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Abstract:

Purpose: The  purpose  of  this  paper  is  to  investigate  the  effectiveness  of  implementing

unmanned aerial delivery vehicles in delivery networks. We investigate the notion of the reduced

overall delivery time and energy for a truck-drone network by comparing the in-tandem system

with  a stand-alone delivery  effort.  The objectives  are  (1)  to investigate  the  time and energy

associated to a  truck-drone delivery  network compared to standalone truck or  drone,  (2)  to

propose  an optimization  algorithm that  determines  the  optimal  number of  launch sites  and

locations  given  delivery  requirements,  and  drones  per  truck,  (3)  to  develop  mathematical

formulations for closed form estimations for the optimal number of launch locations and the

optimal total time of delivery.

Design/methodology/approach: The design of the algorithm herein computes the minimal

time  of  delivery  utilizing  K-means  clustering  to  find  launch  locations,  as  well  as  a  genetic

algorithm to solve the truck route as a traveling salesmen problem (TSP). The optimal solution is

determined by finding the minimum cost associated to the parabolic convex cost function. The

optimal min-cost is determined by finding the most efficient launch locations using K-means

algorithms  to  determine  launch  locations  and  a  genetic  algorithm to  determine  truck  route

between those launch locations. 
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Findings: Results show improvements with in-tandem delivery efforts as opposed to standalone

systems. Further, multiple drones per truck are more optimal and contribute to savings in both

energy  and time.  For  this,  we  sampled  various  initialization  variables  to  derive  closed  form

mathematical solutions for the problem. 

Originality/value: Ultimately, this provides the necessary analysis of an integrated truck-drone

delivery system which could be implemented by a company in order to maximize deliveries while

minimizing time and energy. Closed-form mathematical solutions can be used as close estimators

for the optimal number of launch locations and the optimal delivery time.

Keyword: evolutionary, K-means, truck drone in tandem delivery network, UAV 

1. Introduction

The technology for UAVs and drones has increased significantly in the past few years, and the list of

potential uses for automated drones is growing annually across various disciplines. Conversely, there has

been limited research in the area of systems level planning and execution for a network of drones within a

given environment. 

The problem herein examines a truck-drone team from an operational viewpoint to better understand the

impact of the number and location of truck stops with regards to its effect on delivery time and energy

requirements. Initially, we analyze a single drone to deliver all packages to all locations. This requires one

truck stop centrally  positioned among the delivery  locations  using  K-means.  The drone uses a  hub

configuration to egress and ingress from the truck to each delivery location and back, not constrained by

range.  We  intend  to  understand  the  total  time,  cost,  and  energy  involved  in  a  hub  configuration

(star-distance) in order to contrast this configuration with truck-only delivery using a TSP route. We use a

genetic algorithm to compute this TSP truck route in order to satisfy all the deliveries to all the locations.

Furthermore, we use a combination of truck and drone to find the optimal number of truck stops and

locations using K-means algorithm to cluster demands in conjunction with a TSP genetic algorithm. 

The problem herein assumes that one or more drones and a single truck work in tandem to deliver

packages to delivery locations within a given delivery space; and that the uniformly distributed delivery

demands are known a priori. The drones are not constrained by range to gain a better sense of the

upper/lower boundaries of time and energy. Further, neither the truck nor the drone is constrained by a

system of roads but each type vehicle can move directly to any delivery location as required. However, the

truck is constrained to move along a TSP route while the drone is constrained to egress and ingress from
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the truck in hub (star) configuration to a nearby delivery location and then back to the truck. A truck stop

denotes the following: (1) a delivery location of one package from the truck and (2) a launch location for

the drone to deliver one package to each nearby delivery location associated to that truck stop by means

of K-MEANS clustering. 

