ∈ S

(
Rd
)
uniformly in t. Moreover:{

wt(x, t) −4w(x, t) = 0 x ∈ Rd, t ∈ (0,+∞)

w(x, 0) = 0 x ∈ Rd, t = 0
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We will use the Energy Method to see that w(x, t) = 0 on Rd × [0,+∞). Let us de�ne the energy at
time t ∈ [0,+∞) by:

E(t) =

ˆ
Rd
|w(x, t)|2 dx =

ˆ
Rd
w(x, t)w(x, t)dx

The assumptions on w allow us to di�erentiate E(t) under the integral sign. We get that:

d

dt
E(t) =

ˆ
Rd

∂

∂t

(
w(x, t)w(x, t)

)
dx =

ˆ
Rd

(
wt(x, t)w(x, t) + w(x, t)wt(x, t)

)
dx =

=

ˆ
Rd

(
4w(x, t)w(x, t) + w(x, t)4w(x, t)

)
dx

Using Green's identity (Theorem A.12), we get:

d

dt
E(t) = lim

R−→+∞

ˆ
|x|≤R

(
4w(x, t)w(x, t) + w(x, t)4w(x, t)

)
dx = −2 lim

R−→+∞

ˆ
|x|≤R

∇w(x, t)∇w(x, t)dx

+ lim
R−→+∞

ˆ
|x|=R

w(x, t) (∇w (x) · n) dS + lim
R−→+∞

ˆ
|x|=R

w(x, t)
(
∇w (x) · n

)
dS

Note that as w(·, t), ∇w (·, t) · n ∈ S
(
Rd
)
for all t ∈ (0,+∞), it holds that lim

|x|−→+∞
|x|2d

∣∣∣w(x, t)
∣∣∣ =

lim
|x|−→+∞

|x|2d |∇w(x, t) · n| = 0 . Then,

1. There exists M1 > 0 such that |x|2d
∣∣∣w(x, t)

∣∣∣ < 1 for all |x| ≥M1

2. There exists M2 > R such that |x|2d |∇w(x, t) · n| < 1 for all |x| ≥M2

Let M = max{M1,M2}, applying this and Property A.1. in the Spherical coordinates section in the
appendix, we get that for all R > M∣∣∣∣∣
ˆ
|x|=R

w(x, t) (∇w (x) · n) dS

∣∣∣∣∣ ≤
ˆ
|x|=R

∣∣∣w(x, t)
∣∣∣ |∇w (x) · n| dS ≤

ˆ
|x|=R

1

|x|4d
dS =

1

R4d

ˆ
|x|=R

dS =

=
1

R4d
SA (B(0, R)) =

1

R4d
dα(d)Rd−1 =

1

R3d+1
dα(d)

R−→+∞−→ 0

Doing the same argument, we get that lim
R−→+∞

´
|x|=R w(x, t)

(
∇w (x) · n

)
dS = 0. Hence:

d

dt
E(t) = −2 lim

R−→+∞

ˆ
|x|≤R

∇w(x, t)∇w(x, t)dx = −2

ˆ
x∈R
|∇w(x, t)|2 dx ≤ 0 ∀t > 0

Hence, asE(t) ≥ 0, E(0) = 0 andE(t) is decreasing in (0,+∞), we concludeE(t) =
´
Rd |w(x, t)|2 dx =

0 for all t ≥ 0. As w is continuous, then w(x, t) = 0 for all x ∈ Rd and t ≥ 0. Thus, it holds that

u(x, t) = v(x, t) and the solution is unique.
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Maximum Principle for the Heat Equation

We will prove what is known as the maximum principle for the heat equation. We will then use this
principle to prove uniqueness of solutions to the initial-value problem for the heat equation in a more
general case than in Theorem 7.4.

Theorem 7.5. (Maximum Principle on Bounded Domains) Let Ω be an open, bounded set in

Rd. Let ΩT := Ω × (0, T ) and ΓT :=
(
Ω × {0}

)
∪ (∂Ω × (0, T ]). Assume u ∈ C2

1 (ΩT ) ∩ C
(
ΩT

)
satis�es ut −4u ≤ 0 in ΩT . Then:

max
(x,t)∈ΩT

u(x, t) = max
(x,t)∈ΓT

u(x, t)

PROOF.

Note �rst that u is a continuous function in the compact ΩT . Hence, u has a maximum in ΩT .

• Step 1: �rst we proof the Theorem for the case ut (x, t) −4u (x, t) < 0 for all (x, t) ∈ ΩT . Let us
suppose that max

(x,t)∈ΩT
u(x, t) = u(x0, t0) and x0 ∈ Ω, t0 ∈ (0, T ], i.e. (x0, t0) /∈ ΓT .

1. De�ne G(x) := u(x, t0) for x ∈ Ω. Note that, as u has a maximum at (x0, t0), then G(x) has a
maximum in x0 in the open set Ω. Consequently, 4G (x0) = 4u(x0, t0) ≤ 0.

2. De�ne F (t) := u(x0, t) for t ∈ (0, T ]. Note that, as u has a maximum at (x0, t0), then F (t) has
a maximum in t0. We have the following cases:

� If 0 < t0 < T , then F (t) has a maximum in t0 in the open interval (0, T ). Hence, F ′(t) =
ut(x0, t0) = 0.

� If t0 = T , by Taylor expansion around T and h > 0: F (T − h) = F (T ) − F ′(T )h + O(h2), or

equivalently, F ′(T ) = F (T )−F (T−h)+O(h2)
h . Note that F (T ) > F (T − h). Hence, taking h small

enough, we can conclude that F ′(T ) = ut(x0, T ) ≥ 0.

Hence, we have seen that ut (x0, t0)−4u (x0, t0) ≥ 0, which is a contradiction. Thus, the (x0, t0) ∈ ΓT .

• Step 2: let us now proof the theorem when ut (x, t)−4u (x, t) = 0 for all (x, t) ∈ ΩT . Let us de�ne
uε (x, t) = u (x, t)− εt for some ε > 0. Note that uε ∈ C2

1 (ΩT ) ∩ C
(
ΩT

)
and satis�es:

∂

∂t
uε (x, t)−4uε (x, t) = ut (x, t)− ε−4u (x, t) = −ε < 0 for all (x, t) ∈ ΩT

Hence we can apply Step 1 to uε

u (x, t)− εt = uε (x, t) ≤ max
(x,t)∈ΩT

uε(x, t) = max
(x,t)∈ΓT

uε(x, t) for all (x, t) ∈ ΩT

Moreover, as for all t ≥ 0, uε (x, t) ≤ u(x, t), then max
(x,t)∈ΓT

uε(x, t) ≤ max
(x,t)∈ΓT

u(x, t). Thus:

u (x, t) ≤ max
(x,t)∈ΩT

uε(x, t) + εt ≤ max
(x,t)∈ΓT

u(x, t) + εt for all (x, t) ∈ ΩT

And as we have shown it for an arbitrary ε > 0, we can conclude

max
(x,t)∈ΩT

u(x, t) = max
(x,t)∈ΓT

u(x, t)
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Corollary 7.1. Let Ω be an open, bounded set in Rd. Let ΓT :=
(
Ω × {0}

)
∪ (∂Ω × (0, T ]) and

ΩT := Ω × (0, T ). Assume u ∈ C2
1 (ΩT ) ∩ C

(
ΩT

)
. Then, the following statements hold:

1. If ut −4u ≥ 0 in ΩT . Then min
(x,t)∈ΩT

u(x, t) = min
(x,t)∈ΓT

u(x, t).

2. If ut−4u = 0 in ΩT . Then min
(x,t)∈ΩT

u(x, t) = min
(x,t)∈ΓT

u(x, t) and max
(x,t)∈ΩT

u(x, t) = max
(x,t)∈ΓT

u(x, t)
.

Theorem 7.6. (Maximum Principle on Rd) Suppose u ∈ C2
1

(
Rd × (0, T ]

)
∩ C

(
Rd × [0, T ]

)
with

T > 0 solves (7.3.1) and satis�es the growth estimate u (x, t) ≤ Aea|x|
2

(x ∈ Rd, 0 ≤ t ≤ T ) for
constants A, a > 0. Then:

sup
(x,t)∈Rd×[0,T ]

u(x, t) = sup
x∈Rd

g(x)

PROOF.

• Step 1: �rst, let us suppose that 4aT < 1. Therefore, there exists ε > 0 such that 4a (T + ε) < 1.
Now �x y ∈ Rd and µ > 0 and de�ne:

v(x, t) := u(x, t)− µ

(T + ε− t)
d
2

e
|x−y|2

4(T+ε−t)

Using the fact that u is a solution of the heat equation, it is straightforward to show that v is a solution
of the heat equation, that is

vt(x, t) = 4v(x, t), (x, t) ∈ Rd × (0, T ]

Now, let us �x r > 0 and de�ne U := B(y, r) , UT := U × (0, T ) and ΓT :=
(
B(y, r)× {0}

)
∪

(∂B(y, r)× (0, T ]). From Theorem 7.5., we know that:

max
(x,t)∈UT

v(x, t) = max
(x,t)∈ΓT

v(x, t)

We will show now that max
(x,t)∈ΓT

v(x, t) ≤ sup
x∈Rd

g(x). Let us consider the following cases:

1. If (x, t) ∈ B(y, r)× {0}, i.e. t = 0 and x ∈ B(y, r). Then:

v(x, 0) = u(x, 0)− µ

(T + ε)
d
2

e
|x−y|2
4(T+ε) ≤ u(x, 0) = g (x) ≤ sup

x∈Rd
g(x)

2. If (x, t) ∈ ∂B(y, r)× [0, T ], i.e. |x− y| = r and t ∈ [0, T ]. Then:

v(x, t) = u(x, t)− µ

(T + ε− t)
d
2

e
|x−y|2

4(T+ε−t) ≤ Aea|x|
2

− µ

(T + ε− t)
d
2

e
r2

4(T+ε−t) ≤ Aea(|y|+r)
2

− µ

(T + ε)
d
2

e
r2

4(T+ε)

Now, by assumption, 4a (T + ε) < 1. Therefore, 1
4(T+ε) = a+ γ for some γ > 0. Thus:

v(x, t) ≤ Aea(|y|+r)2 − µ (4 (a+ γ))
d
2 e(a+γ)r2 ≤ A1e

(a+γ)r2e−γr
2+2a|y|r − A2e

(a+γ)r2 =

= e(a+γ)r2
(
A1e

−γr2+2a|y|r −A2

)
r−→+∞−→ −∞

where we have de�ned A1 := Aea|y|
2

> 0 and A2 := µ (4 (a+ γ))
d
2 > 0. Hence, taking r

su�ciently large,
v(x, t) ≤ sup

x∈Rd
g(x)
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Hence, for r large enough we have that v(x, t) ≤ sup
x∈Rd

g(x) for all (x, t) ∈ UT . In particular, v(y, t) ≤

sup
x∈Rd

g(x) for all t ∈ [0, T ]. Note that we have made this argument for an arbitrary y ∈ Rd. Hence we

can conclude that v(y, t) ≤ sup
x∈Rd

g(x) for all t ∈ [0, T ] and for all y ∈ Rd. That is:

v(x, t) = u(x, t)− µ

(T + ε− t)
d
2

e
|x−y|2

4(T+ε−t) ≤ sup
x∈Rd

g(x)

And taking the limit as µ −→ 0+ in both sides of the inequality we conclude that u(x, t) ≤ sup
x∈Rd

g(x)

for all t ∈ [0, T ] and for all x ∈ Rd.

• Step 2: if 4aT ≥ 1. We divide the interval [0, T ] into some subintervals [0, T1], [T1, 2T1],..., where
T1 = 1

8a and perform the same calculations of the step 1 on each of these subintervals.

Theorem 7.7. (Uniqueness of solutions on Rd) Let g ∈ C
(
Rd
)
and f ∈ C

(
Rd × [0, T ]

)
with

T > 0. Then, there exists at most one solution u ∈ C2
1

(
Rd × (0, T ]

)
∩ C

(
Rd × [0, T ]

)
of (7.5.1)

satisfying the growth estimate |u (x, t)| ≤ Aea|x|
2

(x ∈ Rd, 0 ≤ t ≤ T ) for constants A, a > 0.

PROOF.

Let us suppose there exist two solutions u, v ∈ C2
1

(
Rd × (0, T ]

)
∩C

(
Rd × [0, T ]

)
satisfying the growth

estimate.

Let us consider w (x, t) = u (x, t)− v (x, t). Note that w ∈ C2
1

(
Rd × (0, T ]

)
∩ C

(
Rd × [0, T ]

)
. More-

over, w satis�es: {
wt(x, t) −4w(x, t) = 0 x ∈ Rd, t ∈ (0, T )

w(x, 0) = 0 x ∈ Rd, t = 0

Finally, w (x, t) ≤ |w (x, t)| = |u (x, t)− v (x, t)| ≤ 2Aea|x|
2

. Thus, we can apply Theorem 7.6. and

conclude that:

w(x, t) ≤ sup
(x,t)∈Rd×[0,T ]

w(x, t) = sup
x∈Rd

0 = 0

Hence, u (x, t) ≤ v (x, t) for all x ∈ Rd, 0 ≤ t ≤ T .
Now, we consider w̃ (x, t) = v (x, t)− u (x, t) and we apply exactly the same argument as above. We

get that v (x, t) ≤ u (x, t) for all x ∈ Rd, 0 ≤ t ≤ T .
Hence, we conclude u (x, t) = v (x, t) for all x ∈ Rd, 0 ≤ t ≤ T . That is, there exists at most one

solution.
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7.7 The steady-state heat equation in the upper half-plane

The equation we are now concerned with is:{
4u(x, y) = ∂2

∂x2
u(x, y) + ∂2

∂y2
u(x, y) = 0 (x, y) ∈ R2

+

u(x, 0) = g(x) x ∈ R
(7.7.1)

where we have de�ned R2
+ :=

{
(x, y) ∈ R2 : x ∈ R, y > 0

}
. The operator 4 is the Laplacian and the

above partial di�erential equation describes the steady-state heat distribution in R2
+ subject to u = g

on the boundary. We will give a probabilistic interpretation to the problem (7.7.1).

Probabilistic interpretation

Let us discretize the domain R2
+ with step h and let us consider the random walk of a particle along

the domain. Let the rule of the movement be: the particle can jump to left, right, up or down with

distance h equally likely, that is with probability 1
4 . Suppose that if the particle impacts on y = 0 at

the point (x, y), then, we win g(x) euros.

We are interested in determine the expected gain if we are in the point (x, y) ∈ R2
+. We will denote it

by u(x, y). Notice that the expected gain if we are in a point of the boundary is u(x, 0) = g(x).

Assume the particle is at a point (x, y) ∈ R2
+. As the particle can move in four directions, if we apply

conditional expectation, we get that the expected gain in (x, y) is

u(x, y) =
1

4
[u(x+ h, y) + u(x− h, y) + u(x, y + h) + u(x, y − h)]

Note that this expression can be written in this alternative way:

(u(x+ h, y) + u(x− h, y) − 2u(x, y))− (u(x, y + h) + u(x, y − h)− 2u(x, y)) = 0

Now taking Taylor expansions for u(x+ h, y), u(x− h, y), u(x, y + h) and u(x, y − h)

uxx(x, y)h2 +O(h2) + uyy(x, y)h2 +O(h2) = 0

Finally, dividing by h2 and taking the limit h −→ 0, we get the Laplace's equation

4u(x, y) = uxx(x, y) + uyy(x, y) = 0 with u(x, 0) = g(x)

The Poisson kernel for R2
+

De�nition 7.2. We de�ne the Poisson Kernel for the upper half-plane R2
+ as the family of functions

{Py(x)}y>0 (x ∈ R) de�ned by:

Py(x) :=
1

π

y

x2 + y2
with x ∈ R and y > 0
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Proposition 7.2. The Poisson Kernel for the upper half-plane satis�es the following statements:

1. Py(x) ∈ L1 (R) for all y > 0.

2.
´
R e
−2π|ξ|ye2πiξxdξ = Py(x) for all y > 0. We deduce that P̂y(ξ) = e−2π|ξ|y.

3. {Py(x)}y>0 is a family of good kernels.

PROOF.

• Proof 1: let y > 0, we note that:

ˆ
R
|Py(x)| dx =

2

π

ˆ +∞

0

y

x2 + y2
dx =

2

πy

ˆ +∞

0

1(
x
y

)2
+ 1

dx =
2

πy

[
y arctan

(
x

y

)]x=∞
x=0

=
2

πy

(yπ
2

)
= 1

• Proof 2: the formula is fairly straightforward since we can split the integral from −∞ to 0 and 0 to
+∞. Then, since y > 0:

1.
´∞

0 e−2πξye2πiξxdξ =
´∞

0 e2πiξ(x+iy)dξ =
[
e2πiξ(x+iy)

2πi(x+iy)

]∞
0

= − 1
2πi(x+iy)

2.
´ 0
−∞ e

2πξye2πiξxdξ =
´ 0
−∞ e

2πiξ(x−iy)dξ =
[
e2πiξ(x−iy)

2πi(x−iy)

]0

−∞
= 1

2πi(x−iy)

Therefore, we get:
ˆ
R
e−2π|ξ|ye2πiξxdξ =

1

2πi(x− iy)
− 1

2πi(x+ iy)
=

1

π

y

x2 + y2
= Py(x)

Moreover, we deduce that P̂y(ξ) = e−2π|ξ|y. In e�ect, as Py(x), e−2π|ξ|y ∈ L1 (R)∩C (R) for all y > 0,
we can apply the Fourier inversion Theorem (Theorem 1.1.) to the previous equality:

ˆ
R
e−2π|ξ|ye2πiξxdξ = ̂[e−2π|ξ|y

]
(x) = Py(x) =⇒ e−2π|ξ|y = P̂y(ξ)

• Proof 3: we have seen in Proof 1 that
´
R |Py(x)| dx =

´
R Py(x)dx = 1 for all y > 0. It remains to

check the last property of good kernels. Given a �xed δ > 0:

ˆ
|x|>δ

|Py(x)| dx = 2

ˆ +∞

δ

1

π

y

x2 + y2
dx =

2

π

[
arctan

(
x

y

)]x=∞

x=δ

= 1− 2

π
arctan

(
δ

y

)
Thus, we get that this quantity goes to 0 as y −→ 0.

Existence of solution

We are going to proceed as in the case of the time-dependent heat equation. First, we suppose we
can apply all theorems which we proved for the Fourier Transform. And later, we will formalize it by
stating the theorem of existence of solution.

Hence, let us take the Fourier transform of the equation 4u(x, y) = 0 respect the variable x. Using
Proposition 1.1.2 we get:

−4πξ2û(ξ, y) +
∂2

∂y2
û(ξ, y) = 0
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with the boundary condition û(ξ, 0) = ĝ (ξ), i.e. we get an ordinary di�erential equation in y (with ξ
�xed). Its general solution is:

û(ξ, y) = A (ξ) e−2π|ξ|y + B (ξ) e2π|ξ|y

If we disregard the second term because of its rapid exponential increase we �nd, after setting y = 0,
that:

û(ξ, y) = ĝ (ξ) e−2π|ξ|y

Now using that the Fourier transform of the Poisson Kernel is e−2π|ξ|y (Proposition 7.2.2) , Proposition
5.2.1 and the Fourier inversion Theorem:

û(ξ, y) = ĝ (ξ) e−2π|ξ|y = ĝ (ξ) P̂y(ξ)
Prop.5.2.1

= ̂(g ∗ Py)(ξ)

Inversion Theor.
=⇒ u(x, y) = (g ∗ Py) (x)

Theorem 7.8. (Existence of solution) Let g ∈ S (R) and let u(x, y) = (g ∗ Py) (x). Then, the
following statements hold:

1. u(x, y) is C∞ in R2
+ and 4u = 0.

2. u(x, y) −→ g(x) uniformly as y −→ 0. That is: lim
y−→0

‖u(·, y)− g‖∞ = 0. Thus, if u(x, 0) = g(x)

then u ∈ C∞
(
R2

+

)
∩ C

(
R2

+

)
.

3. u(x, y) −→ g(x) as y −→ 0 in L2 (R) . That is: lim
y−→0

‖u(·, y)− g‖2 = 0.

4. u vanishes at in�nity in the sense that u(x, y) −→ 0 as |x|+ y −→ +∞.

PROOF.

• Proof 1: applying the Di�erentiation under the integral sign Theorem, it is not di�cult to see that
u(x, y) = (g ∗ Py) (x) is C∞

(
R2

+

)
and:

∂k+l

∂xk∂yl
u(x, y) =

ˆ
R

∂k+l

∂xk∂yl
Py (t) g(x− t)dt for all k, l ∈ N

In particular, it holds that 4u(x, t) =
´
R4 (Py (t) g(x− t)) dt = 0 by straightforward calculation.

• Proof 2: as g ∈ S (R) and {Py(x)}y>0 is a family of good kernels, we can apply Proposition 6.9 and
we get that u(x, y) −→ g(x) uniformly in x as y −→ 0.

• Proof 3: as Py(x) ∈ L1 (R) for all y > 0 and g ∈ S (R) ⊂ L2 (R), then by Proposition 3.4. we get
that u(·, y) = g ∗ Py is in L2 (R) for all y > 0. Hence, applying Theorem 6.4. (Plancherel in L2 (R))
we get that:

‖u(·, y)− g‖2 = ‖û(·, y)− ĝ‖2
The rest of the proof is similar to the proof of Theorem 7.1.5.
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• Proof 4: we start showing the result when |x| −→ +∞. Note that

|u(x, y)| ≤
ˆ
R
|Py (t) g(x− t)| dt =

ˆ
|t|≤ |x|2

|Py (t) g(x− t)| dt +

ˆ
|t|≥ |x|2

|Py (t) g(x− t)| dt

- We start checking the integral when |t| ≤ |x|2 . First of all note that it holds

|x− t| ≥ |x| − |t| ≥ |x|
2

=⇒
(

1 + |x− t|2
)
|g(x− t)| ≥

(
1 +
|x|2

4

)
|g(x− t)|

Using the fact that g ∈ S (R), when we take the limit in both sides of the previous inequality we get

lim
|x|−→+∞

(
1 +
|x|2

4

)
|g(x− t)| ≤ lim

|x−t|−→+∞

(
1 + |x− t|2

)
|g(x− t)| = 0

Then, for ε = 1, there exists M > 0 such that |g(x− t)| ≤ 4
4+|x|2 for all |x| > M . Using this and that

‖Py(·)‖1 = 1 for all y > 0:

ˆ
|t|≤ |x|2

|Py (t) g(x− t)| dt ≤ 4

4 + |x|2
|x|−→+∞−→ 0

- Now, we consider the integral when |t| ≥ |x|2 . Note that Py (t) = 1
π

y
t2+y2

≤ 1
π

y

(x2 )
2
+y2

. Hence, using

this and the fact that g ∈ L1 (R), we get:

ˆ
|t|≥ |x|2

|Py(t)g(x− t)| dt ≤ 1

π

y(
x
2

)2
+ y2

‖g‖1
|x|−→+∞−→ 0

- Hence, we conclude that |u(x, y)| |x|−→+∞−→ 0 for all y > 0. On the other hand, if y −→ +∞:

|u(x, y)| ≤
ˆ
R

∣∣∣∣ 1π y

t2 + y2
g(x− t)

∣∣∣∣ dt ≤ 1

πy
‖g‖1

y−→+∞−→ 0 for all x ∈ R

Uniqueness of solution

We have proved existence of solution of the problem (7.7.1) in the case g ∈ S (R). Now, we will prove
that in fact this solution is unique. The proof relies on a basic fact about harmonic functions, which
are functions satisfying 4u = 0. The fact is that the value of an harmonic function at a point equals
its average value around any circle centered at that point.

Theorem 7.9. (Mean-value formulas for Laplace's equation) Suppose Ω is an open set in Rd.
Let u be a function in C2 (Ω) such that 4u = 0. Then, for each ball of radius R > 0 centered at

x0 ∈ Rd such that BR(x0) ⊂ Ω holds:

u(x0) =

 
BR(x0)

u(x)dx =

 
∂BR(x0)

u(x)dS(x)

where we have introduced the notation:
ffl
A f(x)dx = 1

|A|
´
A f(x)dx.
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PROOF.

• We start de�ning the following function for r ∈ (0, R+ ε):

ψ(r) :=

 
∂Br(x0)

u(x)dS(x) =
1

|∂Br(x0)|

ˆ
∂Br(x0)

u(x)dS(x) =

[
x = x0 + ry

dS(x) = rd−1dS(y)

]
=

=
1

|Sd−1|

ˆ
Sd−1

u(x0 + ry)dS(y)

Now, we di�erentiate ψ(r) and we notice that y = n (normal vector of Sd−1). Hence, using Green's
identity (Theorem A.12):

ψ
′
(r) =

1

|Sd−1|

ˆ
Sd−1

∇u(x0 + ry) · ydS(y)
Green

=
r

|Sd−1|

ˆ
B1(0)

4u(x0 + ry)dy = 0

Hence, as ψ is continuous, we get that is constant in (0, R+ ε). Moreover:

lim
r−→0

ψ(r) = lim
r−→0

 
∂Br(x0)

u(x)dS(x) = u(x0)

Consequently, we conclude that u(x0) =
ffl
∂BR(x0) u(x)dS(x).

