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Abstract 

 Light microscopy has undergone a revolution with the advent of super-resolution 

microscopy methods that can surpass the diffraction limit. These methods have generated much 

enthusiasm, in particular with regards to the new possibilities they offer for biological imaging. The 

recent years have seen a great advancement both in terms of new technological developments and 

exciting biological applications. Here, we review some of the important milestones in the field and 

highlight some recent biological applications. 

Introduction 

Fluorescence microscopy is a powerful tool for biology, as it enables the visualization of 

dynamic biological phenomena in multiple colors, in three dimensions, and with very high molecular 

specificity.  Until recently, however, a main drawback of fluorescence microscopy (and of all other 

light microscopy techniques) has been the limited spatial resolution achievable with light due to 

diffraction. The resolving power of an optical microscope can be approximated by λ/(2NA) in the 

lateral (x-y) directions and (2λn)/NA
2
 in the axial (z) direction, where NA is the numerical aperture of 

the microscope objective, λ the wavelength of light, and n the refractive index of the medium. When 

imaging with visible light through high-NA objectives, the resolution of conventional light 

microscopes is thus limited to ~200 nm and ~500 nm in the lateral and axial directions, respectively. 

This limitation is highly problematic in biology because many biological structures are below the 

diffraction limit (e.g. protein complexes, DNA, cytoskeletal filaments, vesicles, and viruses). Over the 

past several years, this limitation has been overcome with the development of new techniques that 

can achieve resolutions more than one order of magnitude beyond that imposed by the diffraction 

limit. These methods include stimulated emission depletion microscopy (STED) (Klar and Hell, 1999; 

Klar and others, 2000), saturated structured illumination microscopy (SSIM) (Gustafsson, 2005), 

stochastic optical reconstruction microscopy (STORM) (Rust and others, 2006) and (fluorescence) 

photoactivated localization microscopy (PALM and fPALM) (Betzig and others, 2006; Hess and 

others, 2006). These “nanoscopy” methods are starting to enable near molecular-scale spatial 

resolution in biological imaging. This review focuses on super-resolution methods based on 

stochastic single molecule detection and localization, such as STORM, PALM and others, with a 

particular focus on STORM imaging. For an overview of super-resolution methods that rely on 
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patterned illumination and sequential detection such as SSIM and STED the reader is directed to  

other reviews that include these topics (Hell, 2007; Huang and others, 2009). 

 

General Concepts  

Due to the diffraction of light, the image of a single molecule captured through a 

conventional optical microscope is much larger than the molecule itself (and is often referred to as 

point spread function or PSF). When the molecule is isolated, it is possible to determine its position 

with very high precision by finding the centroid of its PSF (Figure 1a) (Thompson and others, 2002; 

Yildiz and others, 2004). Although the ability to precisely localize single molecules is by itself 

powerful, this concept alone is not enough to break the diffraction limit when imaging densely-

labeled samples. The resolving power of an optical microscope is related to the ability to 

discriminate two single molecules in close proximity and this ability is still limited by diffraction, 

since the PSF of these molecules will overlap when they are closer than the diffraction limit (λ/2NA). 

Therefore, to extend single molecule localization concept to super-resolution imaging, it is necessary 

to be able to actively control the density of molecules that are fluorescent at any given time to avoid 

overlapping images. This active control of fluorophore density was made possible by the discovery of 

photoswitchable probes (Bates and others, 2005; Heilemann and others, 2005; Patterson and 

Lippincott-Schwartz, 2002). Photoswitchable probes can be cycled between bright and dark states 

(or between two different spectral colors) using light illumination. In particular, the majority of 

probes can be “switched off” to allow only a very small fraction of them to be in the fluorescent 

state. Even in a densely-labeled sample, the images of this sparse subset of activated probes will no 

longer overlap and therefore their positions can be localized with high precision. Through iterative 

cycles of activation and de-activation, the positions of all the probes can be precisely determined, 

and these positions can then be used to reconstruct a high resolution image of the underlying 

structure (Figure 1b).  

