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Normal mode methods are becoming a popular alternative to sample the conformational landscape of
proteins. In this study, we describe the implementation of an internal coordinate normal mode analysis
method and its application in exploring protein flexibility by using the Monte Carlo method PELE. This
new method alternates two different stages, a perturbation of the backbone through the application of
torsional normal modes, and a resampling of the side chains. We have evaluated the new approach using
two test systems, ubiquitin and c-Src kinase, and the differences to the original ANMmethod are assessed
by comparing both results to reference molecular dynamics simulations. The results suggest that the
sampled phase space in the internal coordinate approach is closer to the molecular dynamics phase space
than the one coming from a Cartesian coordinate anisotropic network model. In addition, the new
method shows a great speedup (�5–7�), making it a good candidate for future normal mode implemen-
tations in Monte Carlo methods.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Computational experiments are, in general, easier to prepare,
and faster and cheaper to perform than their real-life counterparts.
Furthermore, they allow scientist to have a privileged view of the
systems under study, providing spatial and (often) timescale reso-
lution that cannot be achieved by any other mean.

Of all the features that can be simulated in biopolymers, flexi-
bility is one of the most difficult to reproduce and still remains a
major challenge. The biological role of protein flexibility is highly
relevant, being tightly related to protein function and ligand bind-
ing mechanisms, the understanding of which is a central aspect in
computer-aided drug design. The correct handling of ligand and
receptor flexibility is increasingly seen as critical for the success
of virtual screening experiments.1 To this aim, several approaches
have been proposed to introduce flexibility: docking on multiple
receptor conformations,2,3 rotamer sampling on side chains and
ligands,4 molecular dynamics,5 stochastic techniques,6,7 etc.

The most known and used technique to sample protein flexibil-
ity, with great success, is molecular dynamics (MD). Long scale
MD simulations can be used to describe protein folding or even
to capture ligand binding events efficiently.8,9 However, these
simulations require large computational resources or specialized
hardware, which limits their use. In order to be applicable in com-
puter-aided drug design, the used sampling techniques need to be
fast and efficient allowing for reasonable short timelines. This is
also the main reason why a detailed handling of flexibility is
greatly simplified in methods where speed is desirable, such as
the ones typically used in virtual high-throughput screening
(VHTS). Recent hardware improvements, especially in accelerators
such as GPUs, are spreading the use of MD simulations in drug
design projects,10 however, they cannot be applied routinely in
VHTS pipelines, where thousands of compounds have to be tested.

An alternative to MD are Monte Carlo (MC) techniques.11 These
methods have the capability of generating uncorrelated samples in
two subsequent steps, allowing to quickly traverse the conforma-
tional space. This property permits, theoretically, to sample the
conformational space more effectively and in a computationally
tractable way. However, depending on the problem, the difficulty
of generating new likely poses may largely drop its performance.12

In particular, when modeling large biomolecules, MC methods
have difficulties in efficiently sampling all degrees of freedom13,14;
most successful MC studies (and methods) focus on small–medium
polypeptides and/or local sampling, such as loops and side
chains.15,16 The Protein Energy Landscape Exploration (PELE)
software7 aims to overcome these sampling problems by adding
protein structure prediction techniques in the MC sampling
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iteration. PELE has shown to be successful in many tasks like sam-
pling protein flexibility,17 protein–ligand interactions,18–20 enzyme
engineering21,22 and to describe ligand thermodynamics.23

1.1. The anisotropic network model (ANM) in PELE

PELE is implemented as an iterative procedure where each MC
iteration is composed of a perturbation and a relaxation phase. In
the perturbation phase, the protein backbone is modified using
an approach based on the ANM, a type of normal mode analysis
(NMA) first introduced by Atilgan et al.24 This model simplifies
the protein potential as a harmonic elastic network of coarse grain
units (typically Ca atoms) oscillating around a stable equilibrium
conformation. These kinds of methods have shown to be successful
in the study of large amplitude transitions in proteins, which are
often involved in biological functions. Despite their simplicity, they
have been shown to have good predictive capabilities and correlate
well with experimental data.25,26

Once the elastic network has been defined and the Hessian
Hij ¼ @2V

@qi@qj

� �
is calculated, eigenvectors and eigenvalues can be

obtained by solving HA ¼ AK.
Eigenvalues (K) are associated with the frequencies of the

modes and the energetic cost of moving the system along its
related eigenvector (A). Usually, only the first lower frequency
modes are retrieved, as they are enough to describe wide confor-
mational movements.27 Keep in mind that higher frequency
modes, associated with Ca–Ca stretching (and bending), do not
have physical meaning. The lower frequency modes have shown
to have a high degree of correlation with MD essential space.28

In order to apply the ANM modes in PELE, a subset of the lower
energy eigenvectors is chosen (either randomly or as defined by
the user) and a linear combination of them is calculated. The trans-
lation of the current coordinates by the resultant vector defines a
set of target coordinates: the ANM conformation proposal. The
conformational change is eventually calculated by adding har-
monic constraints between the initial position of each Ca atom
and their position in the proposal to finally perform a minimization
that will move the atoms close to their target positions.