• We note that it holds:

ˆ
BR(x0)

u(x)dx =

ˆ R

0

ˆ
∂Br(x0)

u(x)dS(x)dr =

ˆ R

0
|∂Br(x0)|u(x0)dr = |BR(x0)|u(x0)

Theorem 7.10. (Uniqueness of solution) There exists an unique solution u(x, y) of the problem

(7.7.1) with g ∈ S (R) such that u ∈ C2
(
R2

+

)
∩ C

(
R2

+

)
and vanishes at in�nity (in the sense of

Theorem 7.8.4). Consequently, this unique solution is given by u(x, y) = (g ∗ Py) (x).

PROOF.

Let us suppose there exist two solutions u and v satisfying the conditions of the statement. Let us

de�ne w(x, y) := u(x, y) − v(x, y). Then, it holds that w ∈ C2
(
R2

+

)
∩ C

(
R2

+

)
solves the problem

(7.7.1) with w(x, 0) = 0 for all x ∈ R and vanishes at in�nity.

Considering separately the real and imaginary parts of w we may suppose that u itself is real-valued.

Let us suppose u 6= v. Then there exists a point (x0, y0) ∈ R2
+ such that w (x0, y0) > 0 (otherwise we

consider w = v − u). We shall see that this leads to a contradiction.

First, since w vanishes at in�nity, we can �nd a large semi-disc of radius R, D+
R := {(x, y) : x2 + y2 ≤

R, y ≥ 0} outside of which w(x, y) ≤ 1
2w (x0, y0). Note that it implies (x0, y0) ∈ D+

R .

Next, since w is continuous inD+
R , it attains its maximumM there, so there exists a point (x1, y1) ∈ D+

R

with w(x1, y1) = M . Note that it holds that w(x, y) ≤ M in the semi-disc but also outside since

w(x, y) ≤ 1
2w(x0, y0) ≤ M

2 . Hence, w(x, y) ≤M throughout the entire upper half-plane.

Now, the mean-value property for harmonic functions implies:

w(x1, y1) =
1

2π

ˆ
∂Bρ(x1,y1)

w(x, y)dS
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whenever the circle of integration lies in the upper half-plane. In particular, this equation holds if

0 < ρ < y1. Since w(x1,y1) equals the maximum value M and w(x, y) ≤ M , it follows by continuity

that w(x, y) = M on ∂Bρ(x1, y1). In e�ect, otherwise w(x, y) ≤ M − ε on an arc of length δ > 0 on

the circle, and this would give:

M = w(x1, y1) =
1

2π

ˆ
∂Bρ(x1,y1)

w(x, y)dS ≤ M − εδ

2π
< M

which is a contradiction. Now, letting ρ −→ y1, and using the continuity of w again, we see that this

implies w(x1, 0) = M > 0 which contradicts the fact that w(x, 0) = 0 for all x ∈ R.
Hence we conclude that w(x, t) = u(x, t)− v(x, t) = 0 on R2

+ and the solution is unique.



Chapter 8

The Wave Equation

8.1 Derivation of the wave equation

Let us suppose we are given a multidimensional elastic solid modeled by U ⊂ Rd. Let us de�ne u(x, t)
as the displacement in some direction of the point x ∈ Ω at time t ∈ R. Let V represent any smooth
subregion of U . The acceleration within V is then:

d2

dt2

ˆ
V
u(x, t)dx =

ˆ
V
utt(x, t)dx

The net contact force is −
´
∂V F (x, t) · ndS where F denotes the force acting on V through ∂V and

the mass density is taken to be unity. Newton's law asserts the mass times the acceleration equals to
the net force. Hence, we get:

ˆ
V
utt(x, t)dx = −

ˆ
∂V
F (x, t) · ndS Diverg.Th.

= −
ˆ
V
div(F (x, t))dx

This identity obtains for each subregion V and so utt(x, t) = −div(F (x, t)) for all x ∈ U . For elastic
bodies, F is a function of the displacement gradient ∇u(x, t). Hence:

utt(x, t) = −div (F (∇u(x, t))) for all (x, t) ∈ U × R

For small ∇u, the linearization F (∇u) ≈ −a∇u is often appropriate and so we �nally get the wave
equation:

utt(x, t) + div(−a∇u(x, t)) = 0 =⇒ utt(x, t) − a4u(x, t) = 0 for all (x, t) ∈ U × R

Note that, rescaling the variables of the equation in the same way we did for the Heat equation, we can
suppose that a = 1. Moreover, this physical interpretation strongly suggests it will be mathematically
appropriate to specify two initial conditions, on the displacement u and the velocity ut at t = 0. We
are interested in solving the wave equation in U = Rd. Hence, we will consider the homogeneous
initial-value problem: 

utt(x, t) = 4u(x, t) (x, t) ∈ Rd × R
u(x, 0) = g(x) x ∈ Rd

ut(x, 0) = h(x) x ∈ Rd
(8.1.1)

81
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8.2 Solution in terms of Fourier Transforms

First of all, let us suppose that the solution u and the functions g and h satisfy the hypothesis of the
theorems proved in the previous chapters and that we can apply it freely like we did for the the heat
equation. Later we will formalize it.

Let us take the Fourier transform respect x in both sides of the wave equation. On the left hand, we
get:

[̂utt](ξ, t) =

ˆ
Rd
e−2πiξ·xutt(x, t)dx =

ˆ
Rd

∂2

∂t2

(
e−2πiξ·xu(x, t)

)
dx

Theor A.5.
=

=
∂2

∂t2

(ˆ
Rd
e−2πiξ·xu(x, t)dx

)
= ûtt(ξ, t)

On the right hand side, we apply Proposition 6.5.4. with αi = (0, .., 0, 2, 0, .., 0).

[̂4u](ξ, t) =

̂[
n∑
i=1

(
∂

∂x

)αi
u

]
(ξ, t) =

n∑
i=1

(2πiξ)αi û(ξ, t) = −4π2
n∑
i=1

ξ2
i û(ξ, t) = −4π2 |ξ|2 û(ξ, t)

Hence, �xing ξ, we get an ordinary di�erential equation of the Fourier transform of u with respect the
temporal variable ûtt(ξ, t) = −4π2 |ξ|2 û(ξ, t) whose solution is given by

û(ξ, t) = A (ξ) cos (2π |ξ| t) + B (ξ) sin (2π |ξ| t)

where for each ξ, A (ξ) and B (ξ) are unknown constants to be determined by the initial conditions.
In fact, taking the Fourier transform (in x) of the initial conditions yields

û(ξ, 0) = ĝ (ξ) and ût(ξ, 0) = ĥ (ξ)

We may now solve for A (ξ) and B (ξ) to obtain A (ξ) = f̂ (ξ) and 2π |ξ|B (ξ) = ĝ (ξ). Therefore we
�nd that:

û(ξ, t) = ĝ (ξ) cos (2π |ξ| t) + ĥ (ξ)
sin (2π |ξ| t)

2π |ξ|
and the solution of u is given by taking the inverse Fourier transform in the ξ variables. This formal
derivation then leads to a precise existence theorem for our problem.

Theorem 8.1. Let g and h be in S
(
Rd
)
. Then, a classical solution for the problem (8.1.1) is given

by

u(x, t) =

ˆ
Rd

[
ĝ (ξ) cos (2π |ξ| t) + ĥ (ξ)

sin (2π |ξ| t)
2π |ξ|

]
e2πix·ξdξ (8.2.1)

Moreover, u ∈ C∞
(
Rd × R

)
and u (·, t) ∈ S

(
Rd
)
for all t ∈ R.

PROOF.

• This proof is straightforward once we note that we can di�erentiate in x and t under the integral
sign (because g and h are both Schwartz functions, we can apply similar arguments as the given for
the heat equation). Since we conclude that u is C∞

(
Rd × R

)
. Now, on the one hand we di�erentiate

the exponential with respect to the x variables to get

4u(x, t) =

ˆ
Rd

[
ĝ (ξ) cos (2π |ξ| t) + ĥ (ξ)

sin (2π |ξ| t)
2π |ξ|

](
−4π2 |ξ|2

)
e2πix·ξdξ



CHAPTER 8. THE WAVE EQUATION 83

while on the other hand we di�erentiate the terms in brackets with respect to t twice to get:

∂2

∂t2
u(x, t) =

ˆ
Rd

[
−4π2 |ξ|2 ĝ (ξ) cos (2π |ξ| t) − 4π2 |ξ|2 ĥ (ξ)

sin (2π |ξ| t)
2π |ξ|

]
e2πix·ξdξ

This shows that u solves the wave equation. Now, setting t = 0, we get by the Inversion Theorem
(Theorem 6.2.)

u(x, 0) =

ˆ
Rd
ĝ (ξ) e2πix·ξdξ = g(x)

Finally di�erentiating once with respect to t, setting t = 0, and using the Fourier inversion shows that

∂

∂t
u(x, 0) =

ˆ
Rd
ĥ (ξ) e2πix·ξdξ = h(x)

Thus u also veri�es the initial conditions.

• Finally, we shall prove that u(·, t) ∈ S
(
Rd
)
for all t ∈ R. Note that

u(x, t) =

ˆ
Rd

[
ĝ (ξ) cos (2π |ξ| t) + ĥ (ξ)

sin (2π |ξ| t)
2π |ξ|

]
e2πix·ξdξ =

[
ξ = h(β) = −β

(Dh) (β) = −Id =⇒ |det (Dh) (β)| = 1

]

=

ˆ
Rd

[
ĝ (−β) cos (2π |β| t) + ĥ (−β)

sin (2π |β| t)
2π |β|

]
e−2πix·βdβ

As cos (2π |β| t) and sin(2π|β|t)
2π|β|t are in�nitely times di�erentiable, then ĝ (−β) cos (2π |β| t) and

ĥ (−β) sin(2π|β|t)
2π|β| are in S

(
Rd
)
for all t ∈ R. Thus, u (·, t) can be seen as the Fourier Transform of a

function in S
(
Rd
)
for all t ∈ R. Then, by Theorem 6.1., we conclude that u(·, t) ∈ S

(
Rd
)
for all t ∈ R.

Lemma 8.1. Let a and b be complex numbers and α be real. Then:

|a cos (α) + b sin (α)|2 + |−a sin (α) + b cos (α)|2 = |a|2 + |b|2

PROOF.

Let us de�ne e1 := (cos(α), sin(α)), e2 := (− sin (α) , cos (α)) and Z := (a, b). As {e1, e2} form
an orthonormal basis, we can write Z = Ze1 + Ze2 where Ze1 := 〈Z, e1〉 e1 and Ze2 := 〈Z, e2〉 e2

respectively. Thus, by Pythagorean theorem it holds:

|Z|2 = |Ze1 |
2 + |Ze2 |

2 = |〈Z, e1〉|2 + |〈Z, e2〉|2 =⇒ |a|2 + |b|2 =

= |a cos (α) + b sin (α)|2 + |−a sin (α) + b cos (α)|2

Theorem 8.2. Let us de�ne the energy of a solution of (8.1.1) as:

E(t) =

ˆ
Rd

(∣∣∣∣∂u∂t (x, t)

∣∣∣∣2 +

∣∣∣∣ ∂u∂x1
(x, t)

∣∣∣∣2 + ... +

∣∣∣∣ ∂u∂xd (x, t)

∣∣∣∣2
)
dx (8.2.2)

If u is the solution given in Theorem 8.1. by (8.2.1), then E(t) is conserved in time, that is,

E(t) = E(0) for all t ∈ R.
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PROOF.

Note �rst that û(ξ, t) = ĝ (ξ) cos (2π |ξ| t) + ĥ (ξ) sin(2π|ξ|t)
2π|ξ| . As u (·, t) ∈ S

(
Rd
)
for all t ∈ R, then

∂
∂xj

u (·, t) and ∂
∂tu (·, t) = 4u (·, t) are in S

(
Rd
)
for all t ∈ R. Hence, we can apply Plancherel Theorem

in S
(
Rd
)
(Theorem 6.3.)

ˆ
Rd

∣∣∣∣ ∂∂tu(x, t)

∣∣∣∣2 dx =

ˆ
Rd

∣∣∣∣ ∂∂t û(ξ, t)

∣∣∣∣2 dξ =

ˆ
Rd

∣∣∣−2π |ξ| ĝ (ξ) sin (2π |ξ| t) + ĥ (ξ) cos (2π |ξ| t)
∣∣∣2 dξ

ˆ
Rd

d∑
j=1

∣∣∣∣ ∂∂xj u(x, t)

∣∣∣∣2 dx =

ˆ
Rd

d∑
j=1

∣∣∣∣∣ ̂[ ∂

∂xj
u

]
(ξ, t)

∣∣∣∣∣
2

dξ =

ˆ
Rd

∣∣∣2π |ξ| ĝ (ξ) cos (2π |ξ| t) + ĥ (ξ) sin (2π |ξ| t)
∣∣∣2 dξ

We apply Lemma 8.1. with a = 2π |ξ| ĝ (ξ), b = ĥ (ξ) and α = 2π |ξ| t, and we get:

E(t) =

ˆ
Rd

∣∣∣∣ ∂∂tu(x, t)

∣∣∣∣2 dx +

ˆ
Rd

d∑
j=1

∣∣∣∣ ∂∂xj u(x, t)

∣∣∣∣2 dx =

ˆ
Rd

(
4π2 |ξ|2 |ĝ (ξ)|2 +

∣∣∣ĥ (ξ)
∣∣∣2) dξ

We note that E(t) is independent of the variable t. Hence, we conclude that the energy remains
constant in time and in particular, E(t) = E(0) for all t ∈ R.

8.3 Solution by spherical means

The drawback with the formula (8.2.1), which does give the solution of the wave equation, is that it

is quite indirect, involving the calculation of the Fourier transforms of g and h, and then the inverse

Fourier transform. However, for every dimension d there is a more explicit formula. Generally, the

formula is �elementary� whenever d is odd, and more complicated when d is even.

The overall plan will be to study �rst the average of u over certain spheres in Rd. These averages

turn out to solve the Euler-Poisson-Darboux equation. Later we will transform this equation into the

usual one-dimensional wave equation, which has a simple solution. Finally, we will be able to �nd the

solution u.

Solution for d = 1, d'Alembert's formula

Lemma 8.2. Let us consider the nonhomogeneous initial-value problem of the transport equation in

Rd given by {
ut (x, t) + b · ∇u(x, t) = f(x, t) in Rd × (0,+∞)

u(x, 0) = g(x) on Rd × {t = 0}

where b ∈ Rd, g ∈ C1(Rd) and f ∈ C1(Rd × [0,+∞)). Then the solution is given by

u(x, t) = g(x− tb) +

ˆ t

0
f(x + (s− t)b, s)ds

for all x ∈ Rd and t ≥ 0 and is in C1
(
Rd × [0,+∞)

)
.
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PROOF.

Let us parameterize the line through (x, t) ∈ Rd× (0,+∞) with direction (b, 1) by Γ := {(x+sb, t+s)
s.t. s > −t}. And let us de�ne z(s) := u(x + sb, t+ s). Hence:

ż(s) = ∇u(x + sb, t+ s) · b + ut(x + sb, t+ s) = f(x + sb, t+ s)

Consequently, integrating between 0 and −t in both sides of the equality

z(0)− z(−t) =

ˆ 0

−t
f(x + sb, t+ s)ds =⇒ u(x, t) = g(x− tb) +

ˆ t

0
f(x + (s− t)b, s)ds

Moreover u ∈ C1
(
Rd × [0,+∞)

)
since g ∈ C1(Rd) and f ∈ C1(Rd × [0,+∞)).

D'Alembert's formula Now, we focus our attention on the initial-value problem for one-dimensional
wave equation in R: 

utt(x, t) = 4u(x, t) (x, t) ∈ R× (0,+∞)

u(x, 0) = g(x) x ∈ R
ut(x, 0) = h(x) x ∈ R

(8.3.1)

We will derive a formula for u in terms of g and h. First, we will do it assuming g and h are smooth
enough and later we will formalize the result. We start noticing that the wave equation can be �factored�
as (

∂

∂t
+

∂

∂x

)(
∂

∂t
− ∂

∂x

)
u(x, t) = utt(x, t) + uxx(x, t) = 0

De�ning v(x, t) :=
(
∂
∂t −

∂
∂x

)
u(x, t) we get that vt(x, t) + vx(x, t) = 0, i.e. v satis�es the homogeneous

one-dimensional transport equation with b = 1. Hence, for an arbitrary initial condition a(x) and using

Lemma 8.2. we get that v(x, t) = a(x− t).
But, by the de�nition of v, we get ut(x, t) − ux(x, t) = a(x − t), i.e. u satis�es the inhomogeneous

one-dimensional transport equation with b = −1. Hence, for an arbitrary initial condition b(x) and

again by Lemma 8.2. we get that

u(x, t) = b(x+ t) +

ˆ t

0
a(x+ (t− s)− s)ds = b(x+ t) +

1

2

ˆ x+t

x−t
a(y)dy

Now, we will use the initial conditions to compute a and b. The �rst initial condition gives that

g(x) = u(x, 0) = b(x). The second initial condition gives

ut(x, t) = b
′
(x+ t) +

1

2
a(x+ t) +

1

2
a(x− t) =⇒ h(x) = ut(x, 0) = g

′
(x) + a(x)

=⇒ a(x) = h(x)− g′(x)

Hence, using the the expressions of a and b we get the d'Alembert's formula:

u(x, t) = g(x+ t) +
1

2

ˆ x+t

x−t

(
h(y)− g′(y)

)
dy =

1

2
(g(x+ t) + g(x− t)) +

1

2

ˆ x+t

x−t
h(y)dy (8.3.2)

Theorem 8.3. (Solution of wave equation d = 1) Assume g ∈ C2 (R) and h ∈ C1 (R). Let

us de�ne u given by d'Alembert's formula (8.3.2). Then, u solves the initial-value problem for the

one-dimensional wave equation (8.3.1) and is in C2 (R× [0,+∞)).
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PROOF. The proof is a straightforward calculation similar to the proofs we did for the heat equation.

Remark 8.1. In general, it holds that if g ∈ Ck (R) and h ∈ Ck−1 (R), then u ∈ Ck (R× [0,+∞)),
but is not in general smoother. Thus, the wave equation does not cause instantaneous smoothing of the

initial data, as does the heat equation.

Spherical means

Let us take d ≥ 2 and m ≥ 2. Let us suppose u ∈ Cm
(
Rd × (0,+∞)

)
solves the initial-value problem

of the wave equation: 
utt(x, t)−4u(x, t) = 0 in Rd × (0,+∞)

u(x, 0) = g(x) x ∈ Rd

ut(x, 0) = h(x) x ∈ Rd
(8.3.3)

with g ∈ Cm(Rd) and h ∈ Cm−1(Rd). We intend to derive an explicit formula of u in terms of g and
h as we did for the one-dimensional case. We de�ne for x ∈ Rd �xed, for all t > 0 and r > 0:

U(x; r, t) :=

 
∂B(x,r)

u(y, t)dS(y) , G(x; r) :=

 
∂B(x,r)

g(y)dS(y) and H(x; r) :=

 
∂B(x,r)

h(y)dS(y)

Lemma 8.3. (Euler-Poisson-Darboux equation) Fix x ∈ Rd. Then U ∈ Cm
(
R+ × [0,+∞)

)
and 

Utt(x; r, t)− Urr(x; r, t)− d−1
r Ur(x; r, t) = 0 (r, t) ∈ R+ × (0,+∞)

U(x; r, 0) = G(x; r) r ∈ R+

Ut(x; r, 0) = H(x; r) r ∈ R+

(8.3.4)

PROOF.

• As u(x, t) ∈ Cm
(
Rd × [0,+∞)

)
, it is clear from Theorem A.5. that U(x; r, t) ism times continuously

di�erentiable respect the variable t. Moreover, as lim
r−→0+

U(x; r, t) = u(x, t), we see that U(x; r, t) ∈

C
(
R+ × [0,+∞)

)
. Now, note that doing exactly the same argument as we did in the proof of Theorem

7.9. we get:

Ur(x; r, t) =
r

dα(d)

ˆ
B(0,1)

4u(x + rz, t)dz (8.3.5)

and we see that lim
r−→0+

Ur(x; r, t) = 0. Consequently, we conclude that Ur(x; r, t) ∈ C
(
R+ × [0,+∞)

)
.

We next di�erentiate Ur and we get

Urr(x; r, t) =
1

dα(d)

ˆ
B(0,1)

4u(x + rz, t)dz +
r

dα(d)

ˆ
B(0,1)

∇(4u(x + rz, t)) · zdz (8.3.6)

and we see that lim
r−→0+

Urr(x; r, t) = 1
dα(d)

´
B(0,1)4u(x, t)dz = 4u(x,t)

d . Thus, Urr ∈ C
(
R+ × [0,+∞)

)
.

Similarly, we can compute Urrr, etc., and we verify that U ism times continuously di�erentiable respect

r. Thus, we get that U(x; r, t) ∈ Cm
(
R+ × [0,+∞)

)
.
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• Now let us work the expression (8.3.6). We de�ne the function v(z, t) = 1
2

(
z2

1 + z2
2 + ...+ z2

d

)
. Note

that ∇v(z, t) = z and 4v(z, t) = d. Hence, using Green's identity (Theorem A.12):ˆ
B(0,1)

r∇(4u(x+rz, t))·zdz =

ˆ
B(0,1)

r∇(4u(x+rz, t))·∇v(z, t)dz
Green Id.

= −
ˆ
B(0,1)

4u(x+rz, t)4v(z, t)dz+

+

ˆ
∂B(0,1)

4u(x+rz, t) (∇v(z, t) · z) dS(z) = −d
ˆ
B(0,1)

4u(x+rz, t)dz +

ˆ
∂B(0,1)

4u(x+rz, t)dS(z) (8.3.7)

Hence, substituting (8.3.7) in (8.3.6) we get

Urr(x; r, t) =

(
1

d
− 1

)
1

α(d)

ˆ
B(0,1)

4u(x + rz, t)dz +
1

dα(d)

ˆ
∂B(0,1)

4u(x + rz, t)dS(z) (8.3.8)

Finally, using the expressions of Ur and Urr given by (8.3.5) and (8.3.8) we conclude that U satis�es
the following equation:

Urr(x; r, t) +
d− 1

r
Ur(x; r, t) =

1

dα(d)

ˆ
∂B(0,1)

4u(x + rz, t)dS(z) =

=
1

dα(d)

ˆ
∂B(0,1)

utt(x + rz, t)dS(z) = Utt(x; r, t)

• It remains to show that U satis�es the initial conditions of the problem (8.3.4). But using that u
satis�es the initial conditions of the problem (8.3.3), we immediately get

U(x; r, 0) =

 
∂B(x,r)

u(y, 0)dS(y) =

 
∂B(x,r)

g(y)dS(y) = G(x; r)

Ut(x; r, 0) =

 
∂B(x,r)

ut(y, 0)dS(y) =

 
∂B(x,r)

h(y)dS(y) = H(x; r)

8.4 Solution for d = 3: the Kirchho�'s Formula

Let us take d = 3 and suppose u ∈ C2
(
R3 × [0,+∞)

)
solves the problem (8.3.3) with g ∈ C2

(
R2
)

and h ∈ C1 (R). We recall de�nitions U, G, H and then we set Ũ(x; r, t) := rU(x; r, t), G̃(x; r, t) :=
rG(x; r, t) and H̃(x; r, t) = rH(x; r, t).

Lemma 8.4. Fix x ∈ R3. Then, function Ũ solves the one-dimensional wave equation on the

half-line with Dirichlet boundary condition
Ũtt(x; r, t)− Ũrr(x; r, t) = 0 (r, t) ∈ R+ × (0,+∞)

Ũ(x; r, 0) = G̃(x; r) r ∈ R+

Ũt(x; r, 0) = H̃(x; r) r ∈ R+

Ũ(x; 0, t) = 0 t ∈ (0,+∞)

(8.4.1)

Moreover,

Ũ(x; r, t) =


1
2

(
G̃(x; r + t) + G̃(x; r − t)

)
+ 1

2

´ r+t
r−t H̃(x; y)dy if r ≥ t ≥ 0

1
2

(
G̃(x; r + t)− G̃(x; t− r)

)
+ 1

2

´ r+t
−r+t H̃(x; y)dy if 0 ≤ r ≤ t

(8.4.2)

PROOF.
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• Note that using Lemma 8.3. it holds: Ũrr = (rU)rr = 2Ur + rUrr = rUtt = Ũtt in R+ × (0,+∞).

Moreover Ũ(x; r, 0) = rU(x; r, 0) = rG(x; r) = G̃(x; r) and similarly Ũt(x; r, 0) = H̃(x; r). Finally,
Ũ(x; 0, t) = 0U(x; 0, t) = 0.

• To derive the solution of the equation (8.4.1), we will use a re�ection method. Let us de�ne the odd
re�ections of Ũ , G̃ and H̃

Ũref (x; r, t) =

{
Ũ(x; r, t) if r ≥ 0 , t ≥ 0

−Ũ(x;−r, t) if r ≤ 0 , t ≥ 0
, G̃ref (x; r) =

{
G̃(x; r) if r ≥ 0

−G̃(x;−r) if r ≤ 0

and H̃ref (x; r) =

{
H̃(x; r) if r ≥ 0

−H̃(x;−r) if r ≤ 0

Then, problem (8.4.1) becomes
(
Ũref

)
tt

(x; r, t)−
(
Ũref

)
rr

(x; r, t) = 0 (r, t) ∈ R× (0,+∞)

Ũref (x; r, 0) = G̃ref (x; r) r ∈ R(
Ũref

)
t
(x; r, 0) = H̃ref (x; r) r ∈ R

Hence, we can apply d'Alembert's formula (8.3.2) and we get

Ũref (x; r, t) =
1

2

(
G̃ref (x; r + t) + G̃ref (x; r − t)

)
+

1

2

ˆ r+t

r−t
H̃ref (x; y)dy

Finally, recalling the de�nitions of Ũref , G̃ref and H̃ref , we can transform this expression to read for
r ≥ 0 and t ≥ 0 and we get the expression (8.4.2).