The spatial resolution in super-resolution microscopy depends on several factors. First, the 

precision by which each molecule can be localized, known as “localization precision”, affects the 

spatial resolution. The localization precision mainly depends on the number of photons emitted by 

the molecule, background noise, and pixel size (Mortensen and others, 2010; Stallinga and Rieger, 

2012; Thompson and others, 2002). In 2012, S. Stallinga and B. Rieger proposed an analytical 

expression for the localization precision (Stallinga and Rieger, 2012): 
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where s is the width of the Gaussian that is used to fit the PSF, a the pixel size, N the number of 

collected photons, and τ a normalized dimensionless background parameter defined as 

( ) ( )222
122 Naasb += πτ , with b being the number of background photons per pixel. In practice, 

the localization precision can be experimentally determined by measuring the standard deviation of 

a cluster of multiple localizations originating from a single fluorophore (Figure 2a) (Huang and 

others, 2008; Rust and others, 2006).  
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Second, spatial resolution depends on the labeling density. Low labeling densities typically 

cause continuous structures to appear discontinuous, resulting in a loss of detail (Figure 2b). The 

effects of the labeling density on the spatial resolution can be quantified by the Nyquist criterion 

(Dempsey and others, 2011; Shroff and others, 2008), which states that structural features smaller 

than twice the fluorophore-to-fluorophore distance cannot be reliably discerned: 

DNyquist 1
2

ρ
σ =           (2) 

where ρ is the labeling density calculated as the number of localizations per unit area or volume and 

D is the dimension of the structure to be imaged (2 for two-dimensional and 3 for three-dimensional 

imaging). Methods have been developed that take into account both localization precision and 

labeling density to calculate the intrinsic image resolution (Nieuwenhuizen and others, 2013). 

 Finally, the physical size of the probe also has an effect on how accurately the final super-

resolution image resembles the actual structure. Therefore, small probes such as fluorescent 

proteins, Fab fragments, or nanobodies (Ries and others, 2012) are highly desirable since they will 

more precisely report the actual position of the target molecule (Figure 2c). 

 

Photoswitchable probes  

 Photoswitchable probes are at the heart of super-resolution methods that rely on single 

molecule detection and localization. Initially, STORM was demonstrated with the use of a 

fluorophore pair (Cy3-Cy5) as an optical switch (Bates and others, 2005), while PALM and fPALM 

were demonstrated with the use of photoactivatable green fluorescent protein (PA-GFP) (Patterson 

and Lippincott-Schwartz, 2002), but since then these methods have been extended to utilize a large 

number of other photoswitchable probes (Dempsey and others, 2011; Fernandez-Suarez and Ting, 

2008; Lippincott-Schwartz and Patterson, 2009).  

The paired fluorophores used in STORM are often referred to as the activator-reporter pair. 

In the case of Cy3-Cy5, Cy3 is the activator dye and Cy5 is the reporter dye. The reporter is typically 

imaged using a far-red laser until it switches to a dark state. Once in the dark state, the fluorescence 

of the reporter can be recovered using illumination light that matches the excitation wavelength of 

the activator (e.g. green light for Cy3). For this concept to work, the activator and the reporter must 

be in close proximity (1-2 nm)(Bates and others, 2005). A wide range of activator-reporter dyes have 

been shown to have similar optical switching properties as the original Cy3-Cy5 pair (Bates and 

others, 2012; Bates and others, 2007). In addition, small organic fluorophores have been shown to 

undergo photoswitching without the need for an “activator” dye (dSTORM) (Dempsey and others, 

2011; Heilemann and others, 2009; Heilemann and others, 2008; van de Linde and others, 2009). In 

all cases, the photoswitching seems to critically depend on the buffer conditions. Typically, imaging 

buffers that induce photoswitching in small organic fluorophores contain reducing agents such as 

thiols (e.g. β-mercaptoethanol, cysteamine) (Dempsey and others, 2011; Heilemann and others, 

2009), ascorbic acid (Benke and Manley, 2012), or phosphine (Vaughan and others, 2013) along with 

an oxygen scavenger system to remove oxygen (Dempsey and others, 2011). While some 

fluorophores undergo efficient photoswitching in common buffers, typically the buffer must be 
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optimized for each fluorophore to achieve a high photon output while  minimizing the fraction of 

time that the fluorophore spends in the on state (known as “low duty cycle”) (Dempsey and others, 

2011; Olivier and others, 2013).  