Because of the chosen strategy to apply the modes during the
ANM step, the covalent geometry of the protein can be slightly
distorted, producing large energy increments. In order to over-
come this, PELE enters a relaxation stage where the energy is
lowered. First, the torsional angles of the most energetic side
chains are changed using a side chain prediction algorithm and
a library of predefined rotamers. Second, a global minimization
is performed in order to further lower the energy. In this sys-
tem-wide minimization, a weak constraint is added to the Ca

atoms to prevent the minimization from undoing the perturba-
tion backbone move.

Finally, a metropolis acceptance step is performed using the
Boltzmann criterion, and the current conformation is accepted or
rejected. Thus, the overall approach is quite different from most
MC implementations: each MC step involves a significant number
of protein structure prediction techniques, requiring a remarkable
amount of computational time (�1 min on average), but is capable
of introducing a large collective displacement. Notice that, by using
these methods, we introduce importance sampling toward feasible
structures (also adding limitations, see below).

One of the consequences of the use of minimizations is the loss
of detailed balance, which implies that a complete exploration of
all accessible states is not guaranteed. Also, we observe that, under
certain circumstances, the combination of the profuse use of min-
imizations (twice every MC iteration) and the implicit solvent
model adds a bias towards compact conformations.
1.2. Internal coordinates conformational sampling

Internal coordinates (IC) are a set of interdependent coordinates
that include the distance, angle and dihedral angle between atoms,
and are supposed to be a more natural way of representing and
manipulating chemical entities.

Conformational sampling in torsional space is, in general, more
efficient than in Cartesian coordinate (CC) space. The main reason
is that changes in the torsional degrees of freedom often show low
energy barriers, while bending and angular changes have higher
energy barriers. This idea has often been used to enhance the sam-
pling of MC algorithms.29–32

It is also possible to calculate normal modes in the internal
coordinates space. Our preliminary analysis of torsional modes
showed that they are more collective (see Section S1). This is an
indicator of a less severe ‘‘tip effect”, produced by a concentration
of the modes in loose loops that can potentially nullify the move-
ments in more structured regions, slowing down sampling.
Besides, their degree of collectivity is less dependent on the topol-
ogy of the elastic network (EN). When comparing them with CC
modes, we have observed that both mode spaces do not always
contain the same information (their overlaps range from 65% to
95%) possibly due to their differences in collectivity.

Internal coordinates NMA (icNMA) has already been used as a
feasible alternative to handle protein flexibility. However, its pres-
ence in literature is incidental compared to its CC counterpart,
maybe because the implementation of the first is harder. We
would like to highlight the methods published by Noguti and
Go,33 Kidera et al.32 and the more recent iMC method proposed
by López-Blanco et al.34

In this article, we will focus on describing the improvements
carried out on the PELE conformational sampling features; our
long-term goal is to provide a fast and reliable backbone sampling
technique to add into virtual screening refinement steps. To this
end, we implemented an icNMA algorithm in PELE and adapted
it to perform the backbone perturbation and thus handling protein
flexibility. The resiliency to changes in the description of the elastic
network, and the higher collectivity of IC modes, make them a per-
fect alternative for the current Cartesian coordinate NMA (ccNMA)
step in PELE. Also, the way torsional changes are applied supposes
a fundamental advantage compared to ccNMA: as it does not dis-
tort the covalent structure, the complex relaxation protocol is no
longer needed. In order to understand the protein motion provided
by the new method, as well as to assess its performance, we ran CC
and IC NMA simulations for two different systems widely used in
benchmarking: ubiquitin and c-Src kinase, and we compared our
results with reference MD trajectories. Overall, our results indicate
that the internal coordinate approach is closer to the MD phase
space than the previous method. Moreover, they show a significant
speedup (�5–7�), with respect to the ccNMA-based method.

2. Materials and methods

2.1. Internal coordinates normal mode analysis

The implemented IC NMA method starts by describing an elas-
tic network of rigid units that encompass all the heavy atoms
among rotatable backbone torsions. This means that two rigid
units per residue are defined instead of only one as described by
ANM (see Fig. 1A).

The potential of this spring network is the sum of all Hookean
interactions between the units. If expressed using generalized
internal coordinates (backbone dihedrals in this case) the potential
can be written as:



Fig. 1. (A) The coarse grain model defines units encompassed by the torsion angles
phi and psi. (B) Schematic representation of the rotation of units 4–6 (green) around
torsion qa , including the notation used in the formulae.

