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ABSTRACT 

The performance of the existing speech recognition systems 
degrades rapidly in the presence of background noise. The 
OSALPC (One-sided Autocorrelation Linear Predictive 
Coding) representation of the speech signal has shown to be 
attractive for speech recognition because of its simplicity and 
its high recognition performance with respect to the standard 
LPC in severe conditions of additive white noise. The aim of 
this paper is twofold: 1) to show that OSALPC also achieves 
good performance in a case of real noisy speech (in a car 
environment), and 2) to explore its combination with several 
robust similarity measuring techniques, showing that its 
performance improves by using cepstral liftering, dynamic 
features and multilabeling. 

1. INTRODUCTION 

Speech recognition in noisy environments remains an 
unsolved problem even in the case of isolated word 
recognition with small vocabularies. In order to develop a 
system that operates robustly and reliably in the presence of 
noise. many techniques have been proposed in the literature 
[ l ]  for reducing noise in each stage of the recognition 
process, particularly in feature extraction and similarity 
measuring. 

A spectral estimation technique widely used in the 
parameterization stage of speech recognizers is Linear 
Predictive Coding (LPC) [2], which is equivalent to an AR 
modeling of the speech signal. Concretely, it has been shown 
that the use of the liftered LPC-cepstral coefficients in the 
standard Euclidean distance measure leads to the best results of 
those obtained with this model i n  both noise free [3] and 
noisy [4] conditions. 
Recently, as an alternative representation of speech signals 
when noise is present, the authors proposed a 
parameterization technique called One-sided Au tocorrelation 
Linear Predictive Coding (OSALPC) [SI [6]. This technique, 
closely related with the Short-Time Modified Coherence 
(SMC) representation [7], is essentially an AR modeling of 
the causal part of the autocorrelation sequence and its use in 
noisy speech recognition is attractive because of its 
simplicity and its high recognition performance with respect 
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to the standard LPC in severe conditions of additive white 
noise. 

The aim of this paper is twofold: 1) to show that OSALPC 
also achieves good performance in a case of real noisy speech 
(in a car environment), and 2) to explore its combination with 
several robust similarity measuring techniques, showing that 
its performance improves by using cepstral liftering, dynamic 
features and multilabeling. 

The paper is organized in the following way. In section 2 
and 3 the OSALPC parameterization, and the robust similarity 
measuring techniques that are considered in this work are 
briefly revised (for more information see [8]). Section 4 is 
dedicated to show the experimental results obtained by 
applying these techniques, both separately and in 
combination, to recognize isolated words, in a multispeaker 
task, in real noisy car environment. Finally, in section 5 
some conclusions are summarized from those results. 

2. OSALPC REPRESENTATION 

From the autocorrelation sequence R(n), we may define the 
ane-sided autocorrelation sequence R+(n) as its causal part 

Its Fourier transform is the complex spectrum 

where S ( o )  is the spectrum of the signal, i.e. the Fourier 
transform of R(n), and SH(O) is the Hilbert transform of S(o) .  

Due to the analogy between S+(o) in (2) and the analytic 
signal used in amplitude modulation, a spectral "envelope" 
E(o) [9] can be defined as 

E(o) = IS+(o)l, (3 1 

whose square, the square envelope, is the spectrum of R+(n). 
This envelope characteristic, along with the high dynamic 

range of speech spectra, originates that E(o) strongly 
enhances the highest power frequency bands. Thus, the noise 

11-69 
0-7803-1775-OP4 $3.00 0 1994 IEEE 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/46606155?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


components lying outside the enhanced frequency bands are 
largely attenuated in E(o) with respect to S(o). 

On the other hand, it is well known that the causal 
sequence R+(n) has the same poles than the signal itself [lo]. 
It is then suggested that the AR parameters of the speech 
signal can be more reliably estimated from R+(n) than directly 
from the signal itself when it is corrupted by broad band 
noise. For this purpose, in the same manner as the standard 
LPC performs a linear prediction of the speech signal, that is 
equivalent to assume an all-pole model for the spectrum of the 
signal S(o), we may consider a linear prediction of R+(n), 
equivalent to assume an all-pole model for its spectrum E2(o).  
This is the basis of the OSALPC (One-sided Autocorrelation 
Linear Predictive Coding) parameterization technique [5] [6]. 
The robustness of OSALPC to additive while noise is 
illustrated in Figure 1. 
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Fig. 1. Robustness of the OSALPC representation to additive 
white noise: a) LPC spectrum and b) OSALPC square envelope 
of a voiced speech frame in noise free conditions (solid line) 
and SNR equal to 0 dB (dotted line). 

The Short-Time Modified Coherence (SMC) technique, 
proposed by D. Mansour and B.H. Juang [7], is also based on 
an AR modeling in the autocorrelation domain. However, 
whereas in the OSALPC technique the entries to the Levinson- 
Durbin algorithm (first p values of the autocorrelation of the 
one-sided autocorrelation sequence) are calculated from R+(n) 
using the classical biased autocorrelation estimator, i n  the 

SMC representation they are computed using a square root 
spectral shaper. In terms of the above OSALPC formulation, 
that difference actually consists of assuming in the SMC 
technique an all-pole spectral model for the envelope E(o) 
instead of E2(o). 