2. Similar Existing Models in Literature 

Danzig and Ramser investigated the vehicle routing problem (VRP) wherein they described a delivery

scenario of fuel to gas stations whereby integer programming and other algorithmic approaches were

utilized to solve the problem (Dantzi & Ramser, 1959). Later, Clarke and Wright proposed an effective

greedy  heuristic  which  was  subsequently  followed  by  several  models  involving  exact  and  heuristic

approaches  to  solve  the  variations  of  the  VRP (Clarke  & Wright,  1964).  An  extensive  survey  was

conducted by Desrochers, Lenstra, and Savelsbergh devoted to formulating exact methods of solving the

VRP and provided an overview of the system state (Desrochers, Lenstra & Savelsbergh, 1990).

Drone research today involves a number of papers on various topics from obstacle detection-avoidance,

GPS enhancements, hijacking, endurance, and navigation. However, from an operational standpoint, only

a handful of papers deal with the operational aspects of a package delivery system. One recent publication

was written by Chen and MacDonald describing a set of nodes and drones interconnected by a delivery

network interrupted by the random arrival of packages at any node. The objective was to discuss how to

plan and solve for the number of drones given the demands on the system. A simulation model was

recommended for the problem due to the stochastic nature of the scenario (Chen & MacDonald, 2014).

In another recent paper, Murray and Chu formulated an optimization parcel  delivery problem using

trucks and drones. They determined the optimal routing of the truck-drone as synergistic agents in the

delivery effort, such that the total delivery time was minimized. For their case, the truck serves to launch

the drone from an efficient launch location prior to reaching the ‘last mile’ of the delivery effort. A multi-

integer programming (MIP) solution is formulated to solve the problem (Murray & Chu, 2015).

3. Proposed Optimization Model

The optimization algorithm herein utilizes a hybrid Newton’s method with difference equations. This

employs a cost function (J) to solve for the optimal delivery time and associated number of centroids.

Inputs to the optimization function include a set of delivery coordinate locations (P) whereby the length

of this parameter denotes the number of customers (kup).This upper boundary (kup) represents a truck

only delivery while Klow represents a drone only delivery solution. For non-convex functions, a truck only
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solution is optimal. Otherwise, the optimal delivery time (bestTime) for the in tandem system is a function

of speed of the truck (Ts), speed of the drone (Ds), number of drones per truck (dr), as well as the number

(kup) of deliveries and their respective locations (P). 

3.1. Optimization Function

Algorithm 1: Optimization algorithm (hybrid Newton’s method)

Function Optimize(P)
Input

P = {p1, p2, …, pn}; (Set of customer delivery locations to be clustered)
kup (Total number of customers or size n of P)
dr (Number of drones per truck)

Output:
bestTime (Optimal time in hours to delivery)
optimalK (Optimal number of stops (centroids))

Initialize
bestTime = Infinity;
optimalK = kup;

Ts = 35 truck speed ;

Ds = Ts*1.5 (drone speed ); (Drone speed a factor of truck speed in km/h)

klow = 2; (Min number of calculable centroids or stops)
K = {klow, klow +10, kup-10, kup} (k centroids for test for convexity)
Convex = ArgCheckConvex(P, K, ts, ds);
α = 10; (Learning rate for hybrid Newton's Method 2 to 15)
if not Convex then

return;
end 

K1 = ; (Initialize K)

J1 = CostFunction(K1, P, Ts, Ds, dr); (Initialize J)
foreach 1:MaxItr do (for loop)

Ki+1 := Ki – ag; (Gradient descent using learning rate alpha)
Ji+1 := CostFunction( Ki+1, P, Ts, Ds, dr); (Call to cost function)
dJi := Ji+1 – Ji; (Change in cost function)
dKi := Ki+1 – Ki; (Change in K centroids)

g := ; Gradient of cost function with respect to change in centroids)

if Ji+1 < bestTime then
bestTime := Ji+1; (Captures the best time)
optimalK := Ki+1; (Captures the K centroids based on best time)

end
end
return bestTime, optimalK
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3.2. Cost Function