Fig. 2. Diagram of the two methods currently implemented in PELE. In the ccNMA-base
relaxation. The new icNMA-based method consists of two independent perturbation stag
the backbone is modified, in the second (side chain perturbation), a proper sampling of
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V ¼ 1
2
ðq� q0ÞHðq� q0ÞT ; ð1Þ

where H is the Hessian, that in terms of q35 can be written as:

Ha;b ¼ @2V
@qa@qb

¼
X
i<j

f ij

rij
�� ��2 rij;

@ri � @rj
@qa

� �
� rij;

@ri � @rj
@qa

� �
: ð2Þ

By imposing Eckart conditions36 and that the origin of the molecule
is the center of mass, Noguti and Go proposed an analytical solution
for the partial derivatives37 so that

@r1
@qa

¼ ea � M2

M
ra þM1

M
r01

� �
� r1 �M1r01 � ðea � raÞ þ I2ea

I
ð3Þ

@r2
@qa

¼ �ea � M1

M
ra þM2

M
r02

� �
þ r2 �M2r02 � ðea � raÞ þ I1ea

I
; ð4Þ

where symbols without subscript refer to global quantities and
symbols with superscript refer to the set of units to the left (1) or
to the right (2) of the rotation axis, M is the mass, I the inertia, r0

the center of mass and r are the atom positions. These derivatives
describe how Cartesian coordinates change upon rotation around
the ea axis (torsion qa), in such a way that the momentum is con-
served (see Fig. 1B).

The recursive method proposed by Noguti and Go33 and by Abe
et al.38 lowers memory consumption as well as computational
complexity, which decreases from hðn4Þ to hðn2Þ. The kinetic energy
can than be expressed in terms of the generalized coordinates q:

K ¼ 1
2
_qTK _q ð5Þ
d method, each iteration is composed of two parts: the ANM perturbation and the
es, both implemented as MC algorithms. In the first stage (backbone perturbation),
the side chains is recovered.
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and the metric tensor K:

Ka;b ¼ @2K
@ _qa@ _qb

¼
Xn
i

mi
@ri
@qa

;
@ri
@qb

* +
; ð6Þ

which can be calculated as37:

Kab ¼ M1M3

M
½ea � ðra � r01Þ�½eb � ðrb � r03Þ�

þ ½M1r01 � ðea � raÞ � I1ea�I�1½M3r03 � ðeb � rbÞ � I3eb�
ð7Þ

The eigenvectors and eigenvalues are obtained solving the eigen-
problem HA ¼ KAK. On this occasion the meaning of a eigenvector
is no longer a displacement in Cartesian coordinates, but a set of dif-
ferential rotations around the / and w torsions of the protein back-
bone. It is worth noting that, as torsional NMA uses less degrees of
freedom than ANM (2 vs 3 per residue), the Hessian matrix is smal-
ler and therefore its diagonalization is faster. However, this is not
going to affect the overall performance of the proposed method,
as frequently modes are calculated only few times along the
simulation.

2.2. IC-based sampling method

The new implemented method can be divided in two indepen-
dent stages: backbone perturbation and side chain perturbation,
both implemented asMC algorithms. Each iteration of the backbone
perturbation stage (icNMA step) is analogue to an ANM step in reg-
ular PELE (ccNMA step). First, the increments for / and w torsions of
the backbone are calculatedusing the eigenvectors. Then, the result-
ingdifferential rotations are rescaledusing themaximumamplitude
chosen from a user-defined range [amin; amax]. The value is drawn
from a normal distribution with mean amin þ amax=2 and standard
deviation amin � amax=4. The distribution is truncated so that, when
the chosen amplitude is outside the range, the draw is repeated.
The angular increments are applied using Choi’s method.39

In general, small torsional displacements can give place to large
linear displacements, favouring the appearance of steric clashes.
The energy increment caused by the clashes will most likely ensure
rejection of the backbone move, decreasing acceptance dramati-
cally. As this issue is especially evident in side chains, we have cho-
sen to minimize the energy of those side chains whose atoms
collide with other atoms of the system, using PELE’s implementa-
tion of a Truncated Newton minimizer.40 While this minimization
breaks detailed balance, the following stage (see below) aims at
recovering proper side chain sampling.

The side chain perturbation stage, also implemented as an MC
algorithm, is performed right after the backbone perturbation
stage. At each iteration, a residue with a side chain with rotatable
bonds is randomly chosen. Then a random increment for each of its
rotatable bonds is sampled from a truncated normal distribution
(defined as before), a sense for the rotation is randomly selected,
and the new side chain conformation is built. After this, the energy
increment of the system is calculated and the proposal is accepted
or rejected depending on the outcome of the Metropolis test.

2.2.1. Test systems and reference simulations
We have decided to use MD as a reference in order to compare

the two backbone sampling methods. MD simulations are a stan-
dard approach for investigating protein dynamics, even though
assessing full convergence is hard to achieve.41 We assume that a
long enough MD simulation (i.e. beyond the ls-scale) should be
capable of sampling the relevant conformational space.42,43