In addition to small organic fluorophores, a wide range of photoactivatable, 

photoconvertible, and photoswitchable fluorescent proteins have been developed for PALM/fPALM 

imaging (Lippincott-Schwartz and Patterson, 2009). Fluorescent proteins have the advantage that 

they are genetically encoded and therefore easier to use for intracellular labeling and live-cell 

imaging. However, the photon output of fluorescent proteins tends to be lower than that of small 

organic fluorophores, leading to inferior localization precision. Small organic fluorophores can be 

linked to the target structure through antibodies, Fab fragments, or nanobodies (Ries and others, 

2012). For intracellular labeling in living cells, hybrid systems that combine a genetically encoded tag 

such as SNAP-, CLIP- or Halo-tag (Jones and others, 2011; Klein and others, 2011; Lee and others, 

2010; van de Linde and others, 2012) together with a fluorophore-labeled synthetic component can 

be used. It is also possible to directly label certain structures, such as lipid membranes and DNA 

using lipophilic (Shim and others, 2012) or DNA-binding dyes (Benke and Manley, 2012; Flors, 2010), 

respectively. Finally, click chemistry, in which a modified target containing a terminal alkyne group 

reacts with a modified fluorophore containing an azide group, can be used to label proteins or 

nucleic acids (Zessin and others, 2012).  

On the whole, the key feature to all probes for single molecule localization microscopy is 

their ability to toggle between different fluorescent states, making it possible to image only sparse 

fluorophores even in a densely labeled biological sample. Photon output, duty cycle and labeling 

strategies are important considerations to take into account when choosing the right probe for a 

specific biological application.  

 

Multi-color super-resolution imaging 

 Multi-color imaging is an important capability of fluorescence microscopy. In many biological 

systems, it is important to visualize many different proteins or cellular components to study their 

interactions. The activator-reporter fluorophore pairs provide a large palette of distinguishable 

photoswitchable probes for multi-color STORM imaging (Bates and others, 2012; Bates and others, 

2007). In this case, the number of colors that can be achieved depends on the number of distinct 

activator-reporter dye pairs. To date, six such pairs have been demonstrated by combinatorially 

pairing three distinct activator and two distinct reporter dyes (Bates and others, 2012). In biological 

samples, three-color imaging has been shown using three different activators paired with the same 

reporter (Lakadamyali and others, 2012). Using the same reporter dye while varying only the 

activator dye is advantageous in that image alignment of different chromatic channels does not need 

to be performed, since the different channels are acquired using the same fluorophore through the 

same optical path. While this type of imaging can be prone to color cross-talk (faulty color-

assignment of those fluorophores that are spontaneously activated independently of the activation 

laser or falsely activated by the wrong activation laser (Bates and others, 2012; Dani and others, 

2010; Lakadamyali and others, 2012)), the cross-talk can often be corrected during post-processing 

using statistical approaches (Dani and others, 2010). On the other hand, when using different 

reporter dyes for multi-color imaging (or different photoswitchable fluorophores in the absence of 
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an activator dye), image alignment is needed to precisely register the images acquired through the 

different optical paths (Annibale and others, 2012; Bates and others, 2012). In addition, different 

reporters or photoswitchable fluorophores may require different buffer conditions for optimal 

photoswitching, making it more challenging to find sets of fluorophores that are compatible with 

each other. Since fluorescent proteins do not require specific buffers for photoactivation, they have 

been successfully used for multicolor PALM/fPALM imaging (Shroff and others, 2007). However, 

often only a subset of these fluorescent proteins may be successfully photoactivated and therefore it 

is important to optimize the fluorescent protein pairs used to avoid artificially low co-localization in 

multi-color images (Annibale and others, 2012). Finally, hybrid approaches that combine small 

organic fluorophores and fluorescent proteins have also been demonstrated (Endesfelder and 

others, 2011).  

Overall, with careful consideration of appropriate probes, color cross-talk and image 

registration, multi-color super-resolution imaging can be successfully realized using a variety of 

different strategies (Muranyi and others, 2013; van den Dries and others, 2013; Xu and others, 

2013).  

 

3D super-resolution imaging 

Most biological structures are three-dimensional. A typical way to extend STORM imaging to 

the third dimension consists of utilizing an astigmatic lens placed between the objective and the 

camera in the imaging path (Huang and others, 2008). This method can yield an axial resolution of 

~50 nm over a range of ~800 nm (~400 nm above and below the focal plane) (Huang and others, 

2008). Due to astigmatism, molecules that are exactly in the focal plane will appear circular; those 

above and below the focal plane will appear elongated either horizontally or vertically (Figure 3a). 

With proper calibration, the ellipticity of each molecule can be converted into the molecule’s z-

position (Figure 3b and c). It is also possible to combine astigmatism with a dual-objective geometry 

in order to capture more photons and improve the z-resolution to about ~20 nm – however, at the 

expense of imaging depth (Xu and others, 2012). 