The OSALPC technique was compared in a previous work 
[ 5 ]  [6] with both the standard LPC and the SMC technique, 
using speech signals that included additive white noise. In 
those tests, the OSALPC technique outperformed the other two 
for low SNR, using the conventional biased estimator to 
compute the one-sided autocorrelation. In the present 
investigation, OSALPC was implemented using the same one- 
sided autocorrelation estimator than SMC (i.e., the coherence 
estimator, which is defined in [7]), since we observed a slight 
improvement by using it instead of the biased estimator for 
the case of additive white noise. Actually, with the coherence 
estimator, the OSALPC representation achieved in our 
experiments better results than the SMC representation for 
every tested SNR, including clean speech [8]. 

3. ROBUST SIMILARITY MEASURING 
TECHNIQUES 

3. I .  Cepstral Lifter Oph'mizaion 

In this paper three different cepstral lifters are considered: 

L .  n n  
w(n)= 1+- sin y) 2 L  Bandpass lifter: 

Slope lifter: w(n) = n 
1 

Inverse of standard deviation lifter: w(n) = - (4) 
W n )  

where n = 1 ,  ..., L and bc(,,) is the standard deviation of the nth 
cepstral coefficient c(n). If p denotes the prediction order, the 
value of L is typically 3p/2 for the bandpass lifter [3] and p for 
the slope lifter [4] and the inverse of the standard deviation 
lifter [ l  11. 

From liftering, a smoothed version of the spectrum is 
obtained that depends on both the type of the lifter and the 
prediction order. One of the aims of this paper is to find an 
optimum degree of spectral smoothing in noisy conditions. 

3.2. Cepstral Projection Distance 

Analytical derivatives and empirical observations 
developed by D. Mansour and B.H. Juang [12] revealed that 
the major mismatch between clean and noisy LPC-cepstral 
vectors, in the case of additive white noise, is the shrinkage 
of norms. They also observed that cepstral vectors with 
higher norm are less affected than cepstral vectors with lower 
norm and that the angle between two cepstral vectors is less 
sensitive than the traditional Euclidean distance. Those 
considerations led them to propose a family of cepstral 
projection distances for noisy speech recognition. 

The best results [12] were obtained using: 
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where Ct  and C, are the liftered cepstral column vectors of the 
test and reference signals and p is the angle between them. 
This is the projection distance that will be used in the 
experimental results reported in section 4. 

3.2. Dynamic Features 

The so-called dynamic features are routinely used in current 
speech recognition systems in combination with short-term 
(static) spectral features. As their computation encompasses 
several adjacent frames, they are able to somewhat represent 
the time evolution of the spectrum of speech signals by 
providing smoothed estimates of the derivatives of the 
spectral parameter trajectories in  the current frame. 

In our work, we used the usual regression coefficient [13] 
that is applied to the cepstral sequence (delta-cepstrum) or the 
energy sequence (delta-energy). The window length, i.e. the 
number of frames used in the computation, was varied to get 
the best results. 

3.4. Multilabeling 

In the discrete HMM (DHMM) approach, for each 
incoming vector the quantizer makes a hard decision as to 
which of its codewords is the best match, and so the 
information about the degree to which the incoming vector 
matches other codewords is discarded. This information would 
be specially important in the case of noisy speech 
recognition, because that decision may be easily affected by 
the noise. 

However, in the semicontinuous [14] HMM (SCHMM) and 
multilabeling [IS] HMM (MLHMM) approaches, the vector 
quantizer makes a softer decision about which codeword is 
closest to the input vector, generating an output vector whose 
K components indicate the relative closeness to the K closest 
codewords. These components are estimated from the 
stochastic viewpoint in the SCHMM's and from the 
deterministic viewpoint i n  the MLHMM approach. In both 
cases, the recognition rates in noisy conditions are similar 
and outperform considerably those obtained using standard VQ 
1161. Nevertheless, the MLHMM approach leads to algorithms 
that are more efficient than the SCHMM one. Because of this, 
the multilabeling method proposed in [16] will be used in the 
recognition experiments. 

4. EXPERIMENTAL RESULTS 

4.1. Database and Recognition System 

The database used in noisy car environment experiments 
comes from the ESPRIT-ARS project and consists of 25 
repetitions of the Italian digits uttered by 4 speakers, 2 males 
and 2 females, which were recorded in different noisy 
conditions: 5 repetitions with the engine and the fan off and 
20 more with the engine on and different fan positions, 10 
with the car stopped, 5 with the car running at 70 km/h and 5 
with the car running at 130 W h .  The system was trained with 
the signals uttered when the engine and the fan were off, i.e., 
in noise free conditions, and in the test phase the noisy 
signals were used. 