We have selected Ubiquitin (PDB id: 1UBQ) and c-Src-kinase
(PDB id: 1Y57, residues 258:534) as test systems because they
show very different structural and dynamic properties. Ubiquitin
is a small globular protein with only 76 amino acids which can
be found in nearly all eukaryotic cells. It plays a crucial role in
post-translational modifications and modifies the function of
substrate proteins.44–46 It is very well investigated, both experi-
mentally47–52 and theoretically.53–55 The structure is well charac-
terized by X-ray (PDB-id: 1UBQ47) and NMR (e.g. PDB-id:
2MSG52). This makes it an ideal test system for new methods and
it is often used as part of benchmark sets.56–58 The reference MD
simulation for ubiquitin is taken from a previous benchmark of
PELE.59 The trajectory was calculated with GROMACS 4.0.560 using
the OPLSAA force field61 and explicit solvent (a cubic box of water
molecules). It was run at 300 K and 1 atm, using periodic boundary
conditions. The production run was performed for 1 ls. We anal-
ysed one snapshot every 100 ps. In the PELE simulations, we omit-
ted the last three residues of the n-terminal loop, as its high
flexibility is a source of ‘‘tip effect” and masks the flexibility of
the rest of the protein. c-Src is a cytoplasmic tyrosine kinase that
catalyzes the transfer of a phosphate group from ATP to the hydro-
xyl group of the tyrosine residue. Src plays an important role in
cellular proliferation, survival, migration, and angiogenesis.62 It
shows wide inter-domain displacements between its three well-
defined domains, the N-lobe, C-lobe and hinge. Our reference MD
simulation for c-Src is a 20 ls MD simulation describing the bind-
ing of PP1 (pyrimidine-type) inhibitor, a Src-selective tyrosine
kinase inhibitor binding to the ATP-binding site of the kinase,63

presented by Shan et al.8 It was parameterized using a cor-
rected64,65 Amber99SB force field and the simulation was run using
the Desmond 2.2.2.1 software66 in the Anton specialized hard-
ware67 with explicit water solvent. Although the simulation was
performed in the presence of a ligand, we assume that only the
populations of visited states68,69 might change, but the accessible
conformational space does not change considerably.

2.3. Comparison analyses

In order to assess the performance of the different approaches,
we carried out different analyses and compared them against our
reference classical MD simulations. The chosen analyses are:

2.3.1. Root mean square fluctuation (RMSF)
The RMSF is an isotropic measure of the displacement over time

of an atom from a reference position (typically the average struc-
ture after superposition of all frames). It is a common measure of
conformational sampling efficiency, however, it cannot be used
as the only source to compare different methods, as the explo-
ration of very different zones could lead to the same RMSF. It can
be calculated as

RMSF �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðx� hxiÞ2i

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
F

XF

n¼1

ðxðnÞ � hxiÞ2
vuut ð8Þ

where F is the number of structures of the conformational ensem-
ble, and hxi is the average position.

2.3.2. Solvent-accessible surface area (SASA)
The SASA describes the accessible surface for a spherical probe

which is rolling over the molecule of interest. The probe, with a
typical radius set to 1.4 Å, mimics a water molecule, giving a mea-
sure of the exposition of the molecule to the solvent and, therefore,
its compactness.70

2.3.3. Radius of gyration
The radius of gyration is a measure of the dispersion of a set of

atoms to its center of mass.
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Rg �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðr � rCOMÞ2i

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðri � rCOMÞ2
vuut ð9Þ

Thus, it is a measure of its compactness.71 By measuring the radius
of gyration at different times, one can assess protein conformational
changes. Both SASA and the radius of gyration have been calculated
using the VMD software.72
Table 1
Choice of parameters affecting the mode application step in both studied methods
and the values that will be used in the initial characterization tests

Method Displacement magnitude

(Å rad)

Relaxation strength

(kcal=mol Å)

ccNMA 0.25, 0.66, 1.08, 1.5, 1.92 0.01, 0.02, 0.04, 0.05, 0.1
icNMA 0.02, 0.05, 0.075 ,0.10, 0.12, 0.15 0.01, 0.02, 0.04, 0.05, 0.1
2.3.4. Conformational space overlap
In order to perform a purely geometrical comparison of the

ensembles produced by each method, it is convenient to calculate
the overlap between the conformational space of the reference MD
and the normal mode driven trajectories. We used a similar
approach to the ones shown in Lymann’s and Lindorff-Larsen’s
articles73,74:

� First, we want to obtain a partition in k regions of our reference
conformational space (R1;R2; . . . ;Rk). To this end, we use the
cluster analysis software pyProCT75 and apply a k-medoids algo-
rithm using the RMSD between conformations as the distance.
The medoids of each of these clusters (r1; r2; . . . ; rk) are the rep-
resentative conformations of each region Ri of the conforma-
tional space.

� Then, for each conformation cj belonging to the CC or IC NMA
ensembles, we look for its most similar MD representative ri
and we add it to the cluster Ri. In other words, this means that
conformation cj is assigned to the region Ri of the conforma-
tional space.

� For all the methods, we calculate the population of all the clus-
ters. Afterwards, values are normalized in order to get a proba-
bility density distribution.

