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Speech recognition in noisy environments remains an unsolved problem even in the case of isolated word
recognition with small vocabularies. Recently, several techniques have been proposed to alleviate this problem.
Concretely, two closely related parameterization techniques based on an AR modelling in the autocorrelation
domain called SMC [1] and OSALPC [2] have shown good results using speech contaminated by additive white
noise. The aim of this paper is twofold: to compare several techniques based on an AR modelling in the
autocorrelation domain, including SMC and OSALPC, and to find the optimum model order and cepstral liftering
for noisy conditions.

1. INTRODUCTION

A spectral estimation technique widely used in
speech processing and, particularly, in speech
recognition is linear predictive coding (LPC),
equivalent to an AR modelling of the signal.
Concretely, recent contributions [3] have showed
that the use of a bandpass liftering of the LPC-
cepstral coefficients in the standard Euclidean
distance measure can lead to excellent results in
noise free conditions. However, the standard LPC
technique is known to be very sensitive to the
presence of additive noise. This fact yields poor
recognition rates in noisy conditions when these
techniques are applied.

For recognition in noisy speech, Hanson and
Wakita [4] applied to LPC-spectra the spectral slope
distance measure, which is equivalent to a slope
liftering. As well known, from liftering a smoothed
version of the spectrum is obtained that depends on
both the type of the lifter and the all-pole model
order. One of the aims of this paper is to find an
optimum degree of smoothing in noisy conditions. 

Recently, Mansour and Juang have proposed
[1] the SMC (Short-Time Modified Coherence)
parameterization for noisy speech recognition, based
on the well known fact that the autocorrelation
sequence is less affected by noise than the original
signal. This technique is essentially an AR modelling
in the autocorrelation domain.

In [2] the authors presented a parameterization
technique called OSALPC (One-Sided
Autocorrelation Linear Predictive Coding) as a
robust representation of speech signals when noise
is present. This technique, closely related with the
SMC representation and with the use of an
overdetermined set of Yule-Walker equations
proposed by Cadzow in [5] to seek rational models of
time series, is interesting in noisy speech recognition
because of its simplicity, computational efficiency
and high recognition accuracy. In this paper,
OSALPC is revised and its relationship with all these
techniques is discussed. Also, their performance in
noisy speech recognition is compared.

2. AR MODELLING IN THE
AUTOCORRELATION DOMAIN

From the autocorrelation sequence R(n) we
may define the one-sided (causal part of the)
autocorrelation (OSA) sequence

R+(m) = 





 

R(m)        m>0

R(0)/2 m=0

0 m<0

              (1)

which verifies

R+(m) + R+(-m) = R(m) ,   -8 = m = 8         (2)
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Its Fourier transform is the complex spectrum

S+(ω) = 
1
2 [ ]S(ω) + jSH(ω)          (3)

where S(ω) is the spectrum, i.e. the Fourier transform
of R(n), and SH(ω) is the Hilbert transform of S(ω).

Due to the analogy between S+(ω) in (3) and the
analytic signal used in amplitude modulation, a
spectral "envelope" E(ω) can be defined as

E(ω) = |S+(ω)|         (4)

This envelope characteristic, along with the
high dynamic range of speech spectra, originates
that E(ω) strongly enhances the highest power
frequency bands. Thus, the noise components lying
outside the enhanced frequency band are largely
attenuated in E(ω) with respect to S(ω). On the other
hand, it is well known that R+(n) has the same poles
than the signal.

It is then suggested that the AR parameters of
the signal can be more reliably estimated from R+(n)
than directly from the signal itself when it is
corrupted by noise. This is the basis of OSALPC
(One-Sided Autocorrelation Linear Predictive
Coding) technique  proposed in [2] as a robust
representation of noisy speech signals.