The cost function utilizes the number of centroid stops (K) to evaluate total time. Once initialized, the

function calls  the  KMEANS algorithm to calculate  the  K  optimal  centroids  locations  (C)  based on

customer locations (P). KMEANS returns both optimal location and star distance between customer

locations and centroid locations. Star distance (sD) is the mathematical representation for drone ingress

and egress in hub configuration from truck to customer and back to truck. The KMEANS returned

centroid locations  (C)  are used by the genetic  algorithm to calculate  truck route (R)  defined as the

minimum route of the traveling salesman problem. The genetic algorithm returns both the optimal truck

route and the minimum truck route distance (tD). Both truck distance (tD) and sum of all drone star

distances (sumD) are divided by their respective vehicle speeds to determine the total time required for (K)

truck stops. The total time required for (K) truck stops is returned as the cost function. 

Algorithm 2: Cost Function

CostFunction (K, P, Ts, Ds, dr)
Input

Ds (Drone speed )

Ts (Truck speed )

k (Number of centroids or stops)
P = {p1, p2, …, pn}; (Set of customer locations)
dr (Number of drones per truck)

Output:
totTi (Total time resulting from K stops)

Initialize:
MaxIter =3 (Maximum number of iterations used to average total time)

foreach 1:MaxItr do (for loop)
C, L, sD := CallKmeans(K, P); (Kmeans returns centroid location, distance, and labels)

; (Sum of star distances multiplied by 2m ingress egress)

R, tD := CallGenetic(K,C); (Returns TSP route and min TSP distance)

; (Total time at each iteration based on vehicle speeds)

end

; (average the total times at each iteration for convergence)

end
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3.3. K-Means Algorithm 

The generalized KMEANS algorithm as described by (MacQueen, 1967) simply partitions n objects into

(K) clusters were each object is associated with closest cluster center. It clusters the delivery location into

k-groups where k, or the number of centroids is pre-defined. KMEANS herein utilizes the KMEANS

(MathWorks, 2013) two phase operation to solve for least distance between points (delivery locations) to

nearest centroid (truck launch) summed over all K clusters based on concepts described in works by

Seber (1984) and Spath (1985). The first phase assigns delivery locations to the nearest cluster (centroid)

all at once and then re-calculates the centroids. Phase I typically results in a sub-optimal local minimum,

but gives good candidate centroids for initialization and Phase II. The second phase utilizes ‘on-line’

updates whereby candidate points are reassigned to different centroids if the act of reassignment reduces

the cost. KMEANS algorithm herein is adapted from Seber (1984) and Spath (1985). 

Algorithm 3: Cost Function

Function CallKmeans(k,P)
Input

P = {p1, p2, …, pn}; (Set of customer to be clustered to centroids)
k (Number of centroids)

Output:
C = {c1, c2, c3, …, ck}; (Set of calculated centroids)
L = {l(p) | p = 1, 2,…, n}; (Set of cluster labels for Customer p)
D = {d(p) | p = 1, 2,…, n}; (Set of cluster distances for Customer p)

foreach ci  C do (for loop)

ci := pj  P; (Initial cluster assignment according to Phase I)
end

foreach pi  P do (for loop)

l(pi) := ArgMinDistance(pi, cj) where j  {1...k}; (Assigns customer to closest centroid)
end
changed := false; (Flag to stop repeat)
iter := 0; (Count iteration in repeat)
repeat (outer while loop)

foreach ci  C do (inner for loop)
UpdateCluster(ci); (Based on Phase II)
end

foreach ei  P do (inner for loop)

minDist := ArgMinDistance(pi, cj) where j  {1...k}; (Find Minimum distance)
if minDist ≠ l(pi) then
l(pi) := minDist; (Capture Minimum distance)
changed := true;
end

end
until changed == true and iter ≤ MaxIter
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3.4. Genetic Algorithm 