� Finally, the square root of the Jensen-Shannon divergence (JSD)
of the distributions is calculated as

O ¼ JSDðPjjQÞ12 ¼ 1
2
KLDðPjjMÞ þ 1

2
KLDðQ jjMÞ

� �1
2

; ð10Þ

where KLD is the Kullback–Liebler divergence and Q is the aver-
age distribution. The square root of JSD can be used as a metric76

to assess the degree of overlap of the probability distributions,
and, therefore, of each one of the methods with MD. Values
are confined into the range [0,1], where a value of 1 means that
the population distributions diverge completely and a value of 0
that the distributions are analogous.

2.3.5. Computational efficiency of deformation
Another goal of this work is to assess the temporal performance

of the new method. We are mainly interested in two aspects, the
time needed to complete an iteration, and the amount of deforma-
tion produced in each iteration (calculated as the RMSD of the
structures before and after the iteration). We will combine both
measures to calculate the computational efficiency of the deforma-
tion process as RMSDstep=tstep, the time needed to deform the back-
bone by 1 Å.
Table 2
Acceptance and percentage of energetically favorable proposals (EFP) generated by
each algorithm in our simulations. In the CC, we can find two values: the first value
belongs to the EFP of the ANM step, the second, between parentheses is the EFP of the
whole PELE step (i.e. including the relaxation phase)

Ubiquitin c-Src kinase

CC IC CC IC

Acceptance (%) 45.3 19.4 37.5 28.2
EFP (%) < 0.1 (26.6) 18.7 < 0.1 (21) 27.2
3. Results and discussion

3.1. Simulation setup

Both normal mode methods are customizable, letting the user
control most aspects of the simulation. Since we are introducing
a new methodology, we tuned the values of some simulation
parameters in order to obtain the best performance and to
compare both methods. First, we set the values of the common
parameters like the temperature (300 K), or the cutoff distance of
the elastic network (set to a 9 Å, a value that is in agreement with
the literature77 and produces highly collective modes; see Sec-
tion S1). We decided to calculate up to 10 modes and to not com-
bine them linearly. The mode and the sense of the movement are
randomly changed at each MC iteration, which is a general and sys-
tem-agnostic solution. Also, we chose to calculated the modes once
at the beginning of the simulation, assuming that the potential sur-
face does not change too abruptly.

Second, we determined the most sensitive parameters for each
method. The first one, the displacement magnitude, controls the
maximum translation (Å) or the maximum torsional rotation
(rad) performed in the NMA step. The second one, the minimum
root mean square gradient (RMSG), is the threshold of convergence
of the minimizations and can be understood as the ‘‘strength” of
the minimization. In the ccNMA method, it modules the closeness
of the final conformation to the proposal, whereas in the icNMA
method, it regulates the intensity of the side chain minimization,
and it is related to the success releasing steric clashes.

Third, we performed a first round of simulations setting these
parameters with all the combinations of the values found in
Table 1. In order to find the best settings, we discarded the results
with acceptances out of our working range (20–40%78) and we
ranked them according to the similarity of their RMSF profiles with
the reference MD simulation and favouring large backbone defor-
mations. Then, we performed a second round of simulations, fine
tuning the best displacements found in the previous round.

For the ubiquitin system, we found that the optimal values for
our working parameters were a displacement magnitude of
1.08 Å and an RMSG of 0.1 kcal/mol Å for the CC simulations, and
a displacement magnitude in the range of 0.07–0.16 rad and an
RMSG of 0.1 kcal/mol Å for the IC simulations. Likewise, for c-Src
kinase, the best values for the CC simulations were 0.66 Å for the
displacement magnitude and 0.1 kcal/mol Å for the RMSG. A dis-
placement range of 0.07–0.14 rad and RMSG of 0.05 kcal/mol Å
was found to be the best fitted parameters for the icNMA
simulation.

As for the side chain perturbation stage in the icNMA method,
we chose to perform 2000 side chain changes every ten steps of
icNMA. In this case, we performed dihedral rotations in the range
of 0.02–0.024 rad. These values are again optimized so that they
yield acceptances between 20% and 40%.

Finally, we performed 12 independent 24 h production runs for
each method and system.
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3.2. Energetic cost of the NMA perturbation

We calculated the energy increments of the NMA step in the IC
simulations as well as the energy increments of the ANM step and
Fig. 3. Distribution of the energy increments produced on each iteration for each metho
light and dark green we show the distributions of energy increments related to the ccN

Fig. 4. SASA and radius of gyration distributions for all the studied ensembles and system
look similar to our reference MD simulations.
full iteration (perturbation + relaxation) of the CC simulations. The
results show that icNMA is able to make MC proposals that are
energetically favorable in both systems (see Table 2 and Fig. 3),
while the ccNMA-based method cannot (the energy increments
d and protein system. In red, we show the energy increments in the icNMA step. In
MA step and the complete PELE step, respectively. Note the changes in axis scales.

s. In general the measures obtained from the ensembles produced by the IC method
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of this step are almost always positive). Without a way to make
these energies decrease, it would be almost impossible to accept
any step. It is only thanks to the relaxation phase of the CC algo-
rithm, that the energy of the MC proposals can be lowered. It is
worth noting that the IC method can result in large increments
in energy (considerably larger than in CC) due to unresolved back-
bone clashes from dihedral rotation. It happens more often in ubiq-
uitin than in the c-Src kinase, since the first is more globular than
the latter, and steric clashes can be introduced more easily.