The imaging depth of 3D super-resolution microscopy has further been extended to thick 

samples by combining the astigmatism approach with selective plane illumination microscopy (SPIM) 

(Cella Zanacchi and others, 2013; Cella Zanacchi and others, 2011). In SPIM, the sample is 

illuminated by a thin sheet of light along an optical path that is orthogonal to the detection axis to 

achieve optical sectioning (Huisken and others, 2004). A 3D image of the sample can be generated 

by rotating the sample. Using this approach in combination with single molecule detection and 

localization (individual molecule localization-selective plane illumination microscopy, IML-SPIM) 

Zanacchi et al. achieved a spatial resolution of <60 nm up to 50-100 μm deep inside spheroids (Cella 

Zanacchi and others, 2011). In addition, by using two-photon photoactivation in selective plane 

illumination geometry, they could further improve the image quality by reducing the scattering 

effects caused when imaging thick samples (Cella Zanacchi and others, 2013).  

Other methods also exist for extending STORM/PALM/fPALM to three dimensions. Astigmatism 

belongs to a subset of methods referred to as PSF engineering. Instead of engineering the PSF to be 

elliptical, it is also possible to engineer other PSF types, such as a double helix (Pavani and others, 
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2009). In this case, the pitch of the double helix is governed by the distance from the focal plane, 

therefore reporting the molecule’s axial position. Finally, an interferometric method, in which 

photons from a single molecule collected through two opposing objectives are allowed to interfere 

(iPALM), has also been used for 3D PALM imaging, providing an impressive axial resolution of ~10 

nm (Shtengel and others, 2009).   

 

Live-cell super-resolution imaging 

One of the greatest advantages of fluorescence microscopy is the ability to image dynamic 

processes inside living cells in a non-invasive manner. Live-cell imaging requires the acquisition 

speed to be faster than the dynamics of the biological process to be studied. For 

STORM/PALM/fPALM, the temporal resolution is limited by the time that it takes to acquire enough 

localizations to satisfy the Nyquist criterion for a given spatial resolution (Huang and others, 2010; 

Shroff and others, 2008). This in turn can be limited by the time it takes for a fluorophore to undergo 

a photoswitching cycle. The photoswitching rate of small organic fluorophores can typically be 

increased by increasing the excitation laser power, without compromising the photon output (Jones 

and others, 2011). In this case it is also important to match the camera frame rate to the fluorophore 

photoswitching rate. Fast frame rates can typically be obtained using a smaller field-of-view (Jones 

and others, 2011). High temporal resolution can thus be achieved at the expense of either the spatial 

resolution (acquiring less localizations), the size of the field-of-view, or both. Wombacher et al. 

initially demonstrated live-cell dSTORM imaging of histone H2B dynamics with 20 nm spatial 

resolution and 10 seconds temporal resolution (Wombacher and others, 2010). Jones et al. 

expanded live-cell STORM imaging to 3D and multicolor, by imaging transferrin internalization 

through clathrin coated pits with a few second temporal and 20-30 nm spatial resolution using an 

EMCCD camera imaging at a frame rate of 500 Hz  (Jones and others, 2011). Faster imaging with 

EMCCDs would result in images with very small fields-of-view.  This limitation can potentially be 

overcome with the use of scientific complementary metal-oxide semiconductor (sCMOS) cameras 

that combine the advantages of high frame rates with a large field-of-view (Huang and others, 2013).  

Further improvement in the temporal resolution can be achieved with recent advances in 

data analysis methods for localization microscopy. As previously mentioned, in order to localize 

molecules with high precision, their PSFs need to be non-overlapping. However, using data analysis 

methods such as multi-emitter fitting or sparse-signal recovery, this requirement can be relaxed,  

allowing also the positions of highly-overlapping PSFs to be precisely determined (Babcock and 

others, 2012; Cox and others, 2012; Holden and others, 2011; Zhu and others, 2012). With these 

approaches, image acquisition can be sped up since the Nyquist criterion can be satisfied more 

rapidly by activating several overlapping molecules simultaneously in each frame. Combining the 

advantages of multi-emitter fitting algorithms and the sCMOS camera technology, Huang et al. 

imaged transferrin dynamics with millisecond temporal resolution (30 reconstructed images per 

second) using a frame rate of 1600 Hz and a field-of-view of 13 X 13 μm
2
 (Huang and others, 2013). 