Kirchho�'s formula Now, note that u(x, t) = lim
r−→0+

U(x; r, t). Hence, using Lemma 8.4.

u(x, t) = lim
r−→0+

Ũ(x; r, t)

r
= lim

r−→0+

[
1

2r

(
G̃(x; r + t)− G̃(x; t− r)

)
+

1

2r

ˆ r+t

−r+t
H̃(x; y)dy

]
=

= G̃
′
(x; t) + H̃(x; t)

Hence, recalling the de�nitions of G̃ and H̃ we deduce

u(x, t) =
∂

∂t

(
t

 
∂B(x,t)

g(y)dS(y)

)
+ t

 
∂B(x,t)

h(y)dS(y) (8.4.3)

But notice that making a change of variables we get that
 
∂B(x,t)

g(y)dS(y) =

 
∂B(0,1)

g(x + tz)dS(z) =⇒ ∂

∂t

( 
∂B(x,t)

g(y)dS(y)

)
=

=

 
∂B(0,1)

∇g(x + tz) · zdS(z) =

 
∂B(x,t)

∇g(y) ·
(
y − x

t

)
dS(y)

Returning to (8.4.3), the Kirchho�'s formula for the solution of the initial-value problem (8.3.3) in
three dimensions is

u(x, t) =

 
∂B(x,t)

(th(y) + g(y) + ∇g(y) · (y − x)) dS(y) (8.4.4)
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8.5 Solution for d = 2: the Poisson's Formula

We will use Kircho�'s formula for the solution of the wave equation in three dimensions to derive the

solution of the wave equation in two dimensions. This technique is known as the method of descent.

Let us consider the initial-value problem (8.3.3) for n = 2 and simply regard it as a problem for n = 3,

in which the third variable x3 does not appear.

Indeed, let us assume u ∈ C2(R2 × [0,+∞)) solves (8.3.3) for n = 2. We will denote with a bar ·̄ the
extensions we will do to R3. Hence, let us de�ne

u (x1, x2, x3, t) := u(x1, x2, t), g (x1, x2, x3) := g(x1, x2) and h (x1, x2, x3) := h(x1, x2)

Then, as u satis�es (8.3.3) then
ūtt (x1, x2, x3, t) −4u (x1, x2, x3, t) = 0 in R3 × (0,+∞)

ū (x1, x2, x3, 0) = g (x1, x2, x3) on R3 × {t = 0}
ūt (x1, x2, x3, 0) = h (x1, x2, x3) on R3 × {t = 0}

Let us write x := (x1, x2) ∈ R2, x̄ = (x1,x2, 0) ∈ R3, let B (x̄, t) be the ball in R3 with center x̄ and

radius t > 0 and let dS be the two-dimensional surface measure on ∂B (x̄, t). Applying Kirchho�'s

formula in the form (8.4.3), we get

u(x, t) = ū(x, t) =
∂

∂t

(
t

 
∂B(x,t)

g(y)dS(y)

)
+ t

 
∂B(x,t)

h(y)dS(y) (8.5.1)

Now, note that we can simplify this expression by observing that:

 
∂B(x,t)

g(y)dS(y) =
1

4πt2

ˆ
∂B(x,t)+

g(y1, y2, 0)dS(y) +
1

4πt2

ˆ
∂B(x,t)−

g(y1, y2, 0)dS(y) (8.5.2)

where we have divided ∂B(x, t) in the superior hemisphere ∂B(x, t)+ and the inferior hemisphere
∂B(x, t)−. Now, we parameterize ∂B(x, t)+ and ∂B(x, t)− respectively by

γ+(z1, z2) =

(
z1, z2,

√
t2 − (z1 − x1)

2 − (z2 − x2)
2

)

γ−(z1, z2) =

(
z1, z2,−

√
t2 − (z1 − x1)

2 − (z2 − x2)
2

)
where z := (z1, z2) ∈ B(x, t). As

∣∣∣∂γ±(z)
∂z1

× ∂γ±(z)
∂z2

∣∣∣ = t√
t2−|z−x|2

, we get

ˆ
∂B(x,t)+

g(y1, y2, 0)dS(y) =

ˆ
B(x,t)

g(γ+(z))

∣∣∣∣∂γ+(z)

∂z1
× ∂γ+(z)

∂z2

∣∣∣∣ dz =

ˆ
B(x,t)

g(z)
t√

t2 − |z− x|2
dz

ˆ
∂B(x,t)−

g(y1, y2, 0)dS(y) =

ˆ
B(x,t)

g(γ−(z))

∣∣∣∣∂γ−(z)

∂z1
× ∂γ−(z)

∂z2

∣∣∣∣ dz =

ˆ
B(x,t)

g(z)
t√

t2 − |z− x|2
dz
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Thus, substituting this in (8.5.2), we get

 
∂B(x,t)

g(y)dS(y) =
1

2πt

ˆ
B(x,t)

g(z)
1√

t2 − |z− x|2
dz =

[
z = T (y) = x + ty

(DT ) (y) = tId =⇒ |det (DT ) (y)| = t2

]

=
1

2π

ˆ
B(0,1)

g(x + ty)
1√

1− |y|2
dy (8.5.3)

The previous expression also holds for the function h, hence

 
∂B(x,t)

h(y)dS(y) =
1

2πt

ˆ
B(x,t)

h(z)
1√

t2 − |z− x|2
dz =

t

2

 
B(x,t)

h(z)
1√

t2 − |z− x|2
dz

Finally, using the expression deduced in (8.5.3), we can write

∂

∂t

(
t

 
∂B(x,t)

g(y)dS(y)

)
=

1

2π

ˆ
B(0,1)

g(x + ty)
1√

1− |y|2
dz +

t

2π

ˆ
B(0,1)

∇g(x + ty) · y 1√
1− |y|2

dy =

y= 1
t (z−x)=

t

2

 
B(x,t)

g(z)
1√

t2 − |z− x|2
dz +

t

2

 
B(x,t)

∇g(z) · (z− x)
1√

t2 − |z− x|2
dz

Thus, formula (8.5.1) becomes the Poisson's formula for the solution of the initial-value of the wave
equation in two dimensions

u(x, t) =
1

2

 
B(x,t)

tg(z) + t∇g(z) · (z− x) + t2h(z)√
t2 − |z− x|2

dz (8.5.4)

8.6 Solution of the wave equation for odd dimensions

We will generalize the ideas we used to �nd the Kirchho�'s formula in the case d = 3. We will solve
the Euler-Poisson-Darboux PDE for odd d ≥ 3. In this section, we set d = 2k+1 for k ≥ 1. Moreover,
we suppose that u ∈ Ck+1

(
Rd × [0,+∞)

)
solves the initial-value problem (8.3.3). Let us consider

U(x; r, t) :=

 
∂B(x,r)

u(y, t)dS(y) , G(x; r) :=

 
∂B(x,r)

g(y)dS(y) and H(x; r) :=

 
∂B(x,r)

h(y)dS(y)

Note that by Lemma 8.3. the function U ∈ Ck+1
(
R+ × [0,+∞)

)
for each x ∈ Rd �xed. Hence, let us

�x x ∈ Rd and de�ne for r > 0 and t ≥ 0
Ũ(r, t) :=

(
1
r
∂
∂r

)k−1 [
r2k−1U(x; r, t)

]
G̃(r) :=

(
1
r
∂
∂r

)k−1 [
r2k−1G(x; r)

]
H̃(r) :=

(
1
r
∂
∂r

)k−1 [
r2k−1H(x; r)

]
Note that it holds that Ũ(r, 0) = G̃(r) and Ũt(r, 0) = H̃(r).

Lemma 8.5. Let φ : R −→ R be Ck+1 (R). Then, the following identities hold for k = 1, 2, ...:
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1.
(
d2

dr2

) (
1
r
d
dr

)k−1 [
r2k−1φ (r)

]
=
(

1
r
d
dr

)k [
r2k d

drφ(r)
]

2.
(

1
r
d
dr

)k−1 [
r2k−1φ (r)

]
=
k−1∑
j=0

βkj r
j+1 dj

drj
φ(r), where βkj (j = 0, ..., k − 1) are independent of φ.

3. βk0 = 1 · 3 · 5 · · · (2k − 1)

PROOF. The proof can be done by induction and can be found in [Evans2010].

Lemma 8.6. The function Ũ solves the one-dimensional wave equation on the half-line with

Dirichlet boundary conditions
Ũtt(r, t)− Ũrr(r, t) = 0 (r, t) ∈ R+ × (0,+∞)

Ũ(r, 0) = G̃(r) and Ũt(r, 0) = H̃(r) r ∈ R+

Ũ(0, t) = 0 t ∈ (0,+∞)

PROOF.

We combine Lemma 8.3. and the identities provided by Lemma 8.5. Note that

Ũrr(r, t) =

(
∂2

∂r2

)(
1

r

∂

∂r

)k−1 [
r2k−1U(x; r, t)

] Lemma 8.5.1
=

(
1

r

∂

∂r

)k [
r2kUr(x; r, t)

]
=

=

(
1

r

∂

∂r

)k−1 [
r2k−1Urr(x; r, t) + 2kr2k−2Ur(x; r, t)

]
=

(
1

r

∂

∂r

)k−1 [
r2k−1

(
Urr(x; r, t) +

n− 1

r
Ur(x; r, t)

)]
Lemma 8.3.

=

(
1

r

∂

∂r

)k−1 [
r2k−1Utt(x; r, t)

]
= Ũtt(r, t)

It is clear by de�nition that Ũ(r, 0) = G̃(r) and Ũt(r, 0) = H̃(r). Finally, as U(x; 0, t) = u(x, t),
we have by Lemma 8.5.2

Ũ(0, t) =

(
1

r

∂

∂r

)k−1 [
r2k−1U(x; 0, t)

]
=
k−1∑
j=0

βkj r
j+1 ∂

j

∂rj
U(x; 0, t) =

k−1∑
j=0

βkj r
j+1 ∂

j

∂rj
u(x, t) = 0

Derivation of the solution

We have seen in Lemma 8.6. that Ũ solves the the one-dimensional wave equation on the half-line
with Dirichlet boundary conditions. In Lemma 8.4. we saw that the solution is given by

Ũ(r, t) =


1
2

(
G̃(r + t) + G̃(r − t)

)
+ 1

2

´ r+t
r−t H̃(y)dy if r ≥ t ≥ 0

1
2

(
G̃(r + t)− G̃(t− r)

)
+ 1

2

´ r+t
−r+t H̃(y)dy if 0 ≤ r ≤ t

(8.6.1)

Moreover, Lemma 8.5.2. asserts Ũ(r, t) =
k−1∑
j=0

βkj r
j+1 ∂j

∂rj
U(x; r, t). Consequently, Ũ(r,t)

βk0 r
= U(x; r, t) +

+
k−1∑
j=1

βkj
βk0
rj ∂

j

∂rj
U(x; r, t). Recall that u(x, t) = lim

r−→0+
U(x; r, t). Thus

lim
r−→0

Ũ(r, t)

βk0r
= lim

r−→0
U(x; r, t) + lim

r−→0

k−1∑
j=1

βkj

βk0
rj
∂j

∂rj
U(x; r, t) = u(x, t)
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Then, using the expression of Ũ(r, t) given by the solution (8.6.1)

u(x, t) = lim
r−→0

Ũ(r, t)

βk0r
=

1

βk0
lim
r−→0

[
1

2r

(
G̃(r + t)− G̃(t− r)

)
+

1

2r

ˆ r+t

−r+t
H̃(y)dy

]
=

=
1

βk0

[
G̃
′
(t) + H̃(y)

]
Hence, recalling the de�nitions of G̃ and H̃ and recalling that d = 2k + 1, we get the representation
formula for x ∈ Rd and t > 0

u(x, t) =
1

γd

((
∂

∂t

)(
1

t

∂

∂t

) d−3
2

[
td−2

 
∂B(x,t)

g (y) dS (y)

]
+

(
1

t

∂

∂t

) d−3
2

[
td−2

 
∂B(x,t)

h (y) dS (y)

])
(8.6.2)

where d is odd and γd = 1 · 3 · 5 · · · (d− 2).

Theorem 8.4. (Solution of wave equation in odd dimensions) Assume d is an odd integer,

d ≥ 3, and suppose g ∈ Cm+1
(
Rd
)
and h ∈ Cm

(
Rd
)
, for m = d+1

2 . De�ne u by (8.6.2). Then, the

following statements hold:

1. u ∈ C2
(
Rd × [0,+∞)

)
2. utt (x, t) − 4u(x, t) = 0 in Rd × (0,+∞)

3. lim
(x,t)−→(x0,0)

u(x, t) = g(x0) and lim
(x,t)−→(x0,0)

ut(x, t) = h(x0) for each point x0 ∈ Rd.

PROOF.

• Proof 1: note �rst that making a change of variables we can write (8.6.2) as

u(x, t) =
1

γd

((
∂

∂t

)(
1

t

∂

∂t

) d−3
2

[
td−2

 
∂B(0,1)

g (x+ tz) dS (z)

]
+

(
1

t

∂

∂t

) d−3
2

[
td−2

 
∂B(0,1)

h (x+ tz) dS (z)

])
(8.6.3)

From this expression, we immediately get

ut(x, t) =
1

γd

((
∂

∂t

)2(
1

t

∂

∂t

) d−3
2

[
td−2

 
∂B(0,1)

g (x+ tz) dS

]
+

(
∂

∂t

)(
1

t

∂

∂t

) d−3
2

[
td−2

 
∂B(0,1)

h (x+ tz) dS

])
(8.6.4)

utt(x, t) =
1

γd

((
∂

∂t

)3(
1

t

∂

∂t

) d−3
2

[
td−2

 
∂B(0,1)

g (x+ tz) dS

]
+

(
∂

∂t

)2(
1

t

∂

∂t

) d−3
2

[
td−2

 
∂B(0,1)

h (x+ tz) dS

])

These three functions are continuous in Rd × (0,+∞). In e�ect, the higher order of partial derivative

respect t which appears in g is d−3
2 +3 = m+1 and we know that g ∈ Cm+1

(
Rd
)
. Similarly, the higher

order of partial derivative respect t that appears in h is d−3
2 + 2 = m and we know that h ∈ Cm

(
Rd
)
.

Therefore, we conclude that u is two times continuously di�erentiable respect t in Rd × (0,+∞).

Furthermore, using the di�erentation under the integral sign theorem in expressions (8.6.3) and

(8.6.4), we see that u and ut are continously di�erentiable respect x. Thus, we conclude that u ∈
C2
(
Rd × (0,+∞)

)
. In proof 3 we will see that in fact u ∈ C2

(
Rd × [0,+∞)

)
.
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• Proof 2: we will show the result for the case g = 0. In a similar way, one proves the result when
h = 0. On the one hand, we di�erentiate under the integral sign (8.6.3) respect 4x:

4u(x, t) =
1

γd

(
1

t

∂

∂t

) d−3
2

[
td−2

 
∂B(0,1)

4h (x + tz) dS (z)

]

On the other hand, di�erentiating (8.6.3) respect
(
∂2

∂t2

)
and using Lemma 8.5.1

(
∂2

∂t2

)
u(x, t) =

1

γd

(
1

t

∂

∂t

) d−1
2

[
td−1

dα(d)

ˆ
∂B(0,1)

∇h (x + tz) · zdS (z)

]

By Divergence Theorem (Theorem A.11.),

∂2

∂t2
u(x, t) =

1

γd

(
1

t

∂

∂t

) d−1
2

[
td

dα(d)

ˆ
B(0,1)

4h (x + tz) dz

]
=

1

γd

(
1

t

∂

∂t

) d−3
2

[
td−2

α(d)

ˆ
B(0,1)

4h (x + tz) dz

+
td−2

dα(d)

ˆ
B(0,1)

t∇ (4h (x + tz)) dz

]
Finally, for the second term of the previous expression we use the same strategy of Lemma 8.3. to
derive expression (8.3.7) and we conclude(

∂2

∂t2

)
u(x, t) =

1

γd

(
1

t

∂

∂t

) d−3
2

[
td−2

α(d)

ˆ
B(0,1)

4h (x + tz) dz − td−2

α(d)

ˆ
B(0,1)

4h (x + tz) dz+

+
td−2

dα(d)

ˆ
∂B(0,1)

4u(x + rz)dS(z)

]
=

1

γd

(
1

t

∂

∂t

) d−3
2

[
td−2

 
∂B(0,1)

4u(x + rz)dS(z)

]

Thus, we obtain
(
∂2

∂t2

)
u(x, t) = 4u(x, t) in Rd × (0,+∞).

• Proof 3: �rst we show that lim
(x,t)−→(x0,0)

u(x, t) = g(x0). We apply Lemma 8.5.2 to (8.6.3)

u(x, t) =

(
1

γd

(
∂

∂t

) m−2∑
j=0

βm−1
j tj+1 ∂

j

∂tj

 
∂B(0,1)

g (x+ tz) dS (z) +
1

γd

m−2∑
j=0

βm−1
j tj+1 ∂

j

∂tj

 
∂B(0,1)

h (x+ tz) dS (z)

)

=

(
1

γd

m−2∑
j=0

βm−1
j (j + 1)tj

∂j

∂tj

 
∂B(0,1)

g (x+ tz) dS (z) +
1

γd

m−2∑
j=0

βm−1
j tj+1 ∂

j+1

∂tj+1

 
∂B(0,1)

g (x+ tz) dS (z) +

+
1

γd

m−2∑
j=0

βm−1
j tj+1 ∂

j

∂tj

 
∂B(0,1)

h (x+ tz) dS (z)

)
(8.6.5)

Taking the limit as (x, t) −→ (x0, 0) in the previous expression we conclude

lim
(x,t)−→(x0,0)

u(x, t) =
1

γd
βm−1

0

 
∂B(0,1)

g (x0) dS (z) = g(x0)

Finally we shall prove that lim
(x,t)−→(x0,0)

ut(x, t) = h(x0). We di�erentiate respect t (8.6.5)

ut(x, t) =

(
1

γd

m−2∑
j=1

βm−1
j (j + 1)jtj−1 ∂

j

∂tj

 
∂B(0,1)

g (x+ tz) dS (z) +
1

γd

m−2∑
j=0

βm−1
j tj+1 ∂

j+2

∂tj+2

 
∂B(0,1)

g (x+ tz) dS (z) +
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+
2

γd

m−2∑
j=0

βm−1
j (j + 1)tj

∂j+1

∂tj+1

 
∂B(0,1)

g (x+ tz) dS (z) +
1

γd

m−2∑
j=0

βm−1
j (j + 1)tj

∂j

∂tj

 
∂B(0,1)

h (x+ tz) dS (z) +

+
1

γd

m−2∑
j=0

βm−1
j tj+1 ∂

j+1

∂tj+1

 
∂B(0,1)

h (x+ tz) dS (z)

)
Taking the limit as (x, t) −→ (x0, 0) in the previous expression we conclude

lim
(x,t)−→(x0,0)

ut(x, t) =
2

γd
βm−1

1

∂

∂t

 
∂B(0,1)

g (x0) dS (z) +
2

γd
βm−1

0

∂

∂t

 
∂B(0,1)

g (x0) dS (z)

+
1

γd
βm−1

0

 
∂B(0,1)

h (x0) dS (z) = h (x0)

Remark 8.2. Notice that to compute u (x, t) we need only have information on g, h and their

derivatives on the sphere ∂B(x, t) and not on the entire ball B(x, t).

Remark 8.3. Comparing formula (8.6.2) with d'Alembert's formula (8.3.2), we observe that the

latter does not involve the derivatives of g. This suggest that for d > 1, a solution of the wave

equation (8.3.3) need not for times t > 0 be as smooth as its initial value g: irregularities in g may

focus at times t > 0, thereby causing u to be less regular.

8.7 Solution of the wave equation for even dimensions: the Method
of Descent

Now we suppose that d ≥ 2 is even. We will apply the idea that we used to derive the Poisson's
Formula (case d = 2), i.e. we will use formula (8.6.2) for d + 1 (odd) to derive the solution for the
d-dimensional case. This technique is known as the method of descent.

Derivation of the solution

• Let us take m = d+2
2 and suppose u ∈ Cm

(
Rd × [0,+∞)

)
is a solution of (8.3.3). In this section,

we will denote with a bar ·̄ the extensions we will do to Rd+1. Let us de�ne:
u (x1, .., xd+1, t) := u(x1, .., xd, t)

g (x1, .., xd+1) := g(x1, .., xd)

h (x1, .., xd+1) := h(x1, .., xd)

As u satis�es (8.3.3), we conclude that ū is the solution of the following initial problem:
ūtt (x1, .., xd+1, t) −4u (x1, .., xd+1, t) = 0 in Rd+1 × (0,+∞)

ū (x1, .., xd+1, 0) = g (x1, .., xd+1) on Rd+1 × {t = 0}
ūt (x1, .., xd+1, 0) = h (x1, .., xd+1) on Rd+1 × {t = 0}

(8.7.1)
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Let us write x := (x1, ..., xd) ∈ Rd, x̄ = (x, 0) ∈ Rd+1, let B (x̄, t) be the ball in Rd+1 with center x̄
and radius t > 0 and let dS be the d-dimensional surface measure on ∂B (x̄, t). Applying (8.6.2) we
get

u(x, t) =
1

γd+1

((
∂

∂t

)(
1

t

∂

∂t

) d−2
2

[
td−1

 
∂B(x,t)

g (y) dS (y)

]
+

(
1

t

∂

∂t

) d−2
2

[
td−1

 
∂B(x,t)

h (y) dS (y)

])
(8.7.2)

Note now that ∂B(x, t) = ∂B(x, t)+ ∪ ∂B(x, t)−, where ∂B(x, t)+ := ∂B(x, t)∩ {yd+1 ≥ 0} is the graph of

the function γ(y) =
√
t2 − |y − x|2 for y ∈ B(x, t) ⊂ Rd. Likewise, ∂B(x, t)− := ∂B(x, t)∩{yd+1 ≤ 0} is the

graph of −γ. Moreover, note that
√

1 + |∇γ (y)|2 = t√
t2−|y−x|2

. Consequently

 
∂B(x,t)

g (y) dS (y) =
1

(d+ 1)α(d+ 1)td

ˆ
∂B(x,t)

g (y) dS (y) =
2

(d+ 1)α(d+ 1)td

ˆ
B(x,t)

g (y)

√
1 + |∇γ (y)|2dy

=
2

(d+ 1)α(d+ 1)td

ˆ
B(x,t)

g (y)
t√

t2 − |y − x|2
dy =

2tα(d)

(d+ 1)α(d+ 1)

 
B(x,t)

g (y)
1√

t2 − |y − x|2
dy (8.7.3)

Similarly, we get the same formula for h 
∂B(x,t)

h (y) dS (y) =
2tα(d)

(d+ 1)α(d+ 1)

 
B(x,t)

h (y)
1√

t2 − |y − x|2
dy (8.7.4)

Thus, we insert formula (8.7.3) and (8.7.4) in (8.7.2) and we �nd

u(x, t) =
1

γd+1

2α(d)

(d+ 1)α(d+ 1)

( ∂

∂t

)(
1

t

∂

∂t

) d−2
2

 
B(x,t)

tdg (y)√
t2 − |y − x|2

dy

 +

(
1

t

∂

∂t

) d−2
2

 
B(x,t)

tdh (y)√
t2 − |y − x|2



• Let us de�ne γd = 2 · 4 · 6 · · · (d− 2) d. We are going to see that 1
γd+1

2α(d)
(d+1)α(d+1) = 1

γd
. Note that,

as we de�ned in (8.6.2), γd+1 = 1 · 3 · 5 · · · (d− 1) and α(d) = π
d
2

Γ( d+2
2 )

(volume of the unit ball). It

follows

1. As d is even: Γ
(
d+2

2

)
= d

2Γ
(
d
2

)
= d

2
d−2

2 Γ
(
d−2

2

)
= ... = d

2
d−2

2 · · ·
4
2

2
2

2. Analogously: Γ
(
d+3

2

)
= d+1

2 Γ
(
d+1

2

)
= d+1

2
d−1

2 Γ
(
d−1

2

)
= ... = d+1

2
d−1

2 · · ·
3
2

1
2

√
π

Using this we get

α(d)

α(d+ 1)
=

π
d
2Γ
(
d+3

2

)
Γ
(
d+2

2

)
π
d+1
2

=
d+1

2
d−1

2 · · ·
3
2

1
2

√
π

√
π d2

d−2
2 · · ·

4
2

2
2

=
(d+ 1) (d− 1) · · · 3
2d (d− 2) · · · 4 · 2

=
(d+ 1) γd+1

2γd

And �nally we conclude

1

γd+1

2α(d)

(d+ 1)α(d+ 1)
=

2

γd+1 (d+ 1)

(d+ 1) γd+1

2γd
=

1

γd

• Hence the resulting representation formula for d even is

u(x, t) =
1

γd

( ∂

∂t

)(
1

t

∂

∂t

) d−2
2

td  
B(x,t)

g (y)√
t2 − |y − x|2

dy

 +

(
1

t

∂

∂t

) d−2
2

td  
B(x,t)

h (y)√
t2 − |y − x|2


(8.7.5)

where γd = 2 · 4 · 6 · · · (d− 2) d, for x ∈ Rd and t > 0.
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Theorem 8.5. (Solution of wave equation in even dimensions) Assume d is an odd integer,

d ≥ 2, and suppose g ∈ Cm+1
(
Rd
)
and h ∈ Cm

(
Rd
)
, for m = d+2

2 . De�ne u by (8.7.5). Then, the

following statements hold:

1. u ∈ C2
(
Rd × [0,+∞)

)
2. utt (x, t) − 4u(x, t) = 0 in Rd × (0,+∞)

3. lim
(x,t)−→(x0,0)

u(x, t) = g(x0) and lim
(x,t)−→(x0,0)

ut(x, t) = h(x0) for each point x0 ∈ Rd.