3.3. Compactness of the protein (SASA and radius of gyration)

As it can be seen in Figure 4, both ensembles generated by
NMA-based methods are more compact than the ones obtained
using MD. Comparing both normal mode methods, we see that
protein structures obtained by applying icNMA modes have larger
SASA values and, therefore, seem to be less compact and collapsed
than those obtained using the ccNMA method. We can draw simi-
lar conclusions by looking at the radius of gyration distribution.

We could expect differences, since the NMA-based methods are
using an implicit solvation model (the Onufriev, Bashford, and
Case, OBC,79 model) whereas the MD simulations were run using
explicit solvent. The bias of some implicit solvent models, includ-
ing OBC, to compact structures is well studied.80–82,79,83 This bias
Fig. 5. (A) RMSF profile of the ubiquitin NMA simulations compared with MD. The last
superimposed the RMSF plots so that relative fluctuations can be checked. In order to do
yielded scaling factors of 2.10 (CC) and 1.7 (IC). The most flexible parts of the protein (m
scaled representation of the RMSF. (C) RMSD plot of the b2–a–helix loop referred to the
structure elements.
is mainly caused by the over-stabilization of nonpolar interac-
tions84 and the increase in number and stability of hydrogen
bonds.85 This effect is further emphasized in the CC model by the
two minimization procedures (see below). In current PELE simula-
tions this is typically avoided by adding a weak (�0.1 kcal/mol Å2

harmonic constraint every 10 alpha carbons, for example, to the
initial model. This is complemented by keeping the chosen normal
mode along a certain number of consecutive MC steps (between 4
and 6), increasing the backbone sampling. This combination has
shown to be effective in protein-ligand binding studies, signifi-
cantly reducing the compactness of the active site.86

3.4. Protein fluctuations (RMSF)

RMSF plots of the ubiquitin simulations show small overall fluc-
tuations for all methods (see Fig. 5A), between 1 and 2 Å. This is
expected, as ubiquitin is a relatively stiff protein. The movement
is concentrated on the less structured parts: the loops between
beta-sheets and alpha-helices (see Fig. 5D). In general, icNMA fluc-
tuations are in closer agreement with MD than ccNMA fluctuations
and also show a higher baseline. The scaled RMSF (see Fig. 5B)
allows us to have a clearer view of the relative magnitudes of fluc-
tuations. The b2-a-helix loop is more stable in the MD and IC sim-
ulations, while it shows a prominent peak in the RMSF for the CC
three residues have been excluded in order to milden the ‘‘tip effect”. (B) We have
this, we have scaled them so that the root mean square error was minimum. This
ainly the loops connecting the secondary structure) have been highlighted in this
first CC simulation frame. (D) Representation of ubiquitin identifying its secondary
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simulation. This peak belongs to a temporary backbone rearrange-
ment that is not present in the IC and MD simulations. CC clearly
populates a further state with larger RMSD than IC and MD (see
Fig. 5C). However, ccNMA clearly underestimates the movement
of the b4–b5 loop, which is nicely captured by icNMA.

Our c-Src kinase simulations are again producing smaller over-
all fluctuations than MD (with the exception of the P-loop). The
rescaling of the RMSF plots shows that the ccNMA method is able
to capture the flexibility of the A-loop with slightly more success
(see Fig. 6B).

Major differences can be found in the fluctuations of the resi-
dues belonging to the aD-helix, A-loop and aG-helix (see Fig. 6A,
B and D). These structures show wide local rearrangements, in
essence folding-unfolding events, that are hard to capture using
NMA-based techniques.

The correct sampling of the P-loop dynamics is of utmost
importance, as it is directly involved in the binding process.87 We
decided to investigate the opening and closing of this loop in more
detail by measuring the distance between a central residue in the
P-loop (CYS:277:CA) and a second residue on the other side of
the binding site (LEU:387:CA) (see Fig. 6C). This distance shows a
similar fluctuation range in the MD and icNMA simulations
(�15–25 Å and �13–23 Å, respectively), whereas the range of
distances sampled by the ANM-based simulation is significantly
Fig. 6. (A) RMSF plot of the c-Src kinase NMA simulations compared with MD. N and C-ter
elements. The scale factors are 3.10 (CC) and 2.3 (IC). (C) Distributions of the distances b
protein identifying its more relevant secondary structure elements.
smaller (�9.5–10.5 Å). This is related to the increase of compact-
ness observed in the SASA and rgyr analyses: the protein collapses
quickly and the inter-domain distance does not oscillate much (see
Fig. 4).