The genetic algorithm herein is adapted from Joseph Kirk (2007). This efficient algorithm randomly

permutes 200 routes finding a route with best distance within this population. The algorithm begins by

permuting a given population of potential route sequences. It randomly selects a number of routes and

finds the best from this selection. Once the best route is found, it mutates the route in five efficient ways

thus creating a new route for each mutation. Mutations are: (1) reverse orders a short segment within the

route from randomly selected points A to B; (2) reverse orders a short segment within the route from

randomly selected points B to C; (3) Slide a route segment B to C one space left, then replaces the last

element B with the first element A; (4) in route segment A, B, it swaps centroids A and B; and (5) keeps

the original best route. The entire population is updated based on random variations of the five mutations

of the best route. The efficient algorithm solves for large TSP (n>200) problems in relatively short time

(i.e. less than two minutes).

Algorithm 4: Genetic Algorithm

Function CallGenetic(k, C)
Input

C = {c1, c2, c3, …, ck}; (Set of centroids results from CallKmeans to be TSP routed)
n = k where (k>2)

Output:
optimalRoute = {r1, r2, r3, …, rn}; (TSP route sequences from 1 to n)
globalMinDist; (Calculated min distance for optimal route)

Initialize
p:=200; (Population size)
POPpn := ArgRandPermute(p,n); (Randomly Permute route sequence matrix)
DISTij := ArgEuclideanDistance(ci, cj); (Square distance matrix between centroids)
globalMinDist := infinity;
MaxIter := round(25n9); (Maxiterations based on route size)

foreach 1 to MaxIter do (outer for loop)
minDist, index = ArgMinPathDist(POPpn, DISTij); (Find min distance route in population)

if minDist<globalMinDist then
globalMinDist:=minDist; (Capture Minimum Distance)
optimalRoute:= POPindex, :; (Capture Best Route)
end

rPOP5,n := ArgRandSelect(POP); (omly select five routes from population)
minDist, index = ArgMinPathDist(rPOP5,n, DISTij); (Find min distance of the five routes)
rShuff1:n := randShuffle(1:n); (Random shuffle 1:n integers)
rand1, rand2 := sort(rShuff1,2); (Take two elements (A,B) of random shuffle, sort)
rand2, rand3 := sort(rShuff2,3); (Take two elements (B,C) of random shuffle, sort)
foreach k in 1 to 5 do
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tmpPOP5,n := getBestRoute(index); (Get the best of five routes for mutation)
switch k
case 2 (Reverse order a random route segement in best sequence A to B)

tmpPOP(k, rand1 :rand2) = tempPOP(k, rand1 :-1 :rand2);
case 3 (Reverse order a random route segement in best sequence B to C)

tmpPOP(k, rand2 :rand3) = tempPOP(k, rand2 :-1 :rand3);
case 4 (Slide a route segment B to C, replace last element with first element)

tmpPOP(k, rand2 :rand3) = tempPOP(k, [rand2 +1 :rand3 rand2]);
case 5 (Swap two centroids in route sequence A to B)

tmpPOP(k, [rand1 rand2) = tempPOP(k, [rand2 rand1])
otherwise

do nothing;
end
newPop(p-3:p,:) := tmpPOP; (Update new population with the mutations of best)
end
pop := newPop; (Set population as new population)
end

4. Closed Form Mathematical Solutions (Estimations)

Data generated from the optimization algorithms of typical discretized state space initialization variables,

various drone speeds, truck speeds, number of deliveries, and drones per truck was used to formulate

closed form estimations for the number of stops and total delivery time, given input parameters. The

following closed form solutions gave good estimates for expected delivery time and number of truck

stops for uniformly distributed demands. Using ANOVA, each of the input variables were analyzed to

find the significance of the input variables to the output variable. In each case, the input variables revealed

a significant impact on the output as shown by low p-values (i.e. 3×10-16). Estimated number of centroids

(truck route stops/launches)  and the estimated delivery time was found to be a function of size of

delivery  area,  truck speed (Ts),  drone  speed (Ds),  number  of  drones  (dr),  and number of  deliveries

(totCust).