PROOF. This theorem follows from Theorem 8.4. In e�ect, we only have to consider the extensions
of u, g and h de�ned in (8.7.1) and apply Theorem 8.4.

Remark 8.4 In contrast to the solution for d odd (formula (8.6.2)), to compute u(x, t) for d even,
we need information on u = g and ut = h on all of B(x, t), and not just on ∂B(x, t).

8.8 Uniqueness of solution: the Energy Method

As we did with the heat equation, we will use the Energy Method to show that there exists an unique

solution of problem (8.3.3) such that u(·, t) ∈ S
(
Rd
)
for all t ≥ 0 and u ∈ C2(Rd × [0,+∞)). In

particular the initial conditions g and h should be in S
(
Rd
)
.

In Theorem 8.2. we proved that the energy of the solution given by (8.2.1) is conserved in time. We

will generalize this result by showing that in fact it is true for any solution satisfying u (·, t) ∈ S(Rd)
for all t ≥ 0 and u ∈ C2(Rd× [0,+∞)). From this result, we will be able to conclude that the solution

is unique.

Theorem 8.6. Let u ∈ C2(Rd× [0,+∞)) s.t. u (·, t) ∈ S(Rd) for all t ≥ 0 be a solution of (8.3.3) with

g and h in S
(
Rd
)
. Then, its energy E(t) (given by (8.2.2)) is conserved in time, that is, E(t) = E(0).

PROOF.

Di�erentiating under the integral sign, we get that

Ė(t) =
1

2

ˆ
Rd

∂

∂t

(
|ut(x, t)|2 + |∇u(x, t)|2

)
dx =

ˆ
Rd

(ut(x, t)utt(x, t) + ∇u(x, t) · ∇ut(x, t)) dx

(8.8.1)
Let us work the second term of the previous expression. We will use Green Identity:
ˆ
Rd
∇u(x, t)·∇ut(x, t)dx = lim

R−→+∞

ˆ
|x|≤R

∇u(x, t)·∇ut(x, t)dx = − lim
R−→+∞

ˆ
|x|≤R

4u(x, t)ut(x, t)dx

+ lim
R−→+∞

ˆ
|x|=R

ut(x, t)∇u(x, t) · ndS(x) = −
ˆ
Rd
4u(x, t)ut(x, t)dx

where we have used that lim
R−→+∞

´
|x|=R ut(x, t)∇u(x, t) · ndS(x) = 0 by doing a similar argument to the

proof of Theorem 7.4., since ut(·, t) and ∇u(·, t) · n are in S
(
Rd
)
for all t ≥ 0. Using this in (8.8.1)

Ė(t) =

ˆ
Rd
ut(x, t) (utt(x, t) − 4u(x, t)) dx = 0
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Hence, E(t) is constant and as is continuous on t ≥ 0, we conclude that E(t) = E(0) for all t ≥ 0.

Theorem 8.7. (Uniqueness for wave equation) There exists an unique solution u ∈ C2(Rd ×
[0,+∞)) of (8.3.3) with g and h in S

(
Rd
)
such that u (·, t) ∈ S(Rd) for all t ≥ 0.

PROOF.

We have proved the existence of solution in Theorem 8.1. To prove uniqueness, we suppose there

exist two solutions u and v satisfying the conditions of the statement. Then, we consider w (x, t) =

u(x, t)− v(x, t) and we notice that w ∈ C2(Rd × [0,+∞)), w (·, t) ∈ S(Rd) for all t ≥ 0 and
wtt(x, t)−4w(x, t) = 0 in Rd × (0,+∞)

w(x, 0) = 0 x ∈ Rd

wt(x, 0) = 0 x ∈ Rd

Using theorem 8.6, the energy E(t) = E(0) and E(0) = 1
2

´
Rd

(
|wt(x, 0)|2 + |∇w(x, 0)|2

)
dx = 0.

Thus,

E(t) =
1

2

ˆ
Rd

(
|wt(x, t)|2 + |∇w(x, t)|2

)
dx = 0 for all t ≥ 0

Consequently wt(x, t) = 0 and ∇w(x, t) = 0, and hence w(x, t) = cte in Rd × [0,+∞). Finally as

w(x, 0) = 0 we conclude that w(x, t) = 0 in Rd × [0,+∞) and the solution is unique.

8.9 Huygens' Principle and �nite propagation speed

De�nition 8.1. We de�ne the domain of dependence of a solution u of the wave equation at a point

(x0, t0) ∈ Rd × [0,+,∞) as the set of points D(x0, t0) ⊂ Rd × [0,+∞) upon which u (x0, t0) depends.

In other words, u (x0, t0) depends on everything that has happened in the domain of dependence.

De�nition 8.2. We de�ne the domain of in�uence of a solution u of the wave equation at a point

(x0, t0) ∈ Rd × [0,+,∞) as the set of points I(x0, t0) ⊂ Rd in which the solution u is in�uenced by

u(x0, t0). In other words, u(x0, t0) in�uences the solution at all points in the range of in�uence.

• Case d = 1

We observe from Alembert's formula (8.3.2) that the value of the solution at a point (x, t) depends
only on the values of f and g in the interval centered at x of length 2t.

- For the case h = 0, the domain of dependence of the solution at a point (x0, t0) and the domain of
in�uence of the initial conditions at a point x are respectively

D(x0, t0) = {(x, t) ∈ Rd × [0,+∞) : 0 ≤ t ≤ t0, |x− x0| = t0 − t}

I(x0, 0) = {(x, t) ∈ Rd × [0,+∞) : |x− x0| = t}

In red, we have plotted these respective domains:
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Figure 8.9.1: Domain of dependence Figure 8.9.2: Domain of in�uence

- For the case h 6= 0, the domain of dependence of the solution at a point (x0, t0) and the domain of
in�uence of the initial conditions at a point x are respectively

D(x0, t0) = {(x, t) ∈ Rd × [0,+∞) : 0 ≤ t ≤ t0, |x− x0| ≤ t0 − t}

I(x0, 0) = {(x, t) ∈ Rd × [0,+∞) : |x− x0| ≤ t}

In red, we have plotted these respective domains:

Figure 8.9.3: Domain of dependence Figure 8.9.4: Domain of in�uence

• Case d odd
We observe from solution (8.6.2) for the case d odd (d ≥ 3) that the solution at a point x0 and at time
t0 depends only on the initial data in an immediate neighborhood of the sphere ∂B(x0, t0). This is a
statement of Huygens principle. In particular, it says that information from a point source travels in
the form of a sphere. The wavefront is thus sharp, with a sudden onset, at the start, and sudden cuto�
at the end.

We see that the domain of dependence of the solution at a point (x0, t0) is the cone (called the backward
light cone)

D(x0, t0) = {(x, t) ∈ Rd × [0,+∞) : 0 ≤ t ≤ t0, |x− x0| = t0 − t}
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In red it is plotted the domain of dependence.

Figure 8.9.5: Dependence domain

In the same way, the domain of in�uence of the initial conditions in a point x0 is the cone (called the
forward light cone)

I(x0, 0) = {(x, t) ∈ Rd × [0,+∞) : |x− x0| = t}

In red it is plotted the domain of in�uence.

Figure 8.9.6: In�uence Domain

• Case d even
We observe from the solution (8.7.5) for the case d even that the solution at a point x0 and at time t0,
depends only on the initial data on the entire B(x0, t0), and not just on ∂B(x0, t0). Hence, wavefronts
do have a sharp onset, but they decay with a long tail. Huygens principle is not true in even dimensions.

We see that in this case, the domain of dependence of the solution at a point (x0, t0) is

D(x0, t0) = {(x, t) ∈ Rd × [0,+∞) : 0 ≤ t ≤ t0, |x− x0| ≤ t0 − t}

while the domain of in�uence of the initial conditions in a point x0 is

I(x0, 0) = {(x, t) ∈ Rd × [0,+∞) : |x− x0| ≤ t}
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• Finite propagation speed

Another important aspect of the wave equation connected with these considerations is that of the �nite
speed of propagation. This means that if we have an initial disturbance localized at x = x0, then
after a �nite time t, its e�ects will have propagated only inside the ball centered at x0 of radius t.

We already know this from the representation formulas (8.6.2) and (8.7.5). However, we don't need
these formulas to conclude that. Energy methods provide a much simpler proof.

Theorem 8.8. (Finite propagation speed) Let u ∈ C2
(
Rd × [0,+∞)

)
be a solution of problem

(8.3.3). If u ≡ ut ≡ 0 on B (x0, t0)× {t = 0}, then u ≡ 0 within the cone

C = {(x, t) ∈ Rd × [0,+∞) : 0 ≤ t ≤ t0, |x− x0| ≤ t0 − t}

In particular, we see that any �disturbance� originating outside B(x0, t0) has no e�ect on the solution

within C, and consequently has �nite propagation speed.

PROOF. The proof is similar to the proof of Theorem 8.7. We de�ne

e(t) :=
1

2

ˆ
B(x0,t0−t)

(
u2t (x, t) + |∇u (x, t)|2

)
dx for all 0 ≤ t ≤ t0

and we work this expression to see that ė(t) ≤ 0. Then, we see that e(t) ≤ e(0) = 0 for all 0 ≤ t ≤ t0.
Consequently ut = 0 and ∇u = 0 within the cone C and we conclude that u = 0 in C. For further
details, see [Evans2010, pages 84-85].
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Chapter 9

Introduction to distributions

9.1 De�nition of a distribution

De�nition 9.1. We de�ne the space of test functions as the space D (R) which we de�ned as

D (R) := {ϕ : R→ C s.t ϕ ∈ C∞ (R) , supp(ϕ) is bounded}

De�nition 9.2. We de�ne a distribution as a continuous linear functional T : D (R) −→ C. The

value of T at ϕ will be denoted in either of two ways: T (ϕ) or < T,ϕ >.

Remark 9.1. The continuity of T means the following: let {ϕn}n∈N ∈ D (R) such that ϕn
n−→+∞−→ ϕ

in D (R), then T (ϕn)
n−→+∞−→ T (ϕ). We need to de�ne the concept of convergence in D (R).

De�nition 9.3. A sequence of elements {ϕn}n∈N ∈ D (R) tends to 0 in D (R) if the following hold:

1. The supports of all the ϕn are contained in a �xed compact interval.

2. {ϕn} as well as all of the derived sequences tend to 0 uniformly on R as n −→ +∞.

De�nition 9.4. A sequence of elements {ϕn}n∈N ∈ D (R) tends to ϕ in D (R) if {ϕn − ϕ}n∈N tends

to 0 in D (R) .

Remark 9.2. There does not exist a distance function, much less a norm, on D (R) that gives this

notion of convergence. There is, however, a well-de�ned topology on D (R). It is su�cient for our

purposes to have the notion of convergence.

Proposition 9.1. If a sequence of elements {ϕn} in D (R) tends to 0 in D (R), then the sequence

{ϕ′n} is in D (R) and tends to 0 in D (R).

PROOF. Since {ϕn} is C∞ (R) and has compact support, then {ϕ′n} is C∞ (R) and has compact

support. Hence, {ϕ′n} is in D (R). Moreover, {ϕn} tends to 0 in D (R), then the supports of all the ϕn
are contained in a �xed compact interval and {ϕn} and all of the derived sequences tend to 0 uniformly

on R as n −→ +∞. Thus, all these properties are inherited by {ϕ′n} and we conclude that {ϕ′n} tends
to 0 in D (R).
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De�nition 9.5. The set of continuous linear functionals on D (R) is called the topological dual of

D (R). We denote it by D∗ (R).

Example 9.1. We introduce three basic distributions that will play an important role in our future

analysis.

• Point distributions: let a be a real number. Then, the mapping de�ned on D (R) by δa (ϕ) = ϕ(a)

is a distribution. It is clear that δa is linear. Moreover, it is continuous since if {ϕn} ∈ D (R) tends to

ϕ in D (R), then {ϕn − ϕ}n∈N tends uniformly to 0. Thus, δa (ϕn) = ϕn(a)
n−→+∞−→ ϕ(a) = δa (ϕ).

• Dirac delta δ: it is the particular case of the point distribution with a = 0. We will denote δ = δ0.

• Dirac's comb: let (λn)n∈Z be a complex sequence and let a > 0. Then, the linear functional de�ned

by T =
+∞∑

n=−∞
λnδna is a distribution. Note that it is well-de�ned since ϕ ∈ D (R) has compact support

and the sum T (ϕ) will be �nite for each ϕ. Moreover, T is continuous. Let {ϕp} ∈ D (R) tends to ϕ
in D (R). The supports of all the ϕp are contained in a �xed compact interval [A,B]. Then

T (ϕp) =

+∞∑
n=−∞

λnϕp(na) =
∑

A≤na≤B

λnϕp(na)
p−→+∞−→

∑
A≤na≤B

λnϕ(na) = T (ϕ)

9.2 Distributions as generalized functions

Proposition 9.2. Let f be a locally integrable function on R, then the functional Tf de�ned by

Tf (ϕ) =

ˆ
R
f(x)ϕ(x)dx for all ϕ ∈ D (R)

is a distribution.

PROOF. Note that Tf is clearly a linear functional. It remains to show the continuity. Let {ϕn} ∈
D (R) tend to ϕ in D (R). In particular, {ϕn} tends to ϕ uniformly. Assume supp (ϕn) = supp (ϕ) ⊂
(a, b). Thus

|Tf (ϕn)− Tf (ϕ)| ≤
ˆ b

a
|f(x)| |ϕn(x)− ϕ(x)| dx ≤ ‖ϕn − ϕ‖∞

ˆ b

a
|f(x)| dx n−→∞−→ 0

We conclude that Tf is continuous. Thus, Tf is a distribution.

Proposition 9.3. Let us de�ne the mapping i : L1
loc (R) −→ D∗ (R) by i(f) = Tf . Then, i is

well-de�ned, is linear and is 1-to-1.

PROOF.

Note that i(f) = Tf ∈ D∗ (R) for all f ∈ L1
loc (R) (by proposition 9.2.). Moreover if f, g ∈ L1

loc (R)
are equal almost everywhere, then Tf = Tg. Hence, i is well-de�ned.

Furthermore, i is clearly linear. It remains to show that it is 1-to-1. We will see that if Tf = 0 then
f = 0 a.e. In e�ect, if Tf = 0 then Tf (ϕ) =

´
R f(x)ϕ(x)dx = 0 for all ϕ ∈ D (R) and appling

Lemma 4.1. we get that f = 0 almost everywhere.
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Remark 9.3. From Proposition 9.3. we conclude that each distribution Tf is uniquely identi�ed

with the locally integrable function f . Hence, we can make the identi�cation f ↔ Tf . With this

identi�cation, and doing an abuse of notation, we see that L1
loc (R) ⊂ D∗ (R).

De�nition 9.6. Let f ∈ L1
loc (R). The distributions Tf de�ned in Proposition 9.3. are called general-

ized functions or regular distributions.

Example 9.2. We introduce two basic generalized functions

1. Unit step function (Heaviside's function): let u be the Heaviside's function. Its associated
distribution is de�ned by

Tu(ϕ) =

ˆ +∞

0
ϕ(x)dx

2. The constant function f = K ∈ C: Its associated generalized function is given by

Tf (ϕ) = K

ˆ
R
ϕ(x)dx

9.3 Elementary Operations on Distributions

De�nition 9.7. (re�ection) The re�ection Tσ of a distribution T is de�ned by Tσ(ϕ) = T (ϕσ) for

all ϕ ∈ D (R). It holds that Tσ is a well-de�ned distribution. A distribution T is said to be even if

Tσ = T and odd if Tσ = −T .

Example 9.3. The Dirac Delta is even. In e�ect, δσ(ϕ) = δ (ϕσ) = ϕσ(0) = ϕ(0) = δ(ϕ) for all

ϕ ∈ D (R). Hence, δσ = δ.

De�nition 9.8. (translation) Let a ∈ R \ {0}. The translate τaT of a distribution T is de�ned by

τaT (ϕ) = T (τ−aϕ) for all ϕ ∈ D (R). It holds that τaT is a well-de�ned distribution. A distribution

T is said to be periodic with period a 6= 0 if τaT = T .

Example 9.4. The Dirac's comb with coe�cients λn = 1 is a periodic. In e�ect, we see that

τaT (ϕ) =

+∞∑
n=−∞

δna(τ−aϕ) =

+∞∑
n=−∞

ϕ((n+ 1) a) =

+∞∑
n=−∞

ϕ(na) = T (ϕ)

De�nition 9.9. A distribution is said to be null (be zero, vanish) on an open set Ω if T (ϕ) = 0 for

all test functions ϕ such that supp (ϕ) ⊂ Ω.

De�nition 9.10. (support) The support of a distribution T , supp(T ), is de�ned to be the complement

of the largest open set on which T is null.

Example 9.5. Supp

(
n∑
i=1

λiδai

)
= {a1, ..., an} with λi ∈ C \ {0} and ai ∈ R.
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Proposition 9.4. If Tf is a generalized function, then supp(Tf ) = supp(f).

PROOF. The proof can be found in [C. Gasquet2010, page 253].

De�nition 9.11. The space of distributions whose supports lie to the right of some �nite point is

denoted by D∗+ (R). That is

D∗+ (R) = {T ∈ D∗ (R) s.t. supp(T ) ⊂ [t0,+∞) for some t0 ∈ R}

De�nition 9.12. (product of a distribution and a function) The product of a distribution T

by an in�nitely di�erentiable function g, denoted by gT , is de�ned by < gT, ϕ >=< T, gϕ > for all

ϕ ∈ D (R). It holds that gT is a well-de�ned distribution.

Example 9.6. Let g ∈ C∞ (R). Note that < gδa, ϕ >=< δa, gϕ >= g(a)ϕ(a) =< g(a)δa, ϕ >.
Hence the product of the point distribution by g is gδa = g(a)δa.

9.4 The derivative of a distribution

De�nition 9.13. (derivative of a distribution) The derivative of a distribution T , denoted by T
′
,

is de�ned by < T
′
, ϕ >= − < T,ϕ

′
> for all ϕ ∈ D (R).

Proposition 9.5. The derivative of a distribution is a distribution.

PROOF.

Clearly T
′
is a linear functional de�ned on D (R) since ϕ

′ ∈ D (R) for all ϕ ∈ D (R). It remains to

prove the continuity. Let us take {ϕn}n∈N ∈ D (R) such that ϕn
n−→+∞−→ ϕ in D (R). By proposition

9.1. it holds that {ϕ′n}n∈N ∈ D (R) and ϕ′n
n−→+∞−→ ϕ′ in D (R). Hence, using the continuity of T

< T
′
, ϕn > = − < T,ϕ

′
n >

n−→+∞−→ − < T,ϕ
′
> = < T

′
, ϕ >

and this proves the continuity of T
′
.

Proposition 9.6. Each distribution T is in�nitely times di�erentiable, and the nth derivative of T

satis�es the relation < T (n), ϕ >= (−1)n < T,ϕ(n) > for all ϕ ∈ D (R).

PROOF.

It is clear from De�nition 9.13. and Proposition 9.5. We just have to apply induction.

Example 9.7. We introduce the following two examples:

• Derivative of the point distribution: note that δ
′
a(ϕ) = < δ

′
a, ϕ > = − < δa, ϕ

′
> = −ϕ′(a).

• Derivative of the unit step u: we will compute its derivative in the sense of distribution, i.e. the
derivative of its generalized function Tu. Note that < T

′
u, ϕ > = − < Tu, ϕ

′
>. Using example 9.2.1

< T
′
u, ϕ > = −

ˆ +∞

0
ϕ
′
(x)dx = −[ϕ(x)]+∞0 = ϕ(0) = < δ, ϕ >
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Thus, we get that the derivative of the unit step u in the sense of distribution is the Dirac Delta δ.

Proposition 9.7. Let f be a function that is absolutely continuous on all compact intervals [a, b] (in

particular f ∈ L1
loc(R)). Then the derivative of f in the sense of distributions agrees a.e. with the

associated distribution of the usual, or ordinary, derivative. That is, T
′
f = Tf ′ .

PROOF.

Note that as f is absolutely continuous on all compact intervals we can conclude that f is continuous.
Hence, we will be able to apply integration by parts

< T
′
f , ϕ > = − < Tf , ϕ

′
> = −

ˆ
R
f(x)ϕ

′
(x)dx

(parts)
=

ˆ
R
f
′
(x)ϕ(x)dx = < Tf ′ , ϕ >

for all ϕ ∈ D (R). Hence, by Lemma 4.1. it follows that T
′
f = Tf ′ .

Proposition 9.8. (derivative in the sense of a discontinuous function) Let f be continuously

di�erentiable on the invervals (−∞, a) ∪ (a,+∞) such that has �nite left and right limits at a ∈ R,
which we denote by f(a−) and f(a+) respectively. Then, T

′
f = Tf ′ + (f(a+)− f(a−)) δa.

PROOF.

As f is in C1 ((−∞, a) ∪ (a,+∞)), we will be able to apply integration by parts

< T
′

f , ϕ >= −
ˆ a

−∞
f(x)ϕ

′
(x)dx −

ˆ +∞

a

f(x)ϕ
′
(x)dx

(parts)
= −f(a−)ϕ(a) +

ˆ a

−∞
f
′
(x)ϕ(x)dx + f(a+)ϕ(a)

+

ˆ +∞

a

f
′
(x)ϕ(x)dx =

ˆ
R
f
′
(x)ϕ(x)dx +

(
f(a+)− f(a−)

)
ϕ(a) =< Tf ′ , ϕ > +

(
f(a+)− f(a−)

)
δa(ϕ)

Hence, we conclude that T
′
f = Tf ′ + (f(a+)− f(a−)) δa.

9.5 Convergence of a sequence of distributions

De�nition 9.14. (convergence) A sequence of distributions (Tn)n∈N is said to converge to a distri-

bution T if

< Tn, ϕ >
n−→∞−→ < T,ϕ > for all ϕ ∈ D (R)

Example 9.8. Let (an)n∈N be a real sequence which converges to a. Then, using the continuity of

ϕ ∈ D (R) we get that < δan , ϕ >= ϕ(an)
n−→∞−→ ϕ(a) =< δa, ϕ >. Thus, we conclude that δan

converges to δa.

Theorem 9.1. (continuity of derivation) If the sequence of distributions (Tn)n∈N converges to the

distribution T , then the sequence of derivatives (T
′
n)n∈N converges to T

′
.

PROOF. Note that this follows directly from de�nition 9.13. and de�nition 9.14. In e�ect, for all
ϕ ∈ D (R).

< T
′
n, ϕ > = − < Tn, ϕ

′
>

n−→+∞−→ − < T,ϕ
′
> = < T

′
, ϕ >
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Proposition 9.9. Let (fn)n∈N be a sequence of integrable functions that converges in L1(R) to

f ∈L1(R). Then (fn) converges to f in the sense of distributions.

PROOF. The result is a consequence of the following inequalities

|< Tfn , ϕ > − < Tf , ϕ >| =

∣∣∣∣ˆ
R

(fn(x)− f(x))ϕ(x)dx

∣∣∣∣ ≤ ˆ
R
|fn(x)− f(x)| |ϕ(x)| dx ≤

≤ ‖fn − f‖1 ‖ϕ‖∞
n−→+∞−→ 0

Proposition 9.10. Let (fn)n∈N be a sequence of square-integrable functions that converges in L2(R)
to f ∈L2(R). Then (fn) converges to f in the sense of distributions.

PROOF. We recall that D (R) ⊂ L2 (R). Hence, applying Hölder's inequality we get

|< Tfn , ϕ > − < Tf , ϕ >| =

∣∣∣∣ˆ
R

(fn(x)− f(x))ϕ(x)dx

∣∣∣∣ ≤ ˆ
R
|fn(x)− f(x)| |ϕ(x)| dx ≤

≤ ‖fn − f‖2 ‖ϕ‖2
n−→+∞−→ 0

Remark 9.4. Note that we see in Proposition 9.9. and Proposition 9.10. that the convergence of

a sequence of functions in the sense of distribution is generally �weaker� than the notion of uniform

convergence.

9.6 Primitives of a Distribution

De�nition 9.15. (primitive) Let T ∈ D∗ (R), we say that U ∈ D∗ (R) is a primitive of T if U
′

= T .

Theorem 9.2. The derivative of a distribution U is the zero element of D∗ (R) if and only if U is a

constant, that is, if and only if there exists K ∈ C such that U = TK .