In the parameterization stage, the speech signal, sampled 
at 8 kHz, quantized using 12 bits per sample, manually 
endpointed and preemphasized, was divided into frames of 30 

ms at a rate of 15 ms and each frame was characterized by its 
liftered cepstral parameters, obtained either by the standard 
LPC method or the new OSALPC technique. In some tests the 
dynamic parameters of the frame were also obtained. Each 
information was separately vector-quantized using a codebook 
of 64 codewords by means of standard VQ or the multilabeling 
method with either the standard Euclidean distance or the new 
cepstral projection distortion measure. Each digit was 
characterized by a first order, left-to-right, Markov model of 
10 states without skips. Training and testing were performed 
using Baum-Welch and Viterbi algorithms, respectively. 

4.2. Recognition Results 

The Fist experiments carried out with the above described 
speech recognition system consisted of empirically 
optimizing the prediction order and the type of cepstral lifter 
using the standard cepstral Euclidean distance upon the static 
cepstrum and standard VQ. Preliminary results showed that 
neither the prediction order nor the type of cepstral lifter are 
important for our task in noise free conditions. However, in 
the presence of noise the recognition results are very 
sensitive to both factors. The best results were obtained using 
prediction order equals to 16 and inverse of the standard 
deviation lifter for the standard LPC parameterization and 
slope lifter for the new OSALPC technique, i.e. a relatively 
high prediction order and one of the two non-symmetrical 
cepstral lifters. 

Actually, a relatively high value of the prediction order 
can provide more robust estimates of the autocorrelation in 
the presence of broad-band noise due to fact that the 
sensitivity to this type of noise tends to decrease along the 
autocorrelation index. 

In Figure 2, the recognition rates obtained using these 
optimum orders and lifters are compared, in terms of the car 
speed, with those obtained using an order equal to 8 and 
bandpass lifter in noise free conditions. Notice that the results 
are very sensitive to those factors, and that relatively high 
prediction orders and non-symmetrical cepstral lifters are 
preferable in noisy conditions. It can also be seen that, using 
the optimum orders and lifters, OSALPC noticeably 
outperforms LPC in severe noisy conditions. 
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Fig. 2. Optimization of prediction order and cepstral liftering 
in LPC and OSALPC techniques 

The results obtained using cepstral projection distance 
were not better than those obtained applying the standard 
Euclidean distance. The type of noise considered in this work 
may justify these results, since the cepstral projection 
distance measure was proposed for the case of white noise. 
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Regarding to dynamic features, the use of delta-cepstrum 
and delta-energy, in the case of the standard LPC 
parameterization, and the use of deltacepstrum, in the case of 
the OSALPC technique, provided the best results. The best 
results were obtained using a window length of 240 ms for the 
estimation of delta-parameters. 

Excellent results were also obtained applying the 
multilabeling method instead of the standard VQ approach. 
The tradeoff between computational load and recognition 
accuracy led us to consider only the information 
corresponding to the five codewords closest to the incoming 
vector. 

The combination of these techniques, excepting cepstral 
projection distance measure, provided even better results than 
those obtained applying each technique separately. In Figure 
3, recognition rates obtained using the optimum orders and 
lifters are compared in terms of the parameterization -LPC or 
OSALPC- and vector quantization -standard VQ or 
multilabeling (ML)- employed and either using or not dynamic 
features. The various combinations of techniques have been 
ordered taking into account the recognition rates obtained in 
severe noisy conditions. 

70 I 3 0  0 

(1) LPC. Standard VQ. Cepstrum 
(2) LPC. ML. Cepstrum 
(3) OSALPC. Standard VQ. Cepstrum 
(4) OSALPC. ML. Cepstrum 
(5) LPC. Standard VQ. Cepstrum, delta-cepstrum and 

(6) LPC. ML. Cepstrum, delta-cepstrum and deltaenergy 
(7) OSALPC. Standard VQ. Cepstrum and delta-cepstrum 
(8) OSALPC. ML. Cepstrum and delta-cepstrum 

Fig. 3. Comparison and combination of techniques 

As it can be observed in Figure 3, the OSALPC technique 
without using delta-cepstrum obtains excellent results in 
severe noisy conditions, but the standard LPC technique 
results are better than OSALPC results in almost noise free 
conditions. However, using delta-cepstrum, OSALPC 
outperforms LPC in all the considered conditions. On the 
other hand, i t  can be seen that the multilabeling method yields 
excellent results combined with the use of energy and dynamic 
information. The best results are obtained using OSALPC 
parameterization, delta-cepstrum and multilabeling. 

delta-energy 

car environment in combination with several robust 
similarity measuring techniques, some conclusions can be 
summarized: 

a) When linear prediction techniques are used in the 
parameterization stage, a relatively high prediction order and 
the use of a non-symmetrical lifter are preferable. 

b) Cepstral representation based on linear prediction of 
the one-sided autocorrelation sequence (OSALPC) provides 
excellent results in severe noisy conditions. 

c) The cepstral projection distance measure does not yield 
good results in this noisy car environment. 

d) The addition of dynamic features is very useful in all the 
considered conditions. 

e) The multilabeling technique noticeably outperforms the 
standard VQ method. 

f) The combination of those techniques, excepting the 
cepstral projection distortion measure, provides better results 
than those obtained applying each technique separately. 
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5. CONCLUSIONS 

From the application of the OSALPC parameterization on 
a system based on the Hidden Markov Modeling and Vector 
Quantization approaches for speech recognition in real noisy 
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