Let us explore now the implications of
applying linear prediction on the causal part of the
autocorrelation sequence. Firstly, let us assume that
the speech signal x(n), whose autocorrelation is R(n),
is given by the linear convolution

x(n) = h(n) *  e(n)         (5)

where h(n) is the impulse response of a pth-order all-
pole filter driven by e(n), and e(n) is assumed to be a
train of impulses for voiced sounds and white noise
for unvoiced sounds. If

H(z) = 
1

A(z)  = 
1 

1+∑
k=1

p

 akz-k

         (6)

is the z-transform of h(n) and Se(ω) is the power
spectrum of e(n), it follows that

x(n) = - ∑
k=1

p
 akx(n-k)  + e(n)         (7)

S(ω) = 
Se(ω)

|A(ω)|2
         (8)

The standard LPC approach performs a
deconvolution of the speech signal since, assuming
that Se(ω) is a constant in (8), it obtains the
characteristics of H(z).
 As R+(n) has the same poles than the signal, if
B(ω) is the Fourier transform of the driving function
that obtains R+(n) at the output of the filter H(z), we
can write the Fourier transform of R+(n) and its
spectrum as

S+(ω) = 
B(ω)
A(ω)

  E2(ω) = 
|B(ω)|2

|A(ω)|2
         (9)

Thus, the OSALPC representation is equivalent to
assume that B(ω) is constant in (9) and performs an
AR modelling of the square envelope E2(ω).

Let us explore now the meaning of the above
assumption. From (3) we can write S(ω) as a function
of A(ω) and B(ω) as follows

S(ω) = S+(ω) + (S+(ω))* = 
B(ω)
A(ω)

   +  
B*(ω)

A*(ω)
     (10) 

and from identification of (10) and (8) it results that

Se(ω) = B(ω) A*(ω) + B*(ω) A(ω)       (11)

i.e., B(ω) depends on both Se(ω) and A(ω) and can
no longer be considered a constant. Thus, we can
assert that OSALPC technique does not actually
perform a deconvolution between filter and
excitation as does the LPC of the speech signal [6].
However, in spite of the OSALPC technique only
performs a partial deconvolution, as it will be seen its
use in speech recognition outperforms the standard
LPC approach for noisy speech.

For the calculation of the OSALPC
representation it has been implemented a simple and
efficient algorithm:



a) Firstly, from the speech frame of length N
the autocorrelation lags from m =1 to M = N/2 are
calculated using the classical biased autocorrelation
estimator.

b) Secondly, the Hamming window is applied
on the one-sided autocorrelation sequence.

c) Thirdly, the first p + 1 autocorrelation lags
of this sequence are computed from m = 0 to p using
also the classical biased estimator.

d) Finally, these values are used as entries to
the Levinson-Durbin algorithm to estimate the AR
parameters.

Let us now compare OSALPC with other
related techniques based on an AR modelling in the
autocorrelation domain: the SMC representation,
proposed recently by Mansour and Juang [1] for
robust spectral analysis of speech, and the use of an
overdetermined set of Yule-Walker equations,
proposed by Cadzow in [5] to seek rational models. 

With respect to SMC, there are only two
algorithmic differences between this technique and
OSALPC. Firstly, the SMC representation uses a
covariance estimator instead of the classical biased
estimator to compute the first autocorrelation
sequence. Secondly, the autocorrelation entries to
the Levinson-Durbin algorithm in the SMC
representation are calculated in the frequency
domain using a spectral shaper in the form of a
square root. In terms of the above OSALPC
formulation, that difference actually consists of an
AR modelling of the envelope E(ω) instead of E2(ω).

On the other hand, the relationship between
OSALPC and the spectral approach proposed by
Cadzow in [5] is also very close. As well known, for
an AR process x(n) its autocorrelation sequence R(n)
obeys for m > 0 the following difference expression

R(m) = - ∑
k=1

p
 akR(m-k)       (12)

The resolution of the first p equations that this
expression provides, for m = 1 to p, is the basis of
the standard LPC approach, using the classical
biased autocorrelation estimator on the windowed
signal. This determined set of equations is known as
Yule-Walker equations (YWE).

Cadzow proposed the use of more than the
minimal number of equations of (12) forming an
overdetermined set of Yule-Walker equations, for m

= 1 to M, (ref. in this paper as OYWE) to reduce the
"undesired parameter hypersensitivity" [5].

Also it is well known that for an AR process
x(n) contaminated by additive white noise its
autocorrelation sequence R(n) only obeys (12) for m
> p. The first p equations, for m = p+1 to 2p are
known as the High Order Yule-Walker equations
(HOYWE) and it is possible to apply in this case the
same idea as above and arrive to an overdetermined
set of HOYWE, for m = p+1 to M (ref. in this paper as
OHOYWE).

It is clear the relationship among OSALPC,
OYWE and OHOYWE representations. In the three
techniques a linear prediction is performed on an
autocorrelation sequence. The only main difference
between them is the range of autocorrelation lags
considered in the minimization of the prediction
error.