PROOF.

First, let us make the following observation. If ϕ ∈ D (R), then ϕ
′ ∈ D (R) and

´
R ϕ

′
(x)dx = 0.

Conversely, if ψ ∈ D (R) such that
´
R ψ(x)dx = 0, then the function ϕ(x) =

´ x
−∞ ψ(t)dt is in D (R)

and is a primitive of ψ. Thus, let us de�ne

D0 (R) =
{
ϕ
′
s.t. ϕ ∈ D (R)

}
=

{
ψ s.t. ψ ∈ D (R) ,

ˆ
R
ψ(x)dx = 0

}

• To prove the direct implication, we assume that U
′

= 0, that is < U
′
, ϕ > = − < U,ϕ

′
> = 0 for

all ϕ ∈ D (R). Then, for all ψ ∈ D0 (R), < U,ψ >= 0. Let us consider ρ ∈ D (R) such that

ˆ
R
ρ(x)dx = 1 and ρ(x) = 0 if |x| ≥ 1

Now, for each ϕ ∈ D (R) we de�ne ψϕ := ϕ− I(ϕ)ρ, where I(ϕ) =
´
R ϕ(x)dx. Note that

ˆ
R
ψϕ(x)dx = 0 and ψϕ ∈ D (R)
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hence, ψϕ ∈ D0 (R) and consequently < U,ψϕ >= 0. Thus

< U,ϕ > = < U,ψϕ + I(ϕ)ρ > = I(ϕ) < U, ρ > = K ·
ˆ
R
ϕ(x)dx = < TK , ϕ >

where K =< U, ρ > is a constant which belongs to C. Thus, we conclude that U = TK .

• Conversely, assume that there exists K ∈ C s.t. U = TK . Then, we conclude that U
′

= 0. In e�ect:

< U
′
, ϕ > = − < U,ϕ

′
> = − < TK , ϕ

′
> = −K

ˆ
R
ϕ
′
(x)dx = 0 for all ϕ ∈ D(R)

Theorem 9.3. Every distribution T has a primitive U ∈ D∗ (R) and all the primitives of T are of the

form U + TC , where C is some constant in C.
PROOF. The proof of this theorem can be found in [C. Gasquet2010, pages 276, 277].



Chapter 10

The Fourier Transform of distributions

In this chapter, we will extend the Fourier transform to distributions. We motivate it by studying the
case of generalized functions. Let us consider f ∈ L1 (R) and let ϕ ∈ D (R). We note that by applying
Fubini's Theorem we get

< Tf̂ , ϕ >=

ˆ
R

(ˆ
R
f(x)e−2πixξdx

)
ϕ(ξ)dξ =

ˆ
R
f(x)

(ˆ
R
e−2πixξϕ(ξ)dξ

)
dx =

ˆ
R
f(x)ϕ̂(x)dx =< Tf , ϕ̂ >

This suggest that the Fourier transform for a distribution T should by de�ned by < T̂ , ϕ >=< T, ϕ̂ >.

But this expression only makes sense if ϕ̂ ∈ D (R). It holds that ϕ̂ ∈ C∞ (R) but we will see that

ϕ̂ has never compact support. We have, however, shown that the Schwartz Space S (R) is invariant

under the Fourier transform. This leads to the introduction of the subspace of tempered distribution.

10.1 The Space S∗ (R) of tempered distributions

De�nition 10.1. We de�ne the space of tempered distributions S∗ (R) as the vector space of continuous
linear functionals T de�ned on S (R). Note that the continuity of T means

If ϕn
n−→∞−→ ϕ in S (R) then < T,ϕn >

n−→∞−→ < T,ϕ > in C

Remark 10.1. Let T ∈ S∗ (R). Since D (R) ⊂ S (R) then T (ϕ) is well-de�ned for all ϕ ∈ D (R).
Furthermore, convergence in D (R) implies convergence in S (R). Consequently, the elements of S∗ (R)
restricted to D (R) are distributions. Since D (R) is dense in S (R), we can identify S∗ (R) with a

subspace of D∗ (R).

De�nition 10.2. The elements of S∗ (R) are called tempered distributions.

Proposition 10.1. Suppose that T is a distribution, i.e. T ∈ D∗ (R). Then T is a tempered distribu-

tion, T ∈ S∗ (R), if and only if T is continuous on D (R) in the topology of S (R).

PROOF.

Clearly the condition is necessary since if T ∈ S∗ (R) then for ϕn ∈ D (R) ⊂ S (R) it holds that if

ϕn
n−→∞−→ ϕ in S (R) then < T,ϕn >

n−→∞−→ < T,ϕ >.

109
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The proof in the other direction depends on the fact that D (R) is dense in S (R). With a full

understanding of the topologies of D (R) and S (R) the result follows directly. However, we have

not introduced these topologies since we are mainly interested in convergence of sequences. For this

reason, we will not make the proof. It can be found in [Khoan1972].

De�nition 10.3. (convergence of sequences in S∗ (R)) Let {Tn}n∈N be a sequence in S∗ (R). We

say that {Tn}n∈N tends to T in S∗ (R) if

lim
n−→+∞

< Tn, ϕ > = < T,ϕ > for all ϕ ∈ S(R)

Remark 10.2. The convergence of a sequence in S∗ (R) implies convergence in D∗ (R) since D (R) ⊂
S (R).

Proposition 10.2. If T is a tempered distribution, then the following statements hold for each k ∈ N:

1. xkT is in S∗ (R) and the mapping T −→ xkT is continuous from S∗ (R) to S∗ (R).

2. The derivative T (k) is in S∗ (R) and the mapping T −→ T (k) is continuous from S∗ (R) to S∗ (R).

PROOF.

• Proof 1: by de�nition 9.12. xkT is a distribution. Let (ϕn)n∈N be a sequence in D (R) which

converges to ϕ ∈ D (R) in S (R), then by proposition 2.4.2, xkϕn(x)
n−→∞−→ xkϕ(x) in S (R). Hence,

as T ∈ S∗ (R): ∣∣∣< xkT, ϕn > − < xkT, ϕ >
∣∣∣ =

∣∣∣< T, xk (ϕn − ϕ) >
∣∣∣ n−→∞−→ 0

Thus, xkT is continuous on D (R) with the topology of S (R) and by proposition 10.1. we conclude

that xkT ∈ S∗ (R). To prove the continuity of the mapping T −→ xkT , let us take {Tn}n∈N in S∗ (R)

such that tends to T in S∗ (R). Then for all ϕ ∈ S (R)

< xkTn, ϕ > = < Tn, x
kϕ >

n−→∞−→ < T, xkϕ > = < xkT, ϕ >

• Proof 2: by proposition 9.5. T (k) is a distribution. Let (ϕn)n∈N be a sequence in D (R) which

converges to ϕ ∈ D (R) in S (R), then by proposition 2.4.1, ϕ
(k)
n (x)

n−→∞−→ ϕ(k)(x) in S (R). Hence, as

T ∈ S∗ (R): ∣∣∣< T (k), ϕn > − < T (k), ϕ >
∣∣∣ =

∣∣∣< T,ϕ(k)
n − ϕ(k) >

∣∣∣ n−→∞−→ 0

Thus, T (k) is a continuous on D (R) with the topology of S (R) and by proposition 10.1. we conclude

that T (k) ∈ S∗ (R). To prove the continuity of the mapping T −→ T (k) we apply the same technique

we have used in 1.

Proposition 10.3. Let f be in Lp (R), p ≥ 1. Then its generalized function Tf is a tempered

distribution.
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PROOF.

Note that it holds that Lp(R) ⊂ L1
loc (R). Hence, for any element f ∈ Lp (R), Tf is a distribution.

We will apply Proposition 10.1. Let (ϕn)n∈N be a sequence in D (R) which converges to ϕ ∈ D (R) in

S (R). Note that

|< Tf , ϕn > − < Tf , ϕ >| ≤
ˆ
R
|f(x)| |ϕn(x)− ϕ(x)| dx ≤ ‖f‖p ‖ϕn − ϕ‖q = ‖f‖p ‖(ϕn − ϕ)q‖

1
q

1

(10.1.1)

where we have used Hölder's inequality since f ∈ Lp (R) and (ϕn − ϕ) ∈ D (R) ⊂ S (R) ⊂ Lq (R).

Moreover, note that (ϕn − ϕ)q
n−→∞−→ 0 in S (R) and by proposition 2.4.3 we have that ‖(ϕn − ϕ)q‖1

n−→∞−→
0. Hence, |< Tf , ϕn > − < Tf , ϕ >|

n−→∞−→ 0. Thus, Tf is continuous on D (R) with the topology of

S (R) and by proposition 10.1. we conclude that Tf ∈ S∗ (R).

10.2 The Fourier transform on S∗ (R)

De�nition 10.4. Let T ∈ S∗ (R). The Fourier transform of T , which we will denote by T̂ , is de�ned

< T̂ , ϕ > = < T, ϕ̂ > for all ϕ ∈ S (R)

Remark 10.3. The de�nition makes sense since the Fourier transform is invariant in S(R).

Remark 10.4. T̂ is a tempered distribution because the Fourier transform is a continuous operator

on S(R) (Theorem 2.2.).

Proposition 10.4. Let f be in L1 (R) then T̂f = Tf̂ . Analogously, if f is L2 (R) then T̂f = TFf .

PROOF.

Note �rst that by Proposition 10.3. Tf is a tempered distribution in both cases.

• Case f ∈ L1 (R): by property 1.6. we have that f̂ ∈ L∞ (R). Hence, by Proposition 10.3. Tf̂ is a
tempered distribution. Moreover, by Property 1.8.

< Tf̂ , ϕ > =

ˆ
R
f̂ (ξ)ϕ (ξ) dξ =

ˆ
R
f(x)ϕ̂(x)dx = < Tf , ϕ̂ > = < T̂f , ϕ >

• Case f ∈ L2 (R): as by Theorem 4.1. Ff ∈ L2 (R) then TFf is a tempered distribution. Moreover
as ϕ ∈ S (R) ⊂ L2 (R), we can apply Proposition 4.4.

< TFf , ϕ > =

ˆ
R
Ff (ξ)ϕ (ξ) dξ =

ˆ
R
f(x)ϕ̂(x)dx = < Tf , ϕ̂ > = < T̂f , ϕ >

Theorem 10.1. The Fourier transform is a linear, 1-to-1, bicontinuous mapping from S∗ (R) to

S∗ (R). The inverse mapping ·̌ is de�ned by

< Ť , ϕ > = < T, ϕ̌ > for all ϕ ∈ S (R)

Moreover, for all T ∈ S∗ (R) it holds that ˆ̌T =
ˇ̂
T = T .
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PROOF.

The mapping ·̂ : S∗ (R) −→ S∗ (R) de�ned by < T̂ , ϕ >=< T, ϕ̂ > is clearly linear. It is also
continuous, since if (Tn)n∈N in S∗ (R) converges to T in S∗ (R) then:

< T̂n, ϕ > = < Tn, ϕ̂ >
n−→+∞−→ < T, ϕ̂ > = < T̂ , ϕ > for all ϕ ∈ S (R)

i.e. T̂n converges to T̂ in S∗ (R). The same argument works for ·̌. Finally, using Theorem 2.2.

< ˆ̌T, ϕ > = < T, ˇ̂ϕ > = < T, ˆ̌ϕ > = <
ˇ̂
T, ϕ > = < T,ϕ > for all ϕ ∈ S (R)

Thus ˆ̌T =
ˇ̂
T = T , ·̂ is 1-to-1 and its inverse mapping is ·̌.

Proposition 10.5. Let T be a tempered distribution. Then, the following statements hold:

1. For all k ∈ N, T̂ (k) =
̂

[(−2iπx)k T ] and T̂ (k) = (2iπξ)kT̂ .

2. For a ∈ R, τaT̂ = ̂[e2iπaxT ] and τ̂aT = e−2iπaξT̂ .

PROOF.

• Proof 1: note that by Proposition 10.2.2 xkT ∈ S∗ (R). Thus, x̂kT exists and satis�es for all ϕ ∈ S (R)

< x̂kT , ϕ > = < xkT, ϕ̂ > = < T, xkϕ̂ > =
1

(2iπ)k
< T, ϕ̂(k) >

where we have used that by Proposition 1.1.2 ϕ̂(k)(x) = (2iπx)k ϕ̂(x). Finally, using the de�nition of
derivative of a distribution

< x̂kT , ϕ > =
1

(2iπ)k
< T̂ , ϕ(k) > =

(−1)k

(2iπ)k
< T̂ (k), ϕ > for all ϕ ∈ S (R)

hence we conclude that T̂ (k) =
̂

[(−2iπx)k T ] . The relation T̂ (k) = (2iπξ)kT̂ is obtained in a similar
way using Proposition 1.1.1.

• Proof 2: the function x 7−→ e2πiax is C∞ (R). Proceeding similarly as the proof of Proposition 10.2.

we get e2πiaxT ∈ S∗ (R). Thus ̂e2πiaxT exists and satis�es

< ̂e2πiaxT , ϕ > = < e2πiaxT, ϕ̂ > = < T, e2πiaxϕ̂ > for all ϕ ∈ S (R)

Now, using Property 1.2. we get that e2πiaxϕ̂(x) = τ̂−aϕ(x). Hence:

< ̂e2πiaxT , ϕ > = < T, τ̂−aϕ > = < T̂ , τ−aϕ > = < τaT̂ , ϕ > for all ϕ ∈ S (R)

hence we conclude that τaT̂ = ̂[e2iπaxT ]. Analogously, we prove that τ̂aT = e−2iπaξT̂ .

Proposition 10.6. Let T be a tempered distribution. Then, the following statements hold:

1. [̂Tσ] =
(
T̂
)
σ

= Ť
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2.
̂̂
T = Tσ

PROOF. The proof is similar to the one made in Proposition 10.5. See [C. Gasquet2010, page 289].

Example 10.1. (Fourier Transform of δa) It is easy to show that δa is a tempered distribution.

Hence, δ̂a exists and for all ϕ ∈ S (R)

< δ̂a, ϕ > = < δa, ϕ̂ > = ϕ̂(a) =

ˆ
R
e−2iπaxϕ(x)dx = < Te−2iπax , ϕ >

Thus we conclude that δ̂a = Te−2iπax. In particular we have that the Fourier transform of the Dirac's

distribution is δ̂ = T1.

10.3 The space K∗ (R) of distributions with compact support

We saw in Proposition 1.1.3 that if f ∈ L1 (R) has compact support then f̂ ∈ C∞ (R). We will show

that T̂ is in�nitely times continuously di�erentiable for distributions with compact support.

De�nition 10.5. We de�ne the space K∗ (R) as the subspace of D∗ (R) of those distributions that have

compact support.

Remark 10.5. The space K∗ (R) can be seen as the dual of C∞(R) when C∞(R) is endowed with the

following topology: a sequence ϕn tends to 0 if and only if for each p ∈ N, ϕ(p)
n tends to 0 uniformly

on every compact set K ⊂ R.

Proposition 10.7. The space K∗ (R) is a linear subspace of S∗ (R). Hence, the Fourier transform of

a distribution with compact support is well-de�ned.

PROOF. The proof can be found in [Khoan1972].

Theorem 10.2. (representation of K∗ (R)) If T ∈ K∗ (R) and the support of T is in the inte-
rior of some compact set K, then there exist positive integers n1, n2, ..., np and continuous functions

f1, f2, ..., fp whose supports are in K such that T =
p∑
j=1

T
(nj)

fj
.

PROOF. The proof can be found in [Khoan1972, Schwartz1965].

De�nition 10.6. A function f : R −→ C is said to be slowly increasing if there exists C > 0 and

N ∈ N such that

|f(x)| ≤ C(1 + x2)N for all x ∈ R

Theorem 10.3. Let T ∈ K∗ (R). Then, the following statement hold:

1. T̂ and all its derivatives can be seen as the generalized distribution of slowly increasing functions

in C∞ (R). That is, there exist slowly increasing functions gk ∈ C∞ (R) such that T̂ (k) = Tgk
for all k ∈ N.
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2. If we de�ne f := g0, then gk = f (k) for all k ∈ N. In particular, f (k) is slowly increasing.

PROOF.

• Proof 1: assume that the support of T ∈ K∗ (R) is in the interior of some compact set K. By theorem

10.2., T =
p∑
j=1

T
(nj)

fj
for some positive integers n1, n2, ..., np and continuous functions f1, f2, ..., fp whose

supports are in K. Thus,

< T̂ (k), ϕ > = (−1)k < T̂ , ϕ(k) > = (−1)k < T, ϕ̂(k) > = (−1)k
p∑
j=1

< T
(nj)
fj

, ϕ̂(k) >

= (−1)k
p∑
j=1

< Tfj ,
(
ϕ̂(k)

)(nj)
> for all ϕ ∈ S (R) (10.3.1)

Now, let us work the term
(
ϕ̂(k)

)(nj)
. Applying proposition 1.1.2. and proposition 1.1.1. we get

(
ϕ̂(k)

)(nj)
(ξ) =

(
(2iπξ)

k
ϕ̂ (ξ)

)(nj)
=

nj∑
i=0

Ai

(
nj
i

)
ξ(k−i,0)+ (ϕ̂ (ξ))

(nj−i) =

=

nj∑
i=0

Ai

(
nj
i

)
ξ(k−i,0)+(−2πi)nj−i ̂[xnj−iϕ] (ξ)

for some constants Ai ∈ C and we have denoted (k − i, 0)+ = max(k − i, 0). Thus, using this in
(10.3.1)

< T̂ (k), ϕ > = (−1)k
p∑
j=1

< Tfj ,

nj∑
i=0

Ai

(
nj
i

)
ξ(k−i,0)+(−2πi)nj−i ̂[xnj−iϕ] (ξ) > =

= (−1)k
p∑
j=1

nj∑
i=0

Ai

(
nj
i

)
(−2πi)nj−i

ˆ
R
fj(ξ)ξ

(k−i,0)+
(ˆ

R
xnj−iϕ(x)e−2πixξdx

)
dξ

Finally, after using Fubini's Theorem and a straightforward calculation we obtain

< T̂ (k), ϕ > =

ˆ
R
ϕ(x)gk(x)dx = < Tgk , ϕ > for all ϕ ∈ S(R)

where we have de�ned for all k ∈ N the following functions

gk(x) := (−1)k
p∑
j=1

nj∑
i=0

Ai

(
nj
i

)
(−2πi)nj−ixnj−i

ˆ
R
fj(ξ)ξ

(k−i,0)+e−2πixξdξ

Note that by Theorem A.5. we get that gk ∈ C∞(R). Moreover, using that fj has compact support in

K and is continuous for all j and after manipulating this expression we can �nd a constant C > 0 and

N ∈ N such that |gk(x)| ≤ C(1 + x2)N . In conclusion, we have that T̂ (k) = Tgk where gk ∈ C∞(R) is

a slowly increasing function.

• Proof 2: we will show that g1 = f
′
. The general result is proved by induction. Let us take ϕ ∈ D (R).

On the one hand we have:
< T̂

′
, ϕ > = < Tg1 , ϕ >

On the other hand, we use that by proof 1, T̂ = Tg0 = Tf . Thus

< T̂
′
, ϕ > = < T

′

f , ϕ > = − < Tf , ϕ
′
> = −

ˆ
R
f(x)ϕ

′
(x)dx =

ˆ
R
f
′
(x)ϕ(x)dx = < Tf ′ , ϕ >
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Hence we get that Tg1 = Tf ′ on D
∗ (R) and from proposition 9.3. we conclude that g1 = f

′
a.e.

Theorem 10.4. (the Paley-Wiener theorem) Let T ∈ K∗ (R). Assume that supp(T ) ⊂ [−M,+M ]

for some M > 0. Then the function g0 ∈ C∞ (R) given by Theorem 10.3. s.t. T̂ = Tg0 can be extended

to a holomorphic function g̃0 : C −→ C that satis�es the following estimate: there exist C > 0 and

m ∈ N such that

|g̃0(z)| ≤ C(1 + |z|2)
m
2 e2πM |Im(z)| for all z ∈ C

PROOF.

We have shown in the proof of Theorem 10.3. that

g0(x) :=

p∑
j=1

ˆ
R
fj(ξ)e

−2πixξdξ

nj∑
i=0

(
nj
i

)
(−2πi)nj−ixnj−i =

p∑
j=1

(1− 2πix)nj
ˆ
R
fj(ξ)e

−2πixξdξ

Let us extend this function on C by de�ning

g̃0(z) =

p∑
j=1

(1− 2πiz)nj
ˆ
R
fj(ξ)e

−2πizξdξ for all z ∈ C

One shows by direct computation that g̃0 is holomorphic on C, i.e. it is in�nitely times di�erentiable
on C. In the same way, one proves the estimate of g̃0.

Proposition 10.8. The Fourier transform of a distribution T with compact support (T 6= 0) cannot
have compact support.

PROOF. If T ∈ K∗ (R) has compact support, the function g0 given by Theorem 10.3. s.t. T̂ = Tg0
is the restriction to R of the holomorphic extension g̃0 on C given by Theorem 10.4. If T̂ = Tg0 had

compact support, then g0 would also have compact support and it would vanish on some nonempty

open interval. But being g̃0 analytic, this implies that g0 vanishes everywhere. Thus, T̂ cannot have

compact support.



Chapter 11

Convolution of distributions and Fourier

Transform

11.1 The convolution of a distribution and a C∞ (R) function

Proposition 11.1. Let ϕ be a function and T be a functional and assume that satisfy one of the

following three conditions

1. ϕ ∈ D (R) and T ∈ D∗ (R)

2. ϕ ∈ S (R) and T ∈ S∗ (R)

3. ϕ ∈ C∞ (R) and T ∈ K∗ (R)

Then, the function ψ de�ned by ψ(x) =< τxT, ϕ > is in�nitely times di�erentiable and

ψ(k)(x) = < τxT, ϕ
(k) > (11.1.1)

PROOF.

• Proof 1: we saw in de�nition 9.8. that τxT ∈ D∗ (R) and when ϕ ∈ D (R), the expression ψ(x) =
< τxT, ϕ > is well-de�ned for all x ∈ R. We should show that it is di�erentiable. Let (hn)n be a
sequence of nonzero reals that tends to 0 as n −→∞. Let us de�ne

αn(y) :=
1

hn
(ϕ(y + x+ hn)− ϕ(x+ y)) =

1

hn
(τ−x−hnϕ(y)− τ−xϕ(y)) (11.1.2)

Note that it holds

< T,αn > =
1

hn
(< T, τ−x−hnϕ > − < T, τ−xϕ >) =

1

hn
(ψ(x+ hn)− ψ(x)) (11.1.3)

To prove that ψ is di�erentiable, we will show that αn
n−→+∞−→ τ−xϕ

′
in D (R). Then, as T is continuous

on D (R), it will hold that:

ψ
′
(x) = lim

n−→∞

1

hn
(ψ(x+ hn)− ψ(x)) = lim

n−→∞
< T,αn > = < T, τ−xϕ

′
> = < τxT, ϕ

′
>

Let us suppose that supp(ϕ) ⊂ [−M,M ] and |hn| ≤ 1, then supp(αn) ⊂ [−x −M − 1, x + M + 1]
which is a �xed compact interval that we will denote by K. Now, note that by the mean value problem,
there exists θn ∈ (0, 1) such that:

α(q)
n (y) =

1

hn

(
ϕ(q)(y + x+ hn)− ϕ(q)(x+ y)

)
= ϕ(q+1)(y + x+ θnhn)

116
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Applying again the mean value theorem, there exists γn ∈ (0, 1) such that∣∣∣α(q)
n (y)− ϕ(q+1)(y + x)

∣∣∣ =
∣∣∣ϕ(q+1)(y + x+ θnhn)− ϕ(q+1)(y + x)

∣∣∣ =
∣∣∣θnhnϕ(q+2)(y + x+ γnθnhn)

∣∣∣
≤ |hn|

∥∥∥ϕ(q+2)
∥∥∥
∞

n−→+∞−→ 0

Hence, we conclude that α
(q)
n converges uniformly to τ−xϕ

(q+1) for all q ∈ N. Consequently, αn
n−→+∞−→

τ−xϕ
′
in D (R). By induction and repeating the same argument, one proves that ψ ∈ C∞ (R) and

ψ(k)(x) = < τxT, ϕ
(k) >.

• Proof 2: similarly to Proposition 10.2. one proves that τxT ∈ S∗ (R) and ψ(x) =< τxT, ϕ > is well-

de�ned for all x ∈ R. Let us de�ne αn as in (11.1.2). Note that (11.1.3) also holds. Hence, arguing as

in proof 1, it is su�cient to verify that αn
n−→+∞−→ τ−xϕ

′
in S (R) to show that ψ is di�erentiable and

that ψ
′
(x) =< τxT, ϕ

′
> . As before, the mean value theorem leads to the inequality∣∣∣yp (α(q)
n (y)− τ (q+1)

−x ϕ(y)
)∣∣∣ ≤ |hn| ∣∣∣ypϕ(q+2)(y + x+ ρnhn)

∣∣∣ =

=
|hn| |y|p

1 + |x+ y + ρnhn|p
[
ϕ(q+2)(y + x+ ρnhn) + |x+ y + ρnhn|p ϕ(q+2)(y + x+ ρnhn)

]
where 0 < ρn < 1. Let us denote C := sup

y∈R

(
|y|p

1+|x+y+ρnhn|p
)
. Consequently

sup
y∈R

∣∣∣yp (α(q)
n (y)− τ (q+1)

−x ϕ(y)
)∣∣∣ ≤ C |hn|

(∥∥∥ϕ(q+2)
∥∥∥
∞

+ sup
t∈R

∣∣∣tpϕ(q+2)(t)
∣∣∣)

Hence, since ϕ ∈ S (R), it follows that αn
n−→+∞−→ τ−xϕ

′
in S (R). By induction, one proves that

ψ ∈ C∞ (R) and ψ(k)(x) =< τxT, ϕ
(k) >.