The lower overall fluctuations of both normal mode methods, as
well as the low baselines, suggest that the proteins are moving less.
This is partly due to the lack of local motion which can only be
mapped with higher frequency modes, not present in our simpli-
fied NMA procedure. In addition, in the icNMA method there are
no anharmonic backbone movements, further limiting its compar-
ison with MD; anharmonicity has been studied to play an impor-
tant role in the modulation of the amplitude of fluctuations.88,77

3.4.1. Effect of the minimization in the compaction process
In order to gain more insight on the compaction process and the

effect of minimizations on it, we study how the distance between
CYS:277:CA and LEU:387:CA changes in the different stages of the
algorithms in the closing regime. It is convenient to define

rd �
P

i2D�
diP

i2Dþ
di
, where Dþ and D� are the domains defined by positive

and negative increments, respectively, and di are the distance
increments.

We will focus on the three parts of the ccNMA-based algorithm
related to the change of the backbone (see Fig. 2): the target
minal loops are omitted. (B) Scaled RMSF plot with highlighted functionally relevant
etween CYS:277:CA and LEU:387:CA for each simulation. (D) Representation of the



Table 3
rd values in the different stages of the ccNMA and icNMA-based methods

CC IC

Target coordinates 0.98 0.95
ANM application 1.02 0.95
Constrained minimization 1.23
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coordinates calculation, where we make a proposal; the ANM min-
imization, where we apply the minimization with spring con-
straints toward the proposals; and the system-wide constrained
minimization. In the icNMA-based algorithm, we will focus on
the target rotation calculation (i.e. proposal rotations) and the tor-
sional rotation, where we apply the rotation.

In the proposal stage (see Table 3), rd ’ 1, since proposals are
symmetric by construction (random choice of modes and senses).
In the application of the ANM modes, there is symmetry again,
which means that the ccNMA step is successfully generating con-
formations close to the proposal. However, the constrained mini-
mization shows a recurrent bias toward negative increments
(rd ’ 1:23), leading to more compact structures. In the icNMA-
based algorithm, proposals are again symmetric by construction,
and torsional rotations are set to those values, giving no overall
bias (rd ’ 1).

This agrees with the results previously seen in Figure 4, where
ccNMA generated structures tend to be more compact, since back-
bone movement is minimization-driven. That would explain the
tendency to over-close the protein, whereas in the icNMA step this
does not happen, since minimizations do not apply to the back-
bone. These results highlight that the use of minimizations plays
an important role in the compaction process. As stated above, cur-
rent application studies in protein-ligand binding address this lim-
itation by adding a weak harmonic constraint and by keeping the
normal mode few consecutive steps.
Fig. 7. (A) JSD of the NMA methods and MD for a different number of clusters (1 6 k 6 1
the whole ensemble of simulations. The submatrices of MD and NMA simulations have
3.5. Conformational space overlap

We have applied the algorithm described in Section 2.3.4 for
partitions of 1–1k clusters. In panel A of Figure 7, we can see that,
for all the studied numbers of clusters, the JSD is always lower for
icNMA than for ccNMA. This means that the exploration of the con-
figurational space performed by icNMA is in closer agreement with
MD. The JSD can tell us whether NMA methods are populating the
same regions as MD trajectories, however it does not give us infor-
mation about the structural similarity of the conformations. In
order to analyze it, we have calculated the average Ca RMSD of
each structure in the NMA ensembles with the most similar MD
conformation inside its cluster (see lower subplots of Fig. 7A).
The RMSD results for ubiquitin are similar for both methods, show-
ing an average RMSD value of �0.8 Å. In the c-Src kinase case, how-
ever, results are significantly different between methods: the
RMSD difference of 0.8 Å is indicating that icNMA is not only pop-
ulating similar regions of the space, but also generating similar
conformations to MD. Taking k ¼ 10 as a case study (see Fig. 7B),
we can observe that:

Ubiquitin Both NMA methods are visiting only a fraction of
the possible regions of the conformational space
sampled by MD (3 out of 10). The exploration per-
formed by the ccNMA method is clearly even less
than the one performed using the icNMA method:
more than 90% of the population is concentrated
in one cluster. This can be explained with a quick
look to the RMSD matrix of the combined ensem-
bles (Fig. 7C) : the submatrices of the NMAmethods
are more similar between themselves than to the
MD submatrix. This is a consequence of the NMA
methods failing to model the flexible loops connect-
ing the secondary structure.
000). (B) Detail of the distributions per cluster for k ¼ 10. (C) Ca RMSD matrices for
been highlighted.



Table 4
Average time values of an icNMA iteration, the side chain perturbation step, the ANM
step, and a full MC iteration of PELE. The need of the relaxation phase in the CC-based
PELE algorithm makes the overall time of an iteration clearly slower than an icNMA
iteration. The simulations were run in AMD Opteron 6238 @ 2.60 GHz nodes with
4 Gb of RAM per node. Standard deviations are included between parentheses

System icNMA step
(s)

Side. Perturb. All
steps (s)

ccNMA
step (s)

PELE
iteration (s)

Ubiquitin 2.945
(1.456)

21.327 (2.503) 1.376
(0.704)

20.065
(5.624)

c-Src
kinase

11.648
(3.273)

27.917 (2.958) 6.106
(0.679)

57.9 (9.233)
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c-Src kinase The populations of the icNMA ensemble is dis-
tributed more evenly than the ccNMA ensemble
populations. However, the icNMA method is still
overpopulating one state (�60% of its population).
The ccNMA algorithm is visiting only 2 regions, a
poor result compared with the 7 out of 10 regions
that the icNMA is able to populate. In the subplot,
we depicted the average interdomain distance for
the structures of each cluster. icNMA has better
agreement with MD, capturing the different stages
of the P-loop opening/closing process. The RMSD
matrix shows, again, notable differences between
the ccNMA and the MD ensembles. However, the
differences between icNMA and MD are less notice-
able, and this can be related to the successful mod-
elling of the P-loop behaviour.