Another important consideration for live-cell imaging is the suitability of the probe for 

labeling intracellular structures in living cells. Fluorescent proteins outperform small organic 

fluorophores in this respect. However, since fluorescent proteins have lower photon outputs and 
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slower switching rates, this improvement comes at the expense of both spatial and temporal 

resolution.  

Overall, live cell super-resolution imaging has been demonstrated using a wide range of 

probes and imaging conditions leading to varying levels of spatiotemporal resolution. Several 

parameters such as imaging speed, imaging length, spatial resolution, field-of-view and phototoxicity 

must be carefully considered and balanced to achieve the desired results. For a recent, more in 

depth review on the topic the reader is directed to (Lakadamyali, 2013). 

 

Some recent biological applications 

 STORM/PALM/fPALM imaging has already led to a number of salient discoveries in biology 

across a large number of fields. It is beyond the scope of this review to summarize the large number 

of important biological discoveries. Instead, we highlight here some of the latest applications of 

STORM imaging. 

 One of the fields in which STORM imaging has made a major impact has been neuroscience. 

As a recent example, using multi-color, 3D STORM imaging, Xu et al. has shed important light on the 

organization of the actin cytoskeleton in neuronal axons and dendrites (Xu and others, 2013). In this 

elegant study, they discovered that in neuronal axons actin shows highly-organized, periodic, ring-

like structures wrapped around the axon circumference. Spectrin, a cytoskeletal scaffolding protein, 

also forms ring-like structures, which alternates with the actin rings in a regular pattern. The spacing 

between the actin and spectrin rings is consistent with the length of a spectrin tetramer. These 

observations led to the conclusion that spectrin tetramers are aligned longitudinally along the axon 

shaft connecting adjacent actin rings together. This unique cytoskeletal arrangement seems to 

dictate the periodic distribution of sodium channels on the axonal membrane and may play an 

important role in action potential propagation.  

 Taking advantage of a wealth of methods ranging from 3D STORM and PALM imaging to 

single step photobleaching of cultured neurons and tissue slices, Specht et al. characterized the 

ultrastructure and the stoichiometry of receptors and scaffolding proteins at inhibitory synapses 

(Specht and others, 2013). In particular, they resolved the nanoscale arrangement of GABA receptor 

and gephryin and then measured the relative stoichiometry of these molecules. They found a one to 

one correspondence between GABA and gephyrin, indicating that gephyrin forms a two-dimensional 

scaffold in which all gephyrin molecules can contribute to receptor binding, an important finding 

given that the strength of neurotransmission is governed by the number of neurotransmitter 

receptors. This work demonstrates that the combination of super-resolution and quantitative 

imaging can be used to characterize molecular interactions and synaptic plasticity at the nanometer 

scale. 

 In another hybrid approach, Balint et al. combined single particle tracking with STORM 

imaging in a correlative and sequential way to study the impact of the microtubule cytoskeleton on 

motor-protein mediated cargo transport at high temporal and spatial resolution (Balint and others, 

2013). By mapping the trajectories of lysosomes to the individual microtubule tracks on which these 

lysosomes moved, they investigated how microtubule intersections affect the motion of cargos. 
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They found that if the axial separation between microtubules at the intersection is sufficiently large, 

then cargos can pass through the intersection and continue moving on the same microtubule. 

However, if the microtubule separation is too small (<100 nm), cargos are forced to pause. This 

correlative-imaging approach is well-suited for studying how road-blocks impact cargo transport and 

will be useful for putting other fast cellular dynamics into the context of ultrastructure.  

 As a final example, Szymborska et al. very elegantly combined STORM imaging with single 

particle averaging to determine the molecular architecture of one of the protein complexes making 

up the nuclear pore complex (NPC) (Szymborska and others, 2013). They obtained super-resolution 

images of thousands of NPC rings by labeling the different proteins of the Nup107-160 subcomplex, 

one of the largest building blocks of the NPC. While the spatial resolution of each NPC ring was 

limited to 15-20 nm, they took advantage of the symmetry of this structure to align and average 

thousands of NPC images. This particle averaging approach (Loschberger and others, 2012) allowed 

them to resolve the position of each protein within the Nup107-160 subcomplex with 1 nm spatial 

resolution. As a result, they could build a model for the structural organization of the NPC scaffold. 

This exciting study opens the door for using super-resolution microscopy methods such as STORM to 

address important questions in structural biology related to the organization of large protein 

complexes.  