4.1. Optimal K and Time Function (Uniform Distribution)

The state space was discretized as shown in Table 1 below. Truck speed was held constant at 35 km/h

while the drone speed was investigated starting at 35 km/h, then incremented by 17.5 km/h to a max

speed of 105 km/h denoted by 35:17.5:105. The optimal time and optimal number of truck stops was

found  for  each  unique  set  of  input  initialization  values.  In  all,  1,600  initialization  parameters  were

analyzed, and the optimization algorithms produced optimal values for total delivery time and number of
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stops for each case. This dataset, comprised of inputs and optimal outputs, was then used to formulate

closed form estimates. 

Factor Levels Total Levels

Truck Speed 35 1

Drone Speed 35: 17.5: 105 5

No. Drones 1, 2, 3, 4 4

No. Customers 50:50:250 5

Operating Space Uniform Dist. (25: 25: 200) 8

Model MATLAB™ 1

Total Problem Instances 2 Replications (5*4*5*8*2) 1,600

Table 1. Discretized state space initialization parameters

4.1.1. Optimal K (Number of Truck Stops to Launch Drones)

(1)

Equation (1) represents the number of K-clusters, or more specifically the optimal number of truck stops,

given the input variables. 

Figure 1. Power function Y = C Xa where 
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The goodness of fit of this function is high as the adjusted R – square is 0.9011, and therefore, it can be

used for estimating the optimal number of clusters (Optimal K) of this system. 

4.1.2. Optimal Total Delivery 

This function is derived from the same data to estimate the optimal total delivery time for the truck drone

system based on the operating space and the total number of customers, the speed ratio (Drone / Truck),

and the number of drones. 

(2)

Figure 2. Optimal delivery time Y = C Xa where 

The goodness of fit of this function is high as the adjusted R – square is 0.9367, and therefore, it can be

used for estimating the optimal time of this system with a root mean square error of 4.6. 
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5. Experimental Results

Experiments were conducted on various inputs of  state space to gain a  sense of  the variations in

optimal  solutions  compared  to  various  distributions  as  well  as  performance  criteria.  Performance

criteria analyzed included total delivery time, total energy used, and total costs based on cost per km

and cost per hour.

5.1. Optimal Time Analysis

As shown in Table  2,  the  resultant delivery  time cost  curve is  depicted as  a  parabolic,  convex and

quasi-continuous cost function. The delivery time graph was created by analyzing brute force 2 to 100 truck

stops (2:2:100). We see that two truck stops is not optimal. On the other end of the abscissa, we see that

the truck performing all the stops (i.e. abscissa value 100), that this too was not optimal. The optimal

solution was found utilizing both truck and drone, a value between the two extremes. 

Optimal Time (ordinate) and Number of truck stops (abscissa)

Initialization Parameters Simulation (Brute Force)

Operating Space Size 100 km by 100 km

Customers  (100)  deliveries  (uniformly
distributed)

Truck speed km/h (35)

Drone speed km/h (70)

Number of Drones per truck (2)

Uniformly distributed demand

Optimal Results:
Optimality found at

Stops: 22 stops
Delivery Time: 27 h

Table 2. Optimal Time Analysis
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5.2. Energy Estimates of in Tandem System

Rough energy estimates are given to understand the differences in energy requirements between trucks

and drones based on uniformly distributed demand delivery requirements. For these high level estimates a

few assumptions are provided. A drone is assumed to require 448 Watts per second (Allain, 2013) at

100% efficiency; and if we assume 50% efficiency of the drone rotor system, then the drone requires 896

Watts (896 Joules per second) when in flight. Thus, the drone is estimated here to fly at 70km/h and

deliver to each customer in the star configuration associated to each of the cluster centroids. Since our

resulting time for experiments is in hours, the energy required for drones (Edrone) is multiplied by 3,600 and

then the number of hours required for total drone delivery. 