• Proof 3: note that by Remark 10.5. τxT ∈ K∗ (R) and ψ(x) =< τxT, ϕ > is well-de�ned for all x ∈ R
when ϕ ∈ C∞ (R). Arguing as before, it is su�cient to show that αn

n−→+∞−→ τ−xϕ
′
in C∞ (R) with

the topology de�ned in Remark 10.5. That is, (αn)(p) n−→+∞−→
(
τ−xϕ

′
)(p)

uniformly on all compact

subsets of R. This is done using inequalities similar to those used in the proofs of 1 and 2.

De�nition 11.1. Let ϕ be a function and T be a functional and assume that satisfy one of the

conditions of Proposition 11.1. The convolution of ϕ and T is the function ϕ ∗ T de�ned by

(ϕ ∗ T ) (x) = < T y, ϕ(x− y) >

where we denote T y to emphasize that we apply the functional T to the function y 7−→ ϕ(x− y).

Remark 11.1. Note that in de�nition 11.1, we can write the convolution as

(ϕ ∗ T ) (x) = < T, τxϕσ > = < τ−xT, ϕσ > (11.1.4)

Thus, by proposition 11.1., we know the meaning of the convolutions D ∗ D∗, S ∗ S∗, C∞ ∗ K∗.
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Proposition 11.2. (derivation) Let ϕ be a function and T be a functional and assume that satisfy
one of the conditions of Proposition 11.1. Then ϕ ∗ T ∈ C∞ (R) and

(ϕ ∗ T )(k) = ϕ(k) ∗ T = ϕ ∗ T (k) for k = 1, 2...

PROOF.

Let us de�ne ψ(x) =< τxT, ϕσ >. By proposition 11.1. ψ is well-de�ned and is in�nitely times
di�erentiable. Now, from (11.1.4), it holds that (ϕ ∗ T ) (x) = ψ(−x). Hence, we conclude that
ϕ ∗ T ∈ C∞ (R). Moreover, from (11.1.1)

(ϕ ∗ T )(k) (x) = (−1)kψ(k)(−x) = < τ−xT,
(
ϕ(k)

)
σ
> =

(
ϕ(k) ∗ T

)
(x)

Finally, on the other hand(
ϕ ∗ T (k)

)
(x)

(11.1.4)
= < τ−xT

(k), ϕσ > = (−1)k < T, (τxϕσ)(k) > = < T, τx

(
ϕ(k)

)
σ
> =

= < τ−xT,
(
ϕ(k)

)
σ
>

(11.1.4)
=

(
ϕ(k) ∗ T

)
(x)

Proposition 11.3. (support) Let ϕ ∈ C∞ (R) and T ∈ K∗ (R). Then, supp(ϕ ∗ T ) ⊂ supp(T ) +
supp(ϕ), where + denotes the algebraic sum of the two sets.

PROOF.

Since supp(T ) is compact and supp(ϕ) is closed then supp(T ) + supp(ϕ) is closed. Let us de�ne

Ω := R\(supp(T ) + supp(ϕ)) and let x ∈ Ω. Note that for all y ∈ supp(ϕ) then (x − y) /∈ supp(T ).

Consequently

(ϕ ∗ T )(x) = < τ−xT, ϕσ > = < T y, ϕ(x− y) > = 0

and we conclude that x /∈ supp(ϕ ∗ T ). Hence, supp(ϕ ∗ T ) ⊂ supp(T ) + supp(ϕ).

Corollary 11.1. Let ϕ ∈ D (R) and T ∈ K∗ (R). Then, the convolution ϕ ∗ T has compact support.

PROOF. Since supp(T ) and supp(ϕ) is compact then supp(T ) + supp(ϕ) is also compact. Moreover,

as supp(ϕ ∗ T ) is closed and is contained in a compact, we conclude that supp(ϕ ∗ T ) is compact.

11.2 The convolution K∗ (R) ∗ D∗ (R)

Theorem 11.1. (K∗ (R) ∗ D∗ (R)) Let S ∈ K∗ (R) and T ∈ D∗ (R). Then, it holds

1. There exists a distribution S ∗ T called the convolution of S and T such that for all ϕ ∈ D (R)

< S ∗ T, ϕ > = < St, < T x, ϕ(x+ t) >> = < T u, < Sx, ϕ(x+ u) >> (11.2.1)

2. The mapping (S, T ) 7−→ S ∗T from K∗ (R)×D∗ (R) to D∗ (R) is continuous with respect to each

variable.
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PROOF.

• Proof 1: �rst of all, note that we can write (11.2.1) as

< S ∗ T, ϕ > = < S, (ϕσ ∗ T )σ > = < T, (ϕσ ∗ S)σ > for all ϕ ∈ D (R) (11.2.2)

Note that by proposition 11.2., (ϕσ ∗ T )σ ∈ C∞ (R) when T ∈ D∗ (R). Thus, the expression

< St, < T x, ϕ(x+ t) >> = < S, (ϕσ ∗ T )σ > is well-de�ned when S ∈ K∗ (R).

Similarly, as ϕσ ∈ D (R) and S ∈ K∗ (R) we can apply corollary 11.1. and conclude that (ϕσ ∗ T )σ ∈
D (R). Thus, the expression < T u, < Sx, ϕ(x + u) >> = < T, (ϕσ ∗ S)σ > makes sense for all T ∈
D∗ (R). It is not clear, however , that < S, (ϕσ ∗ T )σ > = < T, (ϕσ ∗ S)σ >. This is, in fact true. But

we will not prove this result. It can be found in [Schwartz1965].

• Proof 2: �rst we show that the mapping is continuous respect to the �rst variable. Let (Sn)n be a
sequence in K∗ (R) such that Sn

n−→∞−→ 0 in K∗ (R), that is < Sn, ϕ >
n−→∞−→ 0 for all ϕ ∈ C∞ (R).

Then, using this and the continuity of T

< Sn ∗ T, ϕ > = < T u, < (Sn)x , ϕ(x+ u) >>
n−→∞−→ < T u, 0 >= 0 for all ϕ ∈ D (R)

And we conclude that the mapping is continuous respect to the �rst variable. One shows that the
mapping is continuous with respect to the second variable by doing a similar argument.

Proposition 11.4. (Dirac distributions) Let T ∈ D∗ (R). Then, the following statements hold

1. δa ∗T = T ∗ δa = τaT for all a ∈ R. In particular, δ acts like a unit element for convolution.

2. δ(k) ∗ T = T ∗ δ(k) = T (k) for all k = 0, 1, 2, 3...

PROOF.

• Proof 1: �rst of all note that δa ∈ D∗ (R) (example 9.1.1) and supp(δa) = {a}. Thus, it follows that
δa ∈ K∗ (R). As T ∈ D∗ (R) we get by Theorem 11.1 that δa ∗ T = T ∗ δa is well de�ned and is a
distribution. Moreover, using (11.2.1)

< δa ∗ T, ϕ > = < T u, < δa, ϕ(x+ u) >> = < T u, ϕ(a+ u) > = < τaT, ϕ >

for all ϕ ∈ D (R). Thus, δa ∗ T = T ∗ δa = τaT .

• Proof 2: similarly to 1, we show that δ(k) ∗ T = T ∗ δ(k) is well de�ned and is a distribution.
Moreover, using (11.2.1)

< δ(k) ∗ T, ϕ > = < T u, < δ(k), ϕ(x+ u) >> = (−1)k < T u, ϕ(k)(u) > = < T (k), ϕ >

for all ϕ ∈ D (R). Thus, δ(k) ∗ T = T ∗ δ(k) = T (k).

Proposition 11.5. (Derivatives) Let S ∈ K∗ (R) and T ∈ D∗ (R) Then (S ∗ T )(k) = S(k) ∗ T =
S ∗ T (k).

PROOF. Note that by Theorem 11.1. S ∗ T ∈ D∗ (R). Hence, for all ϕ ∈ D (R), it holds

< (S ∗ T )(k) , ϕ > = (−1)k < S ∗ T, ϕ(k) >
(11.2.1)

= (−1)k < St, < T x, ϕ(k)(x+ t) >> =
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= < St, <
(
T (k)

)x
, ϕ(x+ t) >> = < S ∗ T (k), ϕ >

Thus, (S ∗ T )(k) = S ∗ T (k). Similarly, one proves that (S ∗ T )(k) = S(k) ∗ T .

Proposition 11.6. (support) Let S ∈ K∗ (R) and T ∈ D∗ (R). Then,

supp(S ∗ T ) ⊂ supp (S) + supp(T )

PROOF.

Since supp(S) is compact, supp (S) + supp(T ) is closed. Let us take Ω = R \ {supp (S) + supp(T )}
and ϕ ∈ D (R) with supp (ϕ) ⊂ Ω. We will show that < S ∗ T, ϕ >= 0. Then, we will be able to

conclude that supp(S ∗ T ) ⊂ supp (S) + supp(T ). Note that from (11.2.2)

< S ∗ T, ϕ > = < T, (ϕσ ∗ S)σ >

Hence, it is su�cient to prove that supp ((ϕσ ∗ S)σ) ∩ supp(T ) = ∅. Let us suppose that there exists
u ∈ supp ((ϕσ ∗ S)σ) ∩ supp(T ), then −u ∈ supp (ϕσ ∗ S) ⊂ supp (ϕσ) + supp(S). This means that

−u = y + x with −y ∈ supp (ϕ) and x ∈ supp (S). But then, −y = u + x, thus

supp (ϕ) ∩ (supp (S) + supp(T )) 6= ∅

which is a contradiction since supp (ϕ) ⊂ Ω = R \ {supp (S) + supp(T )}.

Corollary 11.2. Let S, T ∈ K∗ (R). Then, S ∗ T ∈ K∗ (R).

PROOF. If S, T ∈ K∗ (R), then supp(S) and supp(T ) are compact. Thus, supp(S ∗T ) ⊂ supp (S) +

supp(T ) is also compact.

11.3 The convolution K∗ (R) ∗ S∗ (R)

Note that the convolution K∗ (R) ∗ S∗ (R) is a particular case of the convolution K∗ (R) ∗ D∗ (R). But
we will see that in this case the distribution that one obtains is tempered.

Proposition 11.7. Let S ∈ K∗ (R) and let us consider the mapping A : S (R) −→ S (R) de�ned by

A(ϕ) = α where α(u) =< Sx, ϕ(x+ u) >. It holds that A is well-de�ned and is continuous.

PROOF.

• First, we shall show that A is well-de�ned, i.e. A(ϕ) = α ∈ S (R) when ϕ ∈ S (R). As S ∈ K∗ (R),

we can use Theorem 10.2. and write S =
p∑
j=1

T
(nj)
fj

for some positive integers nj and continuous

functions fj which support in some compact set K. Thus

α(u) =

p∑
j=1

< T
(nj)
fj

, ϕ(x+ u) > =

p∑
j=1

(−1)nj
ˆ
K
fj(x)ϕ(nj)(x+ u)dx (11.3.1)
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From this expression and using that ϕ ∈ D (R), it is not di�cult to verify that α ∈ S (R). For more
details, see [Khoan1972].

• To prove continuity of the mapping A, we consider a sequence ϕn
n−→∞−→ 0 in S (R) and show that

A(ϕn) = αn converges to A(0) = 0 in S (R). From (11.3.1) we see

αn(u) =

p∑
j=1

(−1)nj
ˆ
K
fj(x)ϕ

(nj)
n (x+ u)dx

Di�erentiating under the integral sign

∣∣∣umα(q)
n (u)

∣∣∣ =

∣∣∣∣∣∣
p∑
j=1

(−1)
nj

ˆ
K

umfj(x)ϕ(nj+q)
n (x+ u)dx

∣∣∣∣∣∣ ≤
p∑
j=1

ˆ
K

|fj(x)|
∣∣∣umϕ(nj+q)

n (x+ u)
∣∣∣ dx ≤

≤
p∑
j=1

ˆ
K

|fj(x)| |u|m

1 + |x+ u|m
(1 + |x+ u|m)

∣∣∣ϕ(nj+q)
n (x+ u)

∣∣∣ dx ≤ C

p∑
j=1

(∥∥∥ϕ(nj+q)
n

∥∥∥
∞

+ sup
t∈R

∣∣∣tmϕ(nj+q)
n (t)

∣∣∣)
for some constant C > 0. This shows that if ϕn

n−→∞−→ 0 in S (R) then A(ϕn) = αn
n−→∞−→ 0 in S (R).

Thus, we conclude that A is continuous.

Proposition 11.8. Let S ∈ K∗ (R) and T ∈ S∗ (R). Then, the convolution S ∗ T is a tempered

distribution, i.e. S ∗ T ∈ S∗ (R).

PROOF.

We know that S ∗T ∈ D∗ (R) from Theorem 11.1. Thus, it is su�cient to show that S ∗T is continuous

on D (R) with the topology of S (R) (Proposition 10.1.). In e�ect, let (ϕn)n be a sequence in D (R)

which converges to 0 in S (R). From (11.2.1), < S ∗ T, ϕn > = < T u, < Sx, ϕn(x+ u) >>. Moreover,

by Proposition 11.7. < Sx, ϕn(x+ u) >= A(ϕn) ∈ S (R) and A(ϕn)
n−→∞−→ 0 in S (R). Hence, using

the continuity of T ∈ S∗ (R)

< S ∗ T, ϕn > = < T,A(ϕn) >
n−→∞−→ < T, 0 > = 0

Proposition 11.9. Let S ∈ K∗ (R) and T ∈ S∗ (R). The mapping (S, T ) 7−→ S ∗ T is continuous

with respect to each variable. That is:

1. Let (Sn)n be a sequence in K∗ (R) that converges to 0 in K∗ (R), i.e. < Sn, ϕ >
n−→∞−→ 0 for all

ϕ ∈ C∞ (R). Then Sn ∗ T
n−→∞−→ 0 in S∗ (R).

2. Let (Tn)n be a sequence in S∗ (R) that converges to 0 in S∗ (R), i.e. < Tn, ϕ >
n−→∞−→ 0 for all

ϕ ∈ S (R). Then S ∗ Tn
n−→∞−→ 0 in S∗ (R).

PROOF.

• Proof 1: let ϕ ∈ S (R). As T ∈ S∗ (R), it follows from Proposition 11.2. that (ϕσ ∗ T )σ ∈ C∞(R).
Thus, for all ϕ ∈ S (R)

< Sn ∗ T, ϕ > = < Sn, (ϕσ ∗ T )σ >
n−→∞−→ 0
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• Proof 2: let ϕ ∈ S (R). As S ∈ K∗ (R), it follows from Proposition 11.7. that A(ϕ) =
< Sx, ϕ(x+ u) >∈ S(R). Thus, for all ϕ ∈ S (R)

< S ∗ Tn, ϕ > = < Tn, < Sx, ϕ(x+ u) >>
n−→∞−→ 0

11.4 The convolution D∗+ (R) ∗ D∗+ (R)

In the previous sections we have studied the convolution of two distributions where at least one of

them has compact support. Without this condition on the support, the convolution is not generally

de�ned. However, the convolution is de�ned when both distributions are in D∗+ (R) or D∗− (R) (these

spaces were de�ned in de�nition 9.11.).

Proposition 11.10. Let T ∈ D∗+ (R) and ϕ ∈ C∞ (R). Assume that supp(T ) ⊂ [a,+∞) and

supp(ϕ) ⊂ (−∞, b]. Then, < T,ϕ >s de�ned by

< T,ϕ >s = < T, θϕ >

where θ is a function in D (R) equal to 1 on an interval [−M, M ] containing a and b in its interior, is

well-de�ned.

PROOF.

Note that θϕ ∈ D (R), thus < T, θϕ > makes sense. We should show that the de�nition of < T,ϕ >s
does not depend on the choice of θ. In e�ect, let θ1 be another function in D (R) equal to 1 on

[−M1, M1] containing a and b. Then, (θ − θ1)ϕ vanishes on [−m,+∞), where m = min {M,M1}.
Thus, supp ((θ − θ1)ϕ) ⊂ (−∞,−m). Now, since supp(T ) ⊂ [a,+∞) we have

supp ((θ − θ1)ϕ) ∩ supp(T ) ⊂ (−∞,−m) ∩ [a,+∞) = ∅

Thus, < T, (θ − θ1)ϕ >= 0, and consequently < T, θϕ > = < T, θ1ϕ >.

Proposition 11.11. Let T ∈ D∗+ (R) and ϕ ∈ C∞ (R). Assume that supp(T ) ⊂ [a,+∞) and

supp(ϕ) ⊂ (−∞, b]. Then, ψ(t) :=< T x, ϕ(x + t) >s is de�ned for all t ∈ R, supp(ψ) ⊂ (−∞, b − a]
and ψ ∈ C∞(R).

PROOF.

Note �rst that τ−tϕ ∈ C∞ (R) and supp(τ−tϕ) ⊂ (−∞, b − t]. Thus, by proposition 11.10, ψ(t) :=<

T x, ϕ(x+ t) >s is well-de�ned. Now, note that ψ(t) = 0 if supp (τ−tϕ)∩ supp(T ) = ∅ which happens

when b− t < a. Hence, supp(ψ) ⊂ (−∞, b− a]. Finally, by proposition 11.10

ψ(t) = < T x, ϕ(x+ t) >s = < T, θτ−tϕ > = < τtT, (τtθ)ϕ >

and as T ∈ D∗ (R) and (τtθ)ϕ ∈ D (R), we conclude by Proposition 11.2. that ψ ∈ C∞ (R).
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Theorem 11.2. (convolution D∗+ (R)∗D∗+ (R)) Let T and S be in D∗+ (R). The following statements

hold:

1. There exists a distribution called the convolution of S and T , denoted by S ∗ T such that

< S ∗T, ϕ > = < St, < T x, ϕ(x+ t) >s>s = < T u, < Sx, ϕ(x+u) >s>s for all ϕ ∈ D (R)

2. (S ∗ T )(k) = S(k) ∗ T = S ∗ T (k)

3. The mapping (S, T ) 7−→ S ∗ T of D∗+ (R) × D∗+ (R) into D∗ (R) is continuous with respect to

each variable. The convergence of (Sn)n ∈ D∗+ (R) to 0 in D∗+ (R) means that Sn
n−→∞−→ 0 in

D∗ (R) and that there exists a constant c such that supp(Sn) ⊂ [c,+∞) for all n.

PROOF.

• Proof 1: �rst we show that < St, < T x, ϕ(x+ t) >s>s is well-de�ned. As ϕ ∈ D (R) and T ∈ D∗+ (R),

then by Proposition 11.11. ψ(t) =< T x, ϕ(x + t) >s makes sense and has a support of the form

(−∞,M ], for some M > 0. Finally, as S ∈ D∗+ (R) we apply again Proposition 11.11. and conclude

that < St, ψ(t) >s =< St, < T x, ϕ(x+t) >s>s is well-de�ned. Analogously < T u, < Sx, ϕ(x+u) >s>s
is well-de�ned.

It also holds that < St, < T x, ϕ(x+ t) >s>s = < T u, < Sx, ϕ(x+u) >s>s, however we will not prove

this fact. For more details see [Khoan1972].

Next, we should show that S ∗ T is continuous to prove that S ∗ T ∈ D∗ (R). Let (ϕn)n ∈ D (R) s.t.

ϕn
n−→∞−→ ϕ in D (R). As T is a distribution, it holds that

lim
n−→∞

ψn(t) = lim
n−→∞

< T x, ϕn(x+ t) >s = < T x, ϕ(x+ t) >s = ψ(t)

Finally, as S is a distribution, we conclude that

< S ∗ T, ϕn > = < St, ψn(t) >s = < St, θψn(t) >
n−→∞−→ < St, lim

n−→∞
θψn(t) > =

= < St, θψ(t) > = < St, ψ(t) >s = < S ∗ T, ϕ >

Thus S ∗ T is a continuous functional on D (R) and consequently we get that it is a distribution.

• Proof 2: we have seen in 1 that S ∗ T ∈ D∗ (R). Hence, for all ϕ ∈ D (R) hold,

< (S ∗ T )(k) , ϕ > = (−1)k < S ∗ T, ϕ(k) > = (−1)k < St, < T x, ϕ(k)(x+ t) >s>s =

= < St, <
(
T (k)

)x
, ϕ(x+ t) >s>s = < S ∗ T (k), ϕ >

Thus, (S ∗ T )(k) = S ∗ T (k). Similarly, one proves that (S ∗ T )(k) = S(k) ∗ T .

• Proof 3: let ϕ ∈ D (R) and let (Sn)n ∈ D∗+ (R) to 0 in D∗+ (R). As we mentioned in the statement,

it holds that Sn
n−→∞−→ 0 in D∗ (R) and that there exists a constant a such that supp(Sn) ⊂ [a,+∞)

for all n. Assume supp(ϕ) ⊂ (−∞, b], consequently by Proposition 11.11. it follows that supp(ψn) ⊂
(−∞, b − a] for all n, where we have de�ned ψn(u) =< (Sn)x , ϕ(x + u) >s. Moreover, using that

Sn
n−→∞−→ 0 in D∗ (R)

ψn(u) = < (Sn)x , ϕ(x+ u) >s
n−→∞−→ 0
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Finally, using the continuity of the distribution T

< Sn ∗ T, ϕ > = < T u, ψn(u) >s = < T u, θψn(u) >
n−→∞−→ < T u, lim

n−→∞
θψn(u) > = 0

We have proved the continuity with respect the �rst variable. Analogously, we prove the continuity

with respect the second variable.

Proposition 11.12. (support) Let T and S be in D∗+ (R) with supp(S) ⊂ [a1,+∞) and supp(T ) ⊂
[a2,+∞) then supp(S ∗ T ) ⊂ [a1 + a2,+∞) and consequently S ∗ T ∈ D∗+ (R).

PROOF.

Take ϕ ∈ D (R) with supp (ϕ) ⊂ (−∞, a1 + a2). The support of ψ(t) = < T x, ϕ(x + t) >s is in
(−∞, a1) by Proposition 11.11. Thus

supp(ψ) ∩ supp(S) ⊆ (−∞, a1) ∩ [a1,+∞) = ∅

Hence < S ∗ T, ϕ >=< S,ψ >s = 0. This proves that supp(S ∗ T ) ⊂ [a1 + a2,+∞).

11.5 The associativity of convolution

In the previous sections, we have de�ned the convolution of two distributions in several cases and we
have seen that it is a commutative operation. If we wish to convolve three or more distributions, we run
into two problems: existence and associativity. It can be seen that the convolution is not associative
in general. Nevertheless, we will give two results (without proof) which show that convolution is
associative in some speci�c cases.

Proposition 11.13. The convolution of n distributions of which at least n− 1 have compact support

is associative and commutative.

PROOF. The proof of this statement can be found in [C. Gasquet2010, page 306].

Proposition 11.14. The convolution in D∗+ (R) is associative.

PROOF. The proof of this statement can be found in [C. Gasquet2010, page 307].

11.6 The Convolution and the Fourier Transform of Distributions

We saw that for functions, the Fourier transform interchanges convolution and multiplication. We wish
to determine under what conditions the relations T̂ ∗ U = T̂ · Û and T̂ · U = T̂ ∗ Û are also true for
distributions.
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Theorem 11.3. (Representation of S∗ (R)) Let T ∈ S∗ (R). Then there exist positive integers

n1, n2, ..., np and slowly increasing continuous functions f1, f2, ..., fp such that

T =

p∑
k=1

T
(nk)
fk

PROOF. The proof of this statement can be found in [Khoan1972].

Lemma 11.1. (Convolution S (R) ∗ S∗ (R)) Let ϕ ∈ S (R) and T ∈ S∗ (R). Then the convolution

ϕ ∗ T and all its derivatives are slowly increasing C∞ functions.

PROOF.

By Theorem 11.3. we can write T =
p∑
k=1

T
(nk)
fk

where fk is slowly decreasing. Thus, by de�nition 11.1.