3.6. Computational performance of the methods

We have measured the time required to complete different
tasks: an icNMA step, a ccNMA step, and a full PELE iteration
(ccNMA step + relaxation phase). We have also calculated the
extent of the perturbations performed in each task by calculating
the RMSD of the structure before and after the task. We observe
that the average time required to perform a ccNMA step is lower
than the average time needed to perform an icNMA step (see
Fig. 8. Distribution of the computational efficiency for both methods and systems. Bot
comparing with PELE full iteration (purple), it can be clearly seen that the IC-based meth
considered (green).
Table 4), however, their efficiency distributions are pretty similar
(see Fig. 8). This indicates that, although the icNMA step is slightly
slower, the perturbations performed are wider than the ones
applied by the ccNMA step. Nevertheless, the perturbations per-
formed in the ccNMA step are, in general, not energetically favor-
able (already seen in Section 3.2), which forces PELE to add a
relaxation phase. If we take into account the time needed to run
the relaxation phase, the IC methodology clearly outperforms the
CCmethodology (the speedups per step are�5� and�7�, depend-
ing on the system). This explains the dramatic differences in their
efficiencies illustrated in Figure 8.

As the relaxation phase is an essential part to the ccNMA-based
algorithm, so is the side chain perturbation stage to the icNMA
method. In order to study the impact of this stage on the overall
time, we have added the time needed to run 200 iterations of side
chain perturbation to the icNMA time (remember that the ratio of
iterations between the first and second stages is 10:2000). As
expected, the resultant distributions show a shift to the left (less
efficiency). This effect is more significant in the ubiquitin case than
in the c-Src kinase case, mainly because the amortized side chain
perturbation time (� 2–3 s) is of the order of the time spent in
an icNMA iteration. However, in both cases, it still shows a better
overall efficiency than the CC-based method.

4. Conclusions

There is a high interest in developing faster sampling tech-
niques for modeling backbone flexibility in proteins, with normal
mode approximations such as ANM becoming a popular alterna-
tive. The modes obtained using ANM, however, describe the move-
ment of only one atom per residue (the Ca atom) and applying this
movement to the remaining atoms is not trivial. In PELE, this is
achieved by applying a minimization. However, in this step the
covalent topology of the protein is often unphysically distorted,
which requires the introduction of a relaxation phase where a sys-
tem-wide minimization is performed.

In this article we have presented a newMCmethod that handles
the protein backbone changes using IC NMA. The application of the
internal modes through a geometrical manipulation of torsions
does not distort the covalent topology, allowing us to generate
h NMA steps (red and blue) look to be able to perform similarly. However, when
od has a larger efficiency, even when the amortized side chain perturbation time is
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more energetically favorable conformation proposals than our pre-
vious method. Another fundamental advantage of the use of tor-
sional modes is their increased collectivity and robustness, which
alleviates the ‘‘tip effect” problem, facilitating the fast traversal of
the conformational space.

The elimination of the ANM minimization and the unneeded
relaxation phase has two major consequences. First, as both the
side chain prediction step and the system-wide constrained mini-
mization are computationally costly processes, the new method
shows a great speedup (�5–7�) without decreasing the RMSD of
the perturbations. Second, as these minimizations amplify the sol-
vent model bias towards compact structures, the new method
shows SASA and radius of gyration distributions which are closer
to those observed in MD. Moreover, our analyses have also shown
improvements in the exploration of the conformational space: the
icNMA algorithm is able to explore similar regions to MD and gen-
erate structures with closer RMSD than the CC-based method.

The main drawback we have found is that, although the icNMA
method seems to produce relative fluctuations that are in better
accordance with MD than the ANM-based method, these fluctua-
tions are smaller and show a lower baseline than MD. This is the
consequence of one of the main limitations of applying NMA-based
techniques, where local flexibility is not well represented by higher
frequency modes.

Overall, implementing icNMA results in better agreement with
MD explicit solvent simulations. Using internal coordinates seems
to be a promising technique for speeding up the induced fit studies
in PELE and supposes a step forward in terms of the quality of the
flexibility handling.
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37. Noguti, T.; Gō, N. J. Phys. Soc. Jpn. 1983, 52, 3283–3288.
38. Abe, H.; Braun, W.; Noguti, T.; Gō, N. Comput. Chem. 1984, 8, 239–247.
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