In spite of the similarity between all these
techniques, as it will be seen in next section, the
OSALPC representation outperforms considerably
the OYWE, OHOYWE and SMC techniques in
speech recognition in severe noisy conditions. On
the other hand, with respect to the computational
efficiency of the algorithms, OSALPC and SMC
techniques are much more efficient than OYWE and
OHOYWE techniques because they make use of the
Levinson-Durbin algorithm.

3. RECOGNITION EXPERIMENTS

3.1. Speech database and recognition system
The database used in our experiments consists

of ten repetitions of the Catalan digits  uttered by
seven male and three female speakers (1000 words)
and recorded in a quiet room. Firstly, the system was
trained with half of the database and tested with the
other half. Then the roles of both halves were
changed and the reported results were obtained by
averaging the two results.

The analog speech was first bandpass filtered
and sampled at 8 KHz. The digitized clean speech
was manually endpointed to determine the
boundaries of each word.  Clean speech was used
for training in all the experiments. Noisy speech was
simulated by adding zero mean white Gaussian noise
to the clean signal so that the SNR of the resulting
signal becomes � (clean), 20, 10 and 0 dB. No
preemphasis was performed.

The signal was divided into frames of 30 ms at
a rate of 15 ms and each frame was characterized by



L cepstral parameters obtained either by the
standard LPC method or the other techniques
exposed in last section. Before entering the
recognition stage, the cepstral parameters were
vector-quantized by means a codebook of 64
codewords using the standard Euclidean distance
measure between liftered cepstral vectors. Each digit
was characterized by a left-to-right discrete Markov
model of 10 states without skips.

3.2. Recognition results
The first experiments carried out with the

above described speech recognition system
consisted of empirically optimizing the model order
and the type of cepstral lifter in the standard LPC
technique. The preliminary recognition results
showed that neither the model order nor the type of
cepstral lifter are important for our task in noise free
conditions. However, in the presence of noise the
recognition results are very sensitive to both factors.
In table I, the recognition results for LPC model order
p = 8, 12 and 16 and rectangular, bandpass and slope
lifters are presented.

Table I. Recognition rates for LPC technique

   SNR (dB) 8 20 10 0
p=8 Rectang. 99.8 74.2 36.6 22.2

" Bandpass 99.8 92.8 56.8 27.0
" Slope 99.7 95.7 72.3 34.1

p=12 Rectang. 99.8 66.1 34.0 22.8
" Bandpass 99.7 96.2 73.7 29.0
" Slope 99.8 98.9 89.5 54.2

p=16 Rectang. 99.9 73.0 35.5 22.2
" Bandpass 100 94.0 60.2 19.6
" Slope 99.8 93.2 70.7 41.2

It is clear from the table that the slope lifter
outperforms the rectangular and bandpass lifters for
every model order. It is concerned with the fact that
in the presence of white noise lower order cepstral
coefficients are more affected than higher order
terms in the truncated cepstral vector. On the other
hand,. the convenience of a relatively high model
order, 12, is due to the fact that lower order
autocorrelation lags are more affected by additive
white noise than higher order lags. Model orders too
high, however, yield poor recognitions results
because of the appearance of spurious peaks in the
spectral estimation.

In table II, the recognition rates of all the LPC-
based parameterization techniques mentioned in this
paper are presented, using the same value of M (=
N/2) and the optimum model order and lifter for the
standard LPC technique, i.e., p = 12 and slope lifter.
Obviously, these are not the optimum conditions for
each parameterization technique but the results can
help to compare their performance. Moreover, in
preliminary experiments it was found that the OYWE,
OHOYWE, SMC and OSALPC techniques are less
sensitive to changes in the model order and the type
of cepstral lifter than the standard LPC approach.

Table II. Recognition rates for several LPC-based
techniques (p=12 and slope lifter)

      SNR (dB) 8 20 10 0
LPC 99.8 98.9 89.5 54.2
OYWE 99.9 95.9 66.9 31.7
OHOYWE 99.5 97.7 81.3 43.1
SMC 99.0 97.0 89.2 67.5
OSALPC 98.6 97.7 93.7 75.9

 It is clear from the table that the recognition
rates of OSALPC are excellent and outperform
considerably the results of the other techniques in
severe noisy conditions. However, in noise free
conditions there is a lost of recognition accuracy
due to the imperfect deconvolution of the the speech
signal performed by this technique.
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