(ϕ ∗ T ) (x) = < T y, ϕ(x− y) > = <

p∑
k=1

T
(nk)
fk

, ϕ(x− y) > =

p∑
k=1

< Tfk , ϕ
(nk)(x− y) > =

=

p∑
k=1

ˆ
R
fk(y)ϕ(nk)(x− y)dy =

p∑
k=1

ˆ
R
fk(x− y)ϕ(nk)(y)dy

Now, as fk are slowly increasing continuous functions, there exist Ck > 0 and integers Nk such that

|fk(x)| ≤ Ck
(
1 + x2

)Nk . Thus:
|(ϕ ∗ T ) (x)| ≤

p∑
k=1

Ck

ˆ
R

(
1 + (x− y)2

)Nk ∣∣∣ϕ(nk)(y)
∣∣∣ dy ≤ p∑

k=1

Ck

ˆ
R

(
2y2 +

(
1 + 2x2

))Nk ∣∣∣ϕ(nk)(y)
∣∣∣ dy

=

p∑
k=1

Ck

ˆ
R

Nk∑
j=0

(
Nk

j

)(
1 + 2x2

)Nk−j (2y)2j
∣∣∣ϕ(nk)(y)

∣∣∣ dy ≤
≤
(
1 + 2x2

) max
1≤k≤p

{Nk}
 p∑
k=1

Ck

ˆ
R

Nk∑
j=0

(
Nk

j

)
(2y)2j

∣∣∣ϕ(nk)(y)
∣∣∣ dy


As ϕ ∈ S (R) then
Nk∑
j=0

(
Nk

j

)
(2y)2j

∣∣ϕ(nk)(y)
∣∣ dy will be in S (R) ⊂ L1 (R). Thus, we �nally get that

|(ϕ ∗ T ) (x)| ≤ C
(
1 + 2x2

) max
1≤k≤p

{Nk}
where C :=

p∑
k=1

Ck

ˆ
R

Nk∑
j=0

(
Nk

j

)
(2y)2j

∣∣∣ϕ(nk)(y)
∣∣∣ dy

which proves that ϕ ∗ T is slowly increasing. One obtains similar estimates for the derivatives of ϕ ∗ T
by repeating the computation for (ϕ ∗ T )(k) (x) = < Ty, ϕ

(k)(x− y) >.



CHAPTER 11. CONVOLUTION OF DISTRIBUTIONS AND FOURIER TRANSFORM 126

Lemma 11.2. Let f be a slowly increasing function. Then Tf is a tempered distribution.

PROOF.

As f is slowly increasing function, then |f(x)| ≤ C(1 + x2)N and f ∈ L1
loc (R). Consequently Tf ∈

D∗ (R). We will use Proposition 10.1. to show that Tf ∈ S∗ (R). Let (ϕn)n ∈ D (R) be a sequence
that tends to 0 in S (R). Thus,

|< Tf , ϕn >| ≤
ˆ
R
|f(x)| |ϕn(x)| dx =

ˆ
R

|f(x)| (1 + x2)

(1 + x2)
|ϕn(x)| dx ≤

ˆ
R

C · (1 + x2)N+1

(1 + x2)
|ϕn(x)| dx

≤ C · sup
x∈R

∣∣(1 + x2)N+1ϕn(x)
∣∣ˆ

R

1

(1 + x2)
dx = Cπ · sup

x∈R

∣∣(1 + x2)N+1ϕn(x)
∣∣ n−→+∞−→ 0

where we have used that (1+x2)N+1ϕn(x) tends to 0 in S (R) by proposition 2.4.2. Hence, we conclude
that Tf ∈ S∗ (R).

Proposition 11.15. (Fourier Transform of S (R) ∗ S∗ (R)) Let ψ ∈ S (R) and T ∈ S∗ (R). Then

T̂ψ∗T = ψ̂ · T̂ and ψ̂ · T = T
ψ̂∗T̂ .

PROOF.

•We start showing that T̂ψ∗T = ψ̂ · T̂ . Note that, by Lemma 11.1., ψ∗T is a slowly increasing function
and hence, by lemma 11.2., Tψ∗T is a tempered distribution. Thus, for all ϕ ∈ S (R)

< T̂ψ∗T , ϕ > = < Tψ∗T , ϕ̂ > =

ˆ
R

(ψ ∗ T ) (x)ϕ̂(x)dx =

ˆ
R
< T y, ψ(x− y) > ϕ̂(x)dx =

= < T y,

ˆ
R
ψ(x− y)ϕ̂(x)dx > = < T y,

ˆ
R
ψσ(y − x)ϕ̂(x)dx > = < T,ψσ ∗ ϕ̂ >

On the other hand, since ψ̂ ∈ S (R) ⊂ C∞ (R) and T̂ ∈ S∗ (R) ⊂ D∗ (R), we saw in de�nition 9.12.
that the product ψ̂ · T̂ makes sense and

< ψ̂ · T̂ , ϕ > = < T̂ , ψ̂ · ϕ > = < T,
̂̂
ψ · ϕ >

Applying Proposition 5.3.2 and Theorem 2.2., we see that

̂̂
ψ · ϕ =

̂̂
ψ ∗ ϕ̂ =

ˆ̌
(ψσ) ∗ ϕ̂ = ψσ ∗ ϕ̂

Thus, we get that < ψ̂ · T̂ , ϕ > = < T,ψσ ∗ ϕ̂ > = < T̂ψ∗T , ϕ > for all ϕ ∈ S (R). Hence, we conclude

that T̂ψ∗T = ψ̂ · T̂ .

• Next, we will show that ψ̂ · T = T
ψ̂∗T̂ . Note that ψ̂ ∈ S (R) and T̂ ∈ S∗ (R). Thus, ψ̂ ∗ T̂ is slowly

increasing (Lemma 11.1.) and, by Lemma 11.2., we get that T
ψ̂∗T̂ ∈ S

∗ (R). It can be seen that

T̂ψ∗T = ψ̂ · T̂ also holds changing the operator ·̂ by ·̌. Thus

Ť
ψ̂∗T̂ =

ˇ̂
ψ · ˇ̂

T = ψ · T

where we have used that ·̂ is an isomorphism on S (R) and S∗ (R) (with the corresponding de�nitions
in each case). Thus, applying ·̂ to the previous expression, we �nally obtain

T
ψ̂∗T̂ = ψ̂ · T
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De�nition 11.2. Let f ∈ C∞ (R) and let T ∈ D∗ (R). We de�ne the product of Tf and T by

< Tf · T, ϕ >=< T, fϕ > for all ϕ ∈ D (R). It can be easily seen that Tf · T de�nes a distribution.

Proposition 11.16. (Fourier Transform of K∗ (R)∗S∗ (R)) Let S ∈ K∗ (R) and T ∈ S∗ (R). Then

Ŝ ∗ T = Ŝ · T̂ .

PROOF.

Note �rst of all that as Ŝ ∈ K∗ (R), then there exists a slowly increasing function function f ∈ C∞ (R)
such that Ŝ = Tf (Theorem 10.3.). Then, by de�nition 11.2. Ŝ · T̂ = Tf · T̂ makes sense. Let
ϕ ∈ S (R)

< Ŝ · T̂ , ϕ > = < Tf · T̂ , ϕ > = < T̂ , fϕ >

As f and all its derivatives are slowly increasing C∞ functions, one can easily check that fϕ ∈ S (R).
Then

< Ŝ · T̂ , ϕ > = < T, f̂ϕ > (11.6.1)

Now, we are going to show that f̂ϕ = ϕ ∗ Sσ. Let ψ ∈ D (R), using Property 1.8.

< T
f̂ϕ
, ψ > =

ˆ
R
f̂ϕ(ξ)ψ(ξ)dξ =

ˆ
R
f(x)ϕ(x)ψ̂(x)dx = < Tf , ϕψ̂ > = < ϕŜ, ψ̂ > = < ϕ̂Ŝ, ψ >

Using Proposition 11.15. (note that ϕ ∈ S (R) and Ŝ ∈ S∗ (R)) we �nally get

< T
f̂ϕ
, ψ > = < T

ϕ̂∗̂̂S , ψ > Prop. 10.6.2
= < Tϕ̂∗Sσ , ψ > for all ψ ∈ D (R)

Thus, T
f̂ϕ

= Tϕ̂∗Sσ on D∗ (R) and from Proposition 9.3. we conclude that f̂ϕ = ϕ̂ ∗ Sσ a.e. Using
this in 11.6.1

< Ŝ · T̂ , ϕ > = < T, ϕ̂ ∗ Sσ >
Def. 11.1.

= < T u, < (Sσ)y , ϕ̂(u− y) >> = < T u, < Sy, ϕ̂(u+ y) >>

= < T ∗ S, ϕ̂ > = < T̂ ∗ S, ϕ > for all ϕ ∈ S (R)

where we have used that T ∗ S ∈ S∗ (R) (Proposition 11.8.). Thus, we conclude that Ŝ ∗ T = Ŝ · T̂ .



Chapter 12

Filters and distributions

12.1 Introduction

The purpose of this chapter is to do a brief study of signals and the systems that transmit them.
The notion of signal is extensive. The observation of some phenomenon yields certain quantities that
depend on time (or on space, on frequency...). These quantities, which are assumed to be measurable,
will be called signals. They correspond in mathematics to the notion of function (and more generally,
as we will do, the notion of distribution). Some examples of signals are:

� Intensity of an electric current.

� Potential di�erence between two points in a circuit.

� Gray levels of the points of an image g(i, j)

� A sound

Any entity, or apparatus, where one can distinguish input signals and output signals will be called a
transmission system. That is, we will have an input signal (distribution) Tx which will be transformed
by a transmission system in an output signal (distribution) Ty.

Figure 12.1.1: Diagram of a system

128
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The transmission system will be modeled by an operator A acting on distributions, and we will write
Ty = A(Tx) where Tx ∈ X, the set of input signals, and Ty ∈ Y the set of output signals. Examples
of systems are:

� An electric circuit

� An ampli�er

� The telephone and the Internet.

In particular, we will study �lters which are systems that remove some unwanted components or
features from the input signal.

12.2 Filters and properties

De�nition 12.1. (Analog Filter) Let X be a translation-invariant linear subspace of D∗ (R). An

analog �lter is a mapping A : X −→ D∗ (R) that is linear, invariant and continuous. That is

� A is linear: A (λ1T1 + λ2T2) = λ1A (T1) + λ2A (T2) for all T1, T2 ∈ X and λ1, λ2 ∈ R.

� A is invariant: A (τaT ) = τaA (T ) for all T ∈ X and a ∈ R.

� A is continuous: if (Tn)n is a sequence in X such that Tn
n−→+∞−→ T in X. Then A (Tn)

n−→+∞−→
A (T ) in D∗ (R).

Remark 12.1. We will consider X ⊆ D∗ (R) with a topology that is at least as �ne as the topology

induced in D∗ (R). We will typically consider X as K∗ (R), S∗ (R), D∗+ (R), D∗ (R)... X will be the

space of input signals.

Proposition 12.1. (convolution �lters) The convolution system A : X −→ D∗ (R) de�ned by

A (T ) = S ∗ T is an analog �lter in the following cases:

1. S ∈ D∗+ (R) and X ⊂ D∗+ (R).

2. S is a distribution with bounded support, that is, S ∈ K∗ (R) and X is any subspace of D∗ (R).

PROOF.

• Proof 1: from Theorem 11.2. and Proposition 11.12. we see that A(T ) = S ∗ T makes sense and is

in D∗+ (R) ⊂ D∗ (R). We should show that A is linear, invariant and continuous. In e�ect, A is linear

since for all T1, T2 ∈ D∗+ (R), λ1, λ2 ∈ R and ϕ ∈ D (R)

< A (λ1T1 + λ2T2) , ϕ > = < S ∗ (λ1T1 + λ2T2) , ϕ > = < St, < λ1T1 + λ2T2, ϕ(x+ t) >s>s =

= λ1 < St, < T1, ϕ(x+ t) >s>s +λ2 < St, < T2, ϕ(x+ t) >s>s = λ1 < (S ∗ T1) , ϕ > +

+λ2 < (S ∗ T2) , ϕ > = < λ1 (S ∗ T1) + λ2 (S ∗ T2) , ϕ > = < λ1A (T1) + λ2A (T2) , ϕ >

Thus, we conclude that A (λ1T1 + λ2T2) = λ1A (T1) + λ2A (T2), i.e., A is linear. Moreover, A is
invariant since for all T ∈ D∗+ (R), a ∈ R and ϕ ∈ D (R)

< A (τaT ) , ϕ > = < S∗(τaT ) , ϕ > = < St, < (τaT )x , ϕ(x+t) >s>s = < St, < T x, τ−aϕ(x+t) >s>s



CHAPTER 12. FILTERS AND DISTRIBUTIONS 130

= < S ∗ T, τ−aϕ > = < A(T ), τ−aϕ > = < τaA(T ), ϕ >

Thus, we get that A (τaT ) = τaA(T ), i.e., A is invariant. Finally, the continuity of A follows from
Theorem 11.2.3.

• Proof 2: from Theorem 11.1. we see that A(T ) = S ∗ T is well-de�ned. To see that A is linear, we
use the same argument as in 1. Moreover, using Proposition 11.13. and Proposition 11.4.

τaA(T ) = τa (S ∗ T ) = δa ∗S ∗T = S ∗ δa ∗T = S ∗ τaT = A(τaT ) for all T ∈ X and a ∈ R

Thus, A is invariant. Finally, the continuity of A follows from Theorem 11.1.2.

De�nition 12.2. (Impulse response) Let us consider an analog �lter A : X −→ D∗ (R). Assume

that δ ∈ X. We de�ne the impulse response I of A as the response of the system to the Dirac delta,

that is I = A(δ).

Remark 12.2. When δ is not in X, for example when X = L2 (R), one can still de�ne the impulse

response because in practice all of the �lters encountered will be convolution systems.

De�nition 12.3. (Step response) Let us consider an analog �lter A : X −→ D∗ (R). We de�ne

the step response U of A as U = A(Tu), where u is the Heaviside function.

De�nition 12.4. (Transfer function) Let us consider an analog �lter A : X −→ D∗ (R). Assume

that its impulse response is in S∗ (R). We de�ne the transfer function of A as the Fourier transform

of its impulse response I. That is, H = Î = Â(δ).

Lemma 12.1. (sinusoidal signals) Let us de�ne the sinusoidal signals eλ(t) = e2iπλt for λ ∈ R.
Then Teλ are tempered distributions for all λ ∈ R. Moreover, T̂eλ = δλ.

PROOF.

• Note that eλ ∈ L1
loc (R). Consequently Teλ ∈ D∗ (R). We will use Proposition 10.1. to see that

Teλ ∈ S∗ (R). Let (ϕn)n be a sequence in D∗ (R) such that ϕn
n−→+∞−→ 0 in S∗ (R). Thus

|< Teλ , ϕn >| ≤
ˆ
R
|eλ(t)ϕn(t)| dt =

ˆ
R

1

1 + t2
∣∣(1 + t2

)
ϕn(t)

∣∣ dt ≤ π · sup
t∈R

∣∣(1 + t2
)
ϕn(t)

∣∣ n−→+∞−→ 0

Hence, we conclude by Proposition 10.1. that Teλ is a tempered distribution.

• Now, as Teλ ∈ S∗ (R) then T̂eλ ∈ S∗ (R) is well-de�ned and

< T̂eλ , ϕ > = < Teλ , ϕ̂ > =

ˆ
R
e2iπλtϕ̂(t)dt = ˇ̂ϕ(λ) = ϕ(λ) = < δλ, ϕ > for all ϕ ∈ S (R)

Thus, we conclude that T̂eλ = δλ.

Proposition 12.2. Let us consider a convolution �lter A : X −→ D∗ (R) de�ned by A(T ) = I ∗ T .
Assume that Teλ ∈ X and that the impulse response I of A satis�es one of the following conditions

1. I ∈ K∗ (R)
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2. There exists f ∈ S (R) such that I = Tf .

Then, there exists h ∈ C∞ (R) such that H = Th and A (Teλ) = h(λ)Teλ for all λ ∈ R. In other

words, Teλ is an eigenfunction of A with eigenvalue h(λ).

PROOF.

First of all note that in both cases I ∈ S∗ (R) and hence its Transfer function H = Î is de�ned.

• Proof 1: as Teλ ∈ S∗ (R) (Lemma 12.1.) and I ∈ K∗ (R), we can apply Proposition 11.16.

Â(Teλ) = Î ∗ Teλ = Î · T̂eλ
Lemma 12.1.

= H · δλ for all λ ∈ R (12.2.1)

Now note that as I ∈ K∗ (R), there exists h ∈ C∞ (R) such that H = Î = Th (Theorem 10.3). Thus,

< H · δλ, ϕ > = < Th · δλ, ϕ >
Def. 11.2

= < δλ, hϕ > = h(λ)ϕ(λ) = < h(λ)δλ, ϕ >

And we conclude that H · δλ = h(λ)δλ. Using this in (12.2.1), we see that Â(Teλ) = h(λ)δλ. Finally,
applying the operator ·̌ in both sides of this equality

A(Teλ) = h(λ)Teλ for all λ ∈ R

• Proof 2: note that by Proposition 10.4. it holds H = Î = T̂f = T
f̂
where f̂ ∈ S (R) ⊂ C∞ (R).

Moreover, as f ∈ S (R) and Teλ ∈ S∗ (R), we can apply Proposition 11.15.

Â(Teλ) = Î ∗ Teλ = T̂f · T̂eλ
Lemma 12.1.

= H · δλ for all λ ∈ R

Similarly as before one can see that H · δλ = f̂(λ)δλ. Hence, Â(Teλ) = f̂(λ)δλ and applying the
operator ·̌ in both sides of this equality we �nally get

A(Teλ) = f̂(λ)Teλ for all λ ∈ R

De�nition 12.5. (realizable/causal �lters) Let A : X −→ D∗ (R) be an analog �lter. A is said

to be realizable (or causal) if supp(T ) ⊆ [t0,+∞) implies that supp(A(T )) ⊆ [t0,+∞) for all T ∈ X
and t0 ∈ R.

Remark 12.3. This property is completely natural for a physical system in which the variable is

time. It says that the response at time t depends only on what has happened before t. In particular,

the system does not respond before there is an input.

Proposition 12.3. Let us consider a convolution �lter A : X −→ D∗ (R) de�ned by A(T ) = I ∗ T .
Then A is realizable if and only if supp(I) ⊆ [0,+∞).

PROOF.

• If A is realizable, as supp(δ) ⊆ [0,+∞) and I = A(δ), then supp (I) ⊆ [0,+∞).

• Conversely, if supp (I) ⊆ [0,+∞) and supp (T ) ⊆ [t0,+∞) for some T ∈ X and t0 ∈ R, then I and
T are in D∗+ (R). Consequently, supp (I ∗ T ) ⊆ [t0,+∞) by Proposition 11.12.
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12.3 Tempered solutions of linear di�erential equations

Let us consider a system A : X ⊂ D∗ (R) −→ D∗ (R) whose input T ∈ X and output G = A(T ) are
related by the di�erential equation

q∑
k=0

bkG
(k) =

p∑
j=0

ajT
(j) with bq, ap 6= 0 (12.3.1)

Note that (12.3.1) is taken in the sense of distributions. The coe�cients aj and bk are �xed complex
numbers, and we will assume that T is a tempered distribution. We will see that in general (12.3.1) has
a unique solution G in S∗ (R), which de�nes the output of the system. We de�ne the two polynomials

P (x) :=

p∑
j=0

ajx
j and Q(x) :=

q∑
k=0

bkx
k (12.3.2)

Proposition 12.4. Let T ∈ S∗ (R) and assume that P (x)
Q(x) has no poles on the imaginary axis. Then,

(12.3.1) has a unique solution G ∈ S∗ (R).

PROOF.

• Uniqueness: �rst, let us assume that there exists G ∈ S∗ (R) solving (12.3.1). Then, we can take the
Fourier transform of both sides and using Proposition 10.5.1. we get

̂q∑
k=0

bkG(k) =

̂p∑
j=0

ajT (j) =⇒
q∑

k=0

bkĜ(k) =

p∑
j=0

aj T̂ (j) =⇒
q∑

k=0

bk(2iπλ)kĜ =

p∑
j=0

aj(2iπλ)j T̂ =⇒

=⇒ Q(2iπλ)Ĝ = P (2iπλ)T̂ =⇒ Ĝ =
P (2iπλ)

Q(2iπλ)
T̂ (12.3.3)

Where we have used that P (x)
Q(x) has no poles on the imaginary axis. Note that T̂ ∈ S∗ (R) and P (2iπλ)

Q(2iπλ)

is slowly increasing, thus it is easy to see that P (2iπλ)
Q(2iπλ) T̂ ∈ S

∗ (R). This shows that Ĝ is uniquely

determined and Theorem 10.1. implies that G is uniquely determined. Thus (12.3.1) has at most one
solution in S∗ (R).

• Existence: let us de�ne h(λ) := P (2iπλ)
Q(2iπλ) . As it is slowly increasing then H := Th is a tempered

distribution (Lemma 11.2.) and has an inverse Fourier transform I = Ȟ which we can compute by

descomposing h into partial fractions. We consider the following cases:

- Case 1: h has only simple poles. It holds that h can be written as:

h(λ) =

p−q∑
j=0

αj (2iπλ)j +

q∑
k=1

βk
2iπλ− zk

αj , βk ∈ C

where we de�ne αj = 0 if j < 0 (the polynomial part is zero if p < q) and z1, ..., zq are the simple

poles of P (x)
Q(x) in C. Now, let us de�ne:

K− := {k ∈ {1, 2, ..., q} such that Re(zk) < 0}

K+ := {k ∈ {1, 2, ..., q} such that Re(zk) > 0}
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Note that it holds

H = Th =

p−q∑
j=0

αjT(2iπλ)j +
∑
k∈K−

βkτzkT 1
2iπλ

+
∑
k∈K+

βkτzkT 1
2iπλ

Taking the inverse Fourier transform of Th and using the properties de�ned in chapter 10, it can be
seen that

I = Ȟ =

p−q∑
j=0

αjδ
(j) +

∑
k∈K−

βke
zktTu −

∑
k∈K+

βke
zktTuσ

where u is the Heaviside's function.

- Case 2: h has multiple poles. Note that for the polynomial part of h we will be able to apply the

same argument as in 1. Thus, we can limit ourselves to the case p < q. Let us assume that z1, z2, ..., zl
are the poles of P (x)

Q(x) in C (l ≤ q) and let m1,m2, ...,ml be their respective multiplicities. Then, we

can write

h(λ) =

l∑
k=1

mk∑
m=1

βk,m
(2iπλ− zk)m

=⇒ Th =

l∑
k=1

mk∑
m=1

βk,mτzkT 1
(2iπλ)m

Taking the inverse Fourier transform of Th and using the properties de�ned in chapter 10, it can be
seen that

I = Ťh =

 ∑
k∈K−

Pk(t)ezkt

Tu −

 ∑
k∈K+

Pk(t)ezkt

Tuσ with Pk(t) :=

mk∑
m=1

βk,m
tm−1

(m− 1)!

- Conclusion: from case 1 and case 2, we can conclude that the general form of I will be

I =

p−q∑
j=0

αjδ
(j) +

 ∑
k∈K−

Pk(t)ezkt

Tu −

 ∑
k∈K+

Pk(t)ezkt

Tuσ with Pk(t) :=

mk∑
m=1

βk,m
tm−1

(m− 1)!

- At this point, we know from (12.3.3) that Ĝ = h(λ)T̂ = ThT̂ = Î · T̂ . We would like to take the

inverse Fourier transform in the expression and apply the results of Proposition 11.15. and Proposition

11.16. For this reason, we are going to express I in a di�erent way. Let us take θ ∈ D∗ (R) such that

θ =

{
1 if |t| ≤ 1

0 if |t| ≥ 2

Note that I = Iθ + I (1− θ) = I1 + I2. Consequently, the following facts hold:

� I1 = Iθ =
p−q∑
j=0

αjδ
(j) +

( ∑
k∈K−

Pk(t)ezkt

)
Tθu −

( ∑
k∈K+

Pk(t)ezkt

)
Tθuσ which is in K∗ (R).

� I2 = I(1 − θ) = Tf where f(t) :=
∑

k∈K−
Pk(t)ezkt(1 − θ)u −

∑
k∈K+

Pk(t)ezkt(1 − θ)uσ. It is easy to

see that f ∈ S (R).

Hence, as T ∈ S∗ (R), we can apply Proposition 11.15. and Proposition 11.16. and we get:

Î ∗ T = Î1 ∗ T + Î2 ∗ T = Î1 · T̂ + Î2 · T̂ = Î · T̂
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Consequently, we can write Ĝ = Î · T̂ = Î ∗ T and taking the inverse Fourier transform in both sides

G = I ∗ T

which shows that (12.3.1) has solution and A is a convolution system.

Remark 12.4. If P (x)
Q(x) has a pole on the imaginary axis, then the solution G in S∗ (R) is no longer

unique. For example, let us consider the di�erential equation

G′′ + w2G = δ with w > 0

It can be proved by a straightforward calculation that this equation has as solutions in S∗ (R) all the

generalized functions Tg where

g(t) =

{
Acos(wt) +Bsin(wt) if t < 0

Acos(wt) +
(
B + 1

w

)
sin(wt) if t > 0

One can prove that Tg ∈ S∗ (R) by computing a similar proof to the one made in Lemma 12.1.

Proposition 12.5. Let us consider the polynomials P and Q de�ned in (12.3.2). Assume that P (x)
Q(x)

has no poles on the imaginary axis. Then the system A : S∗ (R) −→ S∗ (R) de�ned by the solution of

(12.3.1) is an analog �lter.

PROOF. The proof of this proposition can be found in [C. Gasquet2010].

Proposition 12.6. Under the hypothesis of Proposition 12.5., let A : S∗ (R) −→ S∗ (R) be the �lter

de�ned by the solution of (12.3.1). Then A is realizable if and only if the real parts of the poles P (x)
Q(x)

are strictly negative.

PROOF.

From Proposition 12.3. A is realizable if and only if supp(I) ⊆ [0,+∞). Note that in the proof of
Proposition 12.4. we got that

I =

p−q∑
j=0

αjδ
(j) +

 ∑
k∈K−

Pk(t)e
zkt

Tu −

 ∑
k∈K+

Pk(t)e
zkt

Tuσ

Thus, we deduce that supp(I) ⊆ [0,+∞) if and only if the term

( ∑
k∈K+

Pk(t)ezkt

)
Tuσ does not appear

in I. And this fact happens if and only if K+ = ∅, i.e. if the real parts of the poles P (x)
Q(x) are strictly

negative.