 

Conclusions and Outlook 

 Since their first demonstration in 2006, single molecule localization methods such as 

STORM/PALM/fPALM have undergone tremendous technological developments. Nanoscopic 

imaging has since been extended to multiple colors, three dimensions, and living cells. In addition, 

rapid commercialization has made these methods more easily available to non-specialists. These 

advances led to a fast pace of important new discoveries in biology. Based on this early progress, it is 

clear that the future of super-resolution imaging holds great promise. In particular, further 

developments in the field of photoswitchable probes will enable exciting, new possibilities. 

Improvements in brightness, photostability, and photoswitching rates of available probes and the 

discovery of new probes with improved properties should permit long-term visualization of 

ultrastructural dynamics with very high spatiotemporal resolution. In addition, continued 

developments in three-dimensional imaging of thick samples will create new opportunities to study 

biological processes inside tissues (ex vivo) or in small animals (in vivo) with unprecedented spatial 

resolution.     
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Figures 

Figure 1 – (A) The image of a single fluorophore in a light microscope is a diffraction-limited spot. By 

fitting a Gaussian to its intensity profile it is possible to retrieve the original position of the 

fluorophore with nanometer precision. (B) Schematic showing the general strategy for single 

molecule localization microscopy. By using photoswitchable fluorophores, it is possible to turn “on” 

and image only a few molecules at a time (shown in light green). These sparse, single fluorescent 

molecules are localized with very high precision (localizations are shown as dark green spots), turned 

“off” (by photobleaching or by switching to a dark state), and a new subset is turned “on”. This 

process is repeated for several cycles until all fluorophores are localized. Finally a super-resolution 

image of the underlying structure can be reconstructed by adding all the localizations (last panel). 

Figure 2 – (A) The localization precision in (x-y) directions can be determined from the standard 

deviation (σ) of the distribution of multiple localizations originating from an individual fluorophore 

(shown in the figure is the full width at half maximum, FWHM=2.35σ). (B) Effect of the labeling 

density on the spatial resolution, illustrated for the particular case of microtubules. In the zoomed-in 

view, a significant improvement in resolution can be appreciated as the labeling density increases. 

(C) Schematic comparison of the size of different types of probes: conventional antibodies (~10-15 

nm), Fab fragments (~5-6 nm), and nanobodies (~4 nm).  

Figure 3 – Three-dimensional STORM imaging with an astigmatic lens. (A) A molecule in the focal 

plane appears circular (center), while molecules above and below the focal plane appear elongated 

(top and bottom, respectively). (B) The position of each molecule relative to the focal plane (z=0) can 

be determined from a calibration plot by measuring the width of each molecule in (x-y) (Wx and 

Wy). (C) Example of microtubules imaged in three dimensions using this approach. The color coding 

indicates z-height according to the color scale bar.  
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(A) The image of a single fluorophore in a light microscope is a diffraction-limited spot. By fitting a Gaussian 
to its intensity profile it is possible to retrieve the original position of the fluorophore with nanometer 

precision. (B) Schematic showing the general strategy for single molecule localization microscopy. By using 

photoswitchable fluorophores, it is possible to turn “on” and image only a few molecules at a time (shown in 
light green). These sparse, single fluorescent molecules are localized with very high precision (localizations 
are shown as dark green spots), turned “off” (by photobleaching or by switching to a dark state), and a new 
subset is turned “on”. This process is repeated for several cycles until all fluorophores are localized. Finally a 
super-resolution image of the underlying structure can be reconstructed by adding all the localizations (last 

panel).  
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(A) The localization precision in (x-y) directions can be determined from the standard deviation (σ) of the 
distribution of multiple localizations originating from an individual fluorophore (shown in the figure is the full 
width at half maximum, FWHM=2.35σ). (B) Effect of the labeling density on the spatial resolution, illustrated 
for the particular case of microtubules. In the zoomed-in view, a significant improvement in resolution can 
be appreciated as the labeling density increases. (C) Schematic comparison of the size of different types of 

probes: conventional antibodies (~10-15 nm), Fab fragments (~5-6 nm), and nanobodies (~4 nm).  
154x130mm (300 x 300 DPI)  
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Three-dimensional STORM imaging with an astigmatic lens. (A) A molecule in the focal plane appears 
circular (center), while molecules above and below the focal plane appear elongated (top and bottom, 

respectively). (B) The position of each molecule relative to the focal plane (z=0) can be determined from a 

calibration plot by measuring the width of each molecule in (x-y) (Wx and Wy). (C) Example of microtubules 
imaged in three dimensions using this approach. The color coding indicates z-height according to the color 

scale bar.  
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