The truck’s estimated speed is 35 km/h and is tasked to circumnavigate each of the centroids in a TSP

route configuration. The truck is estimated get 10 miles / gallon of diesel; and each gallon of diesel has

approximately  1.3×108 J of  energy.  The  algorithm  computes  a  TSP  truck  route  in  kilometers

(total_TSP_truck_route) for each of the possible centroids. The energy requirements for the truck (Etruck)

calculation is based on the TSP route converted to miles and then multiplied by Joules per gallon of diesel

fuel. 

We analyzed the total energy requirements for each of the possible centroids in our experiments. These

ranged from 2 to 100 centroids to determine the optimal energy expenditure. Energy requirements for

truck and drone were added to give the total energy requirements per each centroid configuration. Results

showed that the least amount of energy would be expended if the drone delivered each of the packages

even though both ingress and egress routes would have to be traversed which resulted in more than twice

the distance. It is assumed that these efficiencies are due to four general principles: (1) efficiencies of the

brushless  rotor  are  higher  than those  of  the  diesel  engine,  (2)  the  load  to  vehicle  weight  ratios  is

significantly different for each vehicle and impacts efficiencies, (3) reduced friction efficiencies found in

air transport generally outweigh energy loss due to mechanical/tire friction, and (4) systems that are

cooler tend to use less energy as the drone’s brushless motors will run significantly cooler than the truck’s

diesel engine.
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Optimal Energy (Joules) and Number of Centroids

Input Initialization
Parameters

Simulation (Brute Force)

Size operating space 
(100km by 100 km)

Customers (100) (uniformly distributed
in operating space)

Truck speed km/h (35)

Drone speed km/h (70)

Number of Drones per truck (1)

Centroids/ Stops: 2 stops
Energy Consumed: 1.3407×109 J

Table 3. Optimal Energy Analysis

6. Conclusions

In this paper, we introduced a scenario of a truck-drone in tandem delivery system and analyzed the

system in terms of time and energy. We found that total delivery time could be reduced by using a

delivery drone in tandem and launched from the truck. However, in our study we determined that

insignificant time improvements were achieved if the drone was not capable of more than twice the

speed of the truck. Further, for real time savings, two or more drones would be recommended per

truck. This is primarily due to the assumption that a drone can only carry at most one package and

therefore must traverse a star distance of ingress and egress from truck to delivery location and back to

truck on each sortie. Conversely, the energy efficiencies achieved with a drone far surpassed that of the

truck when simulated deliveries to one hundred customer over a 100 km square distance of delivery.

This is likely due to the fact that a drone is far more efficient due to less overall vehicle weight, less heat

loss and less friction even though the drone is required to traverse nearly twice the distance. For energy,

drone battery swaps at the truck and solar recharging stations may make this energy savings attribute

quite attractive in the near future. 

Additionally, we formulated an optimization algorithm to find the optimal number and locations of

truck  stop/drone  launch  locations  given  a  set  of  customer  delivery  demands  and  initialization

parameters. The optimization algorithm assumes a convex cost function based on number of stops or
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centroids.  Since  the  problem is  simulated  and  considered  quasi-discontinuous,  we  used  difference

equations in place of the Jacobian (gradient) for gradient descent. The algorithm proved to be capable

of solving problems with 200 or more customers in approximately two minutes by solving TSP as well

as drone star-distance. The algorithms found the optimal number and location of truck stops such that

the  minimum  amount  of  time  was  achieved.  Several  experiments  were  conducted  using  the

optimization algorithm and good approximation mathematical models were formulated as closed form

mathematical  solutions  for  expected  delivery  time  and  optimal  number  of  stops.  Brute  force

experiments  were  conducted  to  show  all  relevant  outputs  regarding  a  set  of  likely  initialization

parameters. The graphical results show number of stops and the resulting energy and time associated to

each stop given a set of initialization parameters. It was found that efficiencies could always be found in

energy if the drone was not constrained by range. Furthermore, efficiencies in time were found, if the

speed of the drone was approximately three times (or more) as that of the truck, or if two or more

drones were assigned to each truck.
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