12.4 Causal solutions of linear di�erential equations

We are going to look for the causal solutions of a linear di�erential equation with constant coe�cients.
For convenience, we write the equation with bq = 1

q−1∑
k=0

bkG
(k) + G(q) =

p∑
j=0

ajT
(j) with ap 6= 0 (12.4.1)
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We assume T ∈ D∗+ (R) and we wish to �nd a solution G ∈ D∗+ (R). Thus, the �lter will be realizable.

Note that in this case, we cannot use the Fourier transform because T and G are not assumed to be
tempered. This lack of restriction is essential, since we will �nd solutions that grow exponentially.

Existence and uniqueness of a causal solution

We start transforming the equation (12.4.1) into a �rst-order linear system. Let us introduce the
auxiliary distributions G1, ..., Gq−1 and de�ne:

G1 := G
′

G2 := G
′
1

...

Gq−1 := G
′
q−2

S :=
p∑
j=0

ajT
(j)

Now, if we de�ne

M :=


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−b0 −b1 −b2 · · · −bq−1

 , G =


G
G1
...

Gq−2

Gq−1

 , Φ =


0
0
...
0
S


Then, (12.4.1) can be written as the matrix equation G

′
= MG + Φ. Let us de�ne etM := Id +

tM + t2

2!M
2 + . . . + tn

n!M
n + . . . =

∞∑
k=0

tk

k!M
k. One can proves the following properties

1. etM is well-de�ned, i.e., the sequence
∞∑
k=0

tk

k!M
k converges for all real t in the (normed) space of

q × q matrices.

2. etM is invertible and its inverse is e−tM .

3. The function t 7−→ etM is derivable and its derivative is the function t 7−→MetM .

4. It holds that etMesM = e(s+t)M .

Thus, let us de�ne X(t) := e−tMG(t). Then, from the matrix equation G
′

= MG + Φ we get that
X
′
(t) = e−tMΦ(t). The solution of this di�erential equation is

X(t) = X0 +

ˆ t

−∞
e−sMΦ(s)ds

and all the solutions of G
′

= MG + Φ will be of the form

G(t) = etMX(t) = etMX0 +

ˆ t

−∞
e(t−s)MΦ(s)ds

where X0 is an arbitrary �xed vector. Note that as Φ has the distribution S in one of its components,

the integral
´ t
−∞ e

(t−s)MΦ(s)ds is solved as in the case of functions using Theorem 9.3. Assume that
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supp(T ) ⊆ [t0,+∞), then supp(S) ⊆ [t0,+∞). Thus, Φ(t) = 0 and G(t) = etMX0 for all t < t0.

Moreover, if we impose G(t) to be causal, then necessarily X0 = 0. Consequently, G
′

= MG + Φ

has the unique causal solution

G(t) =

ˆ t

−∞
e(t−s)MΦ(s)ds

and therefore (12.4.1) has a unique causal solution G. Moreover, since G(t) = 0 for t < t0, then

G(t) = 0 for t < t0 and the system is realizable.

Proposition 12.7. If T ∈ D∗+ (R) then equation (12.4.1) has a unique solution G ∈ D∗+ (R). More-

over, the system B : D∗+ (R) −→ D∗+ (R) de�ned by the unique solution G ∈ D∗+ (R) of (12.4.1) is a

convolution system and hence a �lter.

PROOF.

We have already shown in the beginning of this section that (12.4.1) has a unique solution G ∈ D∗+ (R)

when T ∈ D∗+ (R). Hence the system B is well-de�ned. We are going to show that B(T ) = G is given

by a convolution.

First of all we compute the impulse response I of the system B which is given by I = B(δ). That is,
I is the unique solution in D∗+ (R) of (12.4.1) with input T = δ ∈ D∗+ (R). Then

q−1∑
k=0

bkI
(k) + I(q) =

p∑
j=0

ajδ
(j)

Now, let T ∈ D∗+ (R). Taking the convolution with the input T in both sides of the previous equality
and using Theorem 11.2.

q−1∑
k=0

bk(I ∗ T )(k) + (I ∗ T )(q) =

p∑
j=0

aj(δ ∗ T )(j) =

p∑
j=0

ajT
(j)

As I ∗ T ∈ D∗+ (R) is a solution of (12.4.1) with the input T ∈ D∗+ (R) and this solution is unique, we
conclude that

B(T ) = G = I ∗ T for all T ∈ D∗+ (R) (12.4.2)

Hence, the system B is a convolution system and from Proposition 12.1.1 we conclude that B is an
analog �lter.

Remark 12.5. Notice once again, the fact that the di�erential equation has a unique solution is a

consequence of a constraint on G, in this case, it is that G have support limited on the left.

12.5 Examples of �lters

The RC �lter RCG′ + G = T

Let us consider the following circuit with a resistor R and a capacitor C. Assume that the input to
the circuit is the voltage x(t) and the output is the voltage v(t).
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Figure 12.5.1: RC circuit

• The potential di�erence across a capacitor with charge Q is v(t) = Q(t)
C , thus by Ohm's law we get

Ri(t) + v(t) = x(t)

Moreover, the intensity i in the resistor is the same as the intensity in the capacitor and Q
′
(t) = i(t).

Thus we obtain
RCv′(t) + v(t) = x(t)

Therefore, we see that this system is governed by a �rst-order linear di�erential equation with constant
coe�cients. We assume x ∈ L1 (R). Then, solution is given by

v(t) =
1

RC

ˆ t

−∞
e−

t−s
RC x(s)ds (12.5.1)

• We are going to consider more general input and output signals. We use Proposition 12.7. We
consider the system B : D∗+ (R) −→ D∗+ (R) de�ned by the unique solution B(T ) = G ∈ D∗+ (R) of

RCG
′

+ G = T where T ∈D∗+ (R)

We are going to �nd the output signal B(T ) = G. The strategy will be: �rst we will �nd the impulse
response I of the system B and later we will use (12.4.2) to obtain the output signal.

1) Impulse response: we shall �nd the unique solution I ∈ D∗+ (R) of RCI
′

+ I = δ. We will try with

a generalized function I = Tf with f ∈ D+ (R). Then, for ϕ ∈ D (R)

< RCT
′
f , ϕ > + < Tf , ϕ > = < δ, ϕ > =⇒ −

ˆ
R
RCf(x)ϕ

′
(x)dx +

ˆ
R
f(x)ϕ(x)dx = ϕ(0)

parts
=⇒

ˆ
R

(
RCf

′
(x) + f(x)

)
ϕ(x)dx = ϕ(0)

Then for ϕ ∈ D (R) with supp(ϕ) ⊆ (0,+∞) we will have
´ +∞

0

(
RCf

′
(x) + f(x)

)
ϕ(x)dx = 0. Thus

RCf
′
(x) + f(x) = 0 =⇒ f(x) = ke−

x
RC k ∈ R and x ∈ (0,+∞)

Moreover, it should hold that f ∈ D+ (R) since we want I = Tf ∈ D∗+ (R). This suggests that

f(x) = ke−
x
RC u(x) is a good candidate (where u is the Heaviside function). Note that:

< RCT
′
f+Tf , ϕ >= −

ˆ ∞
0

RCke−
x
RCϕ

′
(x)dx+

ˆ ∞
0

ke−
x
RCϕ(x)dx = RCkϕ(0)−

ˆ ∞
0

ke−
x
RCϕ(x)dx
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+

ˆ ∞
0

ke−
x
RCϕ(x)dx = < RCkδ, ϕ >

Thus, taking k = 1
RC we get that RCT

′
f + Tf = δ. Hence, the impulse response is I = Tf with

f(x) = 1
RC e

− x
RC u(x).

2) Output signal: we have seen in (12.4.2) in Proposition 12.7. that the causal solution is given by

B(T ) = G = I ∗ T = Tf ∗ T

Note that when T is a generalized function, i.e. T = Tg with g ∈D+ (R), we have by Theorem 11.2.

< B(Tg), ϕ > = < Tf ∗Tg, ϕ > = < (Tf )t , < (Tg)
x , ϕ(x+t) >> =

ˆ
R
f(t)

ˆ
R
g(x)ϕ(x+t)dxdt

x= y−t
=

=

ˆ
R
f(t)

ˆ
R
g(y− t)ϕ(y)dydt =

ˆ
R
ϕ(y)

ˆ
R
g(y− t)f(t)dtdy =

ˆ
R

(f ∗ g) (y)ϕ(y)dy = < Tf∗g, ϕ >

Hence B(Tg) = Tf∗g where we have that

(f ∗ g) (t) =

ˆ
R
g(x)f(t− x)dx =

1

RC

ˆ t

−∞
e−

t−x
RC g(x)dx

That is, we have obtained that the output signal is the generalized function of the solution obtained
in (12.5.1).

The integrator G
′

= T

We consider the system B : D∗+ (R) −→ D∗+ (R) de�ned by the unique solution B(T ) = G ∈ D∗+ (R)

of G
′

= T . The impulse response I is given by the solution of I
′

= δ. By example 9.7. we know that
I = Tu (u is the Heaviside function). Thus the output solution is given by

B(T ) = G = I ∗ T = Tu ∗ T for all T ∈ D∗+ (R)

Note that when T is a generalized function, i.e. T = Tg with g ∈D+ (R), we have

< B(Tg), ϕ > = < Tu ∗ Tg, ϕ > = < Tu∗g, ϕ > for all ϕ ∈ D∗ (R)

Consequently we get that B(Tg) = Tu∗g. That is, B(Tg) is the generalized function of

(u ∗ g) (x) =

ˆ +∞

0
g(t− x)dx

y= t−x
=

ˆ t

−∞
g(y)dy

The di�erentiator G = T
′

We consider the system B : D∗+ (R) −→ D∗+ (R) de�ned by the unique solution B(T ) = G ∈ D∗+ (R)

of G = T
′
. The impulse response I is given by I = δ

′
. Thus, using Proposition 11.4.2, the output

solution is given by

B(T ) = G = I ∗ T = δ
′ ∗ T = T

′
for all T ∈ D∗+ (R)

Note that when T is a generalized function, i.e. T = Tg with g ∈D+ (R), we have B(Tg) = T
′
g = Tg′ .
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Concepts and theorems of Real Analysis

A.1 Lebesgue Integral Theory

De�nition A.1. Let X be a set. We de�ne a σ-algebra on the set X as a family χ of subsets of X
holding the following three properties:

1. ∅ ∈ χ.

2. If A ∈ χ then Ac = X rA ∈ χ.

3. Let {An}n∈N s.t. An ∈ χ for all n ∈ N , then
∞⋃
n=1

An ∈ χ.

De�nition A.2. We de�ne a measurable space as the pair (X, χ), where X is a set and χ is a
σ-algebra on X.

De�nition A.3. Let X be a set and χ be a σ-algebra on X. We say that the function f : X −→ R
is χ- measurable if f−1 ((α,+∞)) ∈ χ for all α ∈ R.

De�nition A.4. A measure de�ned on a measurable space (X, χ) is a function µ : χ −→ R∗ :=
R ∪ {±∞} satisfying the following properties:

1. µ(∅) = 0.

2. µ(E) ≥ 0 for all E ∈ χ.

3. For all countable collections {Ei}∞i=1⊆ χ of pairwise disjoint sets: µ

( ∞⋃
k=1

Ek

)
=
∞∑
k=1

µ(Ek).

De�nition A.5. A measure space is a triplet (X, χ, µ) where X is a set, χ is a σ-algebra on X and
µ is a measure de�ned in the measurable space (X, χ).

De�nition A.6. Let (X, χ) be a measurable space. A function ϕ : X −→ R is called simple function
if it can be written as

ϕ(x) =

∞∑
j=1

aj1Ej (x)
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where aj ∈ R and Ej ∈ χ for all j ∈ N.

De�nition A.7. Let (X, χ, µ) be a measure space and let f ∈ M+(X, χ) := {f : X −→ R∗
χ−measurable, f(x) ≥ 0 for all x ∈ X}. We de�ne the integral of f respect µ as:

ˆ
X
fdµ := sup

ϕ

ˆ
X
ϕdµ =

∞∑
j=1

ajµ (Ej) ∈ [0,+∞) ∪ {+∞}

where the supremum is taken with respect to all the simple functions ϕ ∈ M+(X, χ) satisfying
0 ≤ ϕ(x) ≤ f(x) for all x ∈ X.

Remark A.1. If E ∈ χ, then f1E ∈ M+(X, χ) and we de�ne the integral of f respect µ on E as:

ˆ
E
fdµ :=

ˆ
X
f1Edµ

Theorem A.1. (Monotone Convergence Theorem) Let (X, χ, µ) be a measure space. Let

{fn}n∈N be a non-decreasing sequence (∀n ∈ N, ∀x ∈ X, fn+1(x) ≥ fn(x)) of functions of M+(X, χ).

Suppose fn converges pointwise to f µ-almost everywhere. Then, it holds:

ˆ
X
fdµ := lim

n→+∞

ˆ
X
fndµ

De�nition A.8. Let f : X −→ R be a (extended) real-valued function:

1. We de�ne the positive part of f as: f+(x) = max(f(x), 0) =

{
f(x) if f(x) > 0

0 otherwise.

2. We de�ne the negative part of f as: f−(x) = −min(f(x), 0) =

{
−f(x) if f(x) < 0

0 otherwise.

De�nition A.9. Let (X, χ, µ) be a measure space. We de�ne the set of Lebesgue integral functions
L (X, χ, µ) as the set of functions f : X −→ R such that:

1. f is χ-measurable.

2. f+ and f− have �nite integral respect µ.

In this case, if E ∈ χ , we de�ne:

ˆ
X
fdµ :=

ˆ
X
f+dµ −

ˆ
X
f−dµ and

ˆ
E
fdµ :=

ˆ
E
f+dµ −

ˆ
E
f−dµ

Theorem A.2. (Dominated Convergence Theorem) Let (X, χ, µ) be a measure space. Let

{fn}n∈N be a sequence of real-valued, measurable functions. Suppose that the sequence converges
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pointwise to a function f µ-a.e. and is dominated by some integrable function g in the sense that

|fn(x)| ≤ g(x) ∀n ∈ N, µ-a.e. Then

ˆ
X
fdµ := lim

n→+∞

ˆ
X
fndµ

A.2 Lp Spaces

De�nition A.10. Let (X, χ, µ) be a measure space. Let f, g : X −→ R be χ-measurable. We

say that f and g are µ-equivalent and we will write f
µ
v g if they are equal µ−almost everywhere,

i.e. f and g only di�er in a measure zero set. It holds that the relation
µ
v de�nes an equivalence relation.

De�nition A.11. Let (X, χ, µ) be a measure space and let p ∈ [1,+∞). We de�ne the Lp Space as:

Lp (X, χ, µ) :={classes of µ-equivalence of χ-measurable functions f : X −→ R s.t. |f |p ∈ L (X, χ, µ)}

Theorem A.3. Let (X, χ, µ) be a measure space and let f ∈ Lp (X, χ, µ)with p ∈ [1,+∞). Let us

de�ne ‖f‖p :=
(´
X |f |

p dµ
) 1
p . It holds that:

1. ‖·‖p de�nes a norm in Lp (X, χ, µ)

2. (Lp (X, χ, µ) , ‖·‖p) is a Banach Space.

De�nition A.12. Let (X, χ, µ) be a measure space. We de�ne the L∞ Space as:

L∞ (X, χ, µ) := {classes of µ-equivalence of χ-measurables functions f : X −→ R s.t. are bounded
up to a measure zero set}

Let us de�ne ‖f‖∞ := inf{C ≥ 0 : |f(x)| ≤ C for almost every x}. It holds that ‖·‖∞ de�nes a norm
in L∞ (X, χ, µ) .

Inequality A.1. (Hölder's inequality) Let (X, χ, µ) be a measure space. Let f ∈ Lp (X, χ, µ)and
g ∈ Lq (X, χ, µ) with p, q ∈ [1,+∞] and 1

p + 1
q = 1. Then, it holds:

1. fg ∈ L1 (X, χ, µ)

2. ‖fg‖1 ≤ ‖f‖p ‖g‖q

For the case p = q = 2 this inequality is called Cauchy-Schwarz-Bunyakovskii's inequality.

Inequality A.2. (Minkowski's inequality) Let (X, χ, µ) be a measure space. Let f, g ∈
Lp (X, χ, µ) with p ∈ [1,+∞]. Then, it holds:

1. f + g ∈ Lp (X, χ, µ)

2. ‖f + g‖p ≤ ‖f‖p + ‖g‖p
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A.3 Integrals that depend on a parameter

In this section, we consider a measure space (X, χ, µ)and an arbitrary interval (a, b), bounded or not,
of R. Let f : (a, b)×X −→ R and assume that for all t ∈ (a, b) the function x 7−→ f(t, x) is integrable.
We de�ne:

I(t) :=

ˆ
X
f(t, x)dµ(x) t ∈ (a, b)

Concerning the continuity and di�erentiability of the function I(t), we have the following results.

Theorem A.4. (Continuity of parameter dependent integrals) If for almost all x ∈ X the
function t 7−→ f(t, x) is continuous at t∗ ∈ (a, b) and if there exists an integrable function g such that:

|f(t, x)| ≤ g(x) almost everywhere in X, for all t in a neighborhood of t∗

Then I(t) is continuous at t∗.

Theorem A.5. (Di�erentiability of parameter dependent integrals) Suppose that V is a
neighborhood of t∗ ∈ (a, b), V ⊆ (a, b), such that the following two conditions hold:

1. For almost all x ∈ X, t 7−→ f(t, x) is continuously di�erentiable on V.

2. There exists an integrable function g such that
∣∣∣∂f∂t (t, x)

∣∣∣ ≤ g(x) for all t ∈ V , a.e. in X.

Then I(t) is di�erentiable at t∗ and I
′
(t∗) :=

´
X

∂f
∂t (t∗, x)dµ(x)

A.4 Other key theorems

Theorem A.6. (Fubini) Let (X, χ, µ1) and (Y, Y, µ2) be two measure spaces. Assume that
f : X × Y −→ R∗ is measurable and that E × F is a measurable set in X × Y. Then, the following
statements hold:

1. If f is nonnegative on E × F , then:
ˆ
E×F

f(x, y)dxdy =

ˆ
E

(ˆ
F
f(x, y)dy

)
dx =

ˆ
F

(ˆ
E
f(x, y)dx

)
dy.

The three integrals can be equal to +∞.

2. If f is integrable on E × F , then:
- The function x 7→ f(x, y) is integrable for almost all y ∈ F .
- The function y 7→ f(x, y) is integrable for almost all x ∈ E
- The three integrals in 1 are �nite and equal.

3. f is integrable if and only if
´
E dx

´
F |f(x, y)| dy or

´
F dy

´
E |f(x, y)| dx is �nite.

Theorem A.7. The space of simple functions is dense in L1(Rd), i.e there exists a sequence {ϕn}n∈N
of simple functions such that lim

n→∞
‖f − ϕn‖1 = 0.
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Theorem A.8. (Heine Theorem) Let f : K −→ Rn be continuous and let K be compact. Then f

is uniformly continuous.

Theorem A.9. Let I ⊂ R be an open interval (bounded or unbounded). Let C0
c (I) denote the space

of continuous functions that have bounded support in I. Then it holds that C0
c (I) is dense in Lp(I).

Theorem A.10. (Change of variables) Let A and B be two compact subsets of Rd and let

g : A −→ B be a di�eomorphism of class C1. Let f : Rd −→ C. If f is continuous on B, then:

ˆ
B
f(x)dx =

ˆ
A
f(g(y)) |det (Dg) (y)| dy

Where Dg denotes the Jacobian of g.

Theorem A.11. (Divergence Theorem) Let V be subset of Rd which is compact and has a

piecewise smooth boundary ∂V . If F : V ⊂ Rd −→ Rd is a continuously di�erentiable vector �eld

de�ned on a neighborhood of V , then we have:

ˆ
V

(∇ · F ) dV =

ˆ
∂V

(F · n) dS

Where the left side is a volume integral over the volume V , the right side is the surface integral over

the boundary of the volume V .

Theorem A.12. (Green's identity) Let u, v ∈ C2
(
Rd
)
and Ω ⊂ Rd. Then, it holds:

ˆ
Ω
4u (x) v (x) dx = −

ˆ
Ω
∇u (x)∇v (x) dx +

ˆ
∂Ω
v (x) (∇u (x) · n) dS

Theorem A.13. (Uniform Convergence and continuity) Let (fn)n∈N be a sequence in C (A)

(with A ⊂ Rd) such that converges uniformly to f in A ⊂ Rd. Then f ∈ C(A).

Theorem A.14. (Uniform Convergence and di�erentiation) Let (fn)n∈N be a C1 (R) sequence

in an interval [a, b]. Assume that there exists x0 ∈ [a, b] such that (fn(x0)) converges. If
(
f
′
n

)
n∈N

converges uniformly to a function g in [a, b], then:

1. (fn)n∈N converges uniformly to a function f ∈ C1 ((a, b)).

2. f
′

= g in [a, b].
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Spherical coordinates in Rd

An important application of the change of variables formula is to the case of polar coordinates in R2,

spherical coordinates in R3 and their generalization in Rd. These are particularly important when the

function, or set we are integrating over, exhibit some rotational (or spherical) symmetries.

The spherical coordinates system in Rd is given by x = g (r, θ1, ..., θd−1) where:

x1 = rsin (θ1) sin (θ2) ...sin (θd−2) cos (θd−1)

x2 = rsin (θ1) sin (θ2) ...sin (θd−2) sin (θd−1)
...

xd−1 = rsin (θ1) sin (θ2)

xd = rcos (θ1)

with 0 ≤ θi ≤ π for 1 ≤ i ≤ d − 2 and 0 ≤ θd−1 ≤ 2π. The determinant of the Jacobian of this
transformation is given by:

rd−1sind−2 (θ1) sind−3 (θ2) . . . sin (θd−2)

Hence, if we integrate over B(0, N), we get:
ˆ
B(0,N)

f(x)dx =

ˆ π

0

ˆ π

0

· · ·
ˆ 2π

0

ˆ N

0

[
f (g (r, θ1, ..., θd−1)) r

d−1sind−2 (θ1) sin
d−3 (θ2) . . . sin (θd−2)

]
drdθd−1...dθ1

Note that each point x ∈ Rd \{0} can be written uniquely as rγ with γ ∈ Sd−1, since x = |x| x|x| = rγ

and x
|x| ∈ S

d−1. Consequently, the previous expression can be written as:

ˆ
B(0,N)

f(x)dx =

ˆ N

0

ˆ
Sd−1

rd−1f(rγ)dσ(γ)dr
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Notation

• Fourier transform in L1
(
Rd
)
or S

(
Rd
)
: let f ∈ L1

(
Rd
)
or S

(
Rd
)
, we denote its Fourier

transform as f̂ and its inverse Fourier transform as f̌ .

• Fourier transform in L2
(
Rd
)
: let f ∈ L2

(
Rd
)
, we denote its Fourier transform as F (f) and its

inverse Fourier transform as F (f).

• Re�exion: let f be a function. We denote its re�exion as fσ(x) ≡ f(−x).

• Translation: let f be a function and a ∈ R. We denote the translation of f by a as τaf(x) ≡
f(x− a).

• Gradient operator: let f ∈ C1
(
Rd
)
, we denote the gradient of f as ∇f(x) = grad(f) =(

∂
∂x1

f(x), · · · , ∂
∂xn

f(x)
)T

.

• Laplace operator (or Laplacian): let f ∈ C2
(
Rd
)
, we denote the Laplacian of f as 4f(x) =

d∑
i=1

∂2

∂x2i
f(x).

• Divergence operator: let f ∈ C1
(
Rd
)
, we denote the divergence of f as ∇ · f(x) = div(f)(x) =

d∑
i=1

∂
∂xi
f(x).

• Interior of a set: let A ⊂ Rd. We denote its interior as Å.

• Closure of a set: let A ⊂ Rd. We denote its closure as A.

• Boundary of a set: let A ⊂ Rd. We denote its boundary as ∂A.

• Ball of radius r and center x: B(x, r).

• Boundary of the ball of radius r and center x: ∂B(x, r) .
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• Unit sphere on Rd: Sd−1.

• Volume of unit ball in Rd: α(d) .

• Surface area of unit ball in Rd: dα(d)

• With this notation, the volume of the ball of radius r and center x ∈ Rd, written as V ol (B(x, r)) is
given by α(d)rd. Analogously, its surface area, written as SA(B(x, r)), is given by dα(d)rd−1.

• Average of f over B(x, r): for f : Rd −→ R, we de�ne the average of f over B(x, r) as

 
B(x,r)

f(y)dy =
1

V ol(B(x, r))

ˆ
B(x,r)

f(y)dy =
1

α(d)rd

ˆ
B(x,r)

f(y)dy

• Average of f over ∂B(x, r): for f : Rd −→ R, we de�ne the average of f over ∂B(x, r) as

 
∂B(x,r)

f(y)dS(y) =
1

SA(B(x, r))

ˆ
∂B(x,r)

f(y)dS(y) =
1

dα(d)rd−1

ˆ
∂B(x,r)

f(y)dS(y)
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