
Modeling RTL Fault Models Behavior to Increase
the Confidence on TSIM-based Fault Injection

Jaime Espinosa†, Carles Hernandez‡, Jaume Abella‡
†Universitat Politècnica de València

‡Barcelona Supercomputing Center (BSC-CNS)

Abstract—Future high-performance safety-relevant applications
require microcontrollers delivering higher performance than the
existing certified ones. However, means for assessing their de-
pendability are needed so that they can be certified against
safety critical certification standars (e.g ISO26262). Dependability
assessment analyses performed at high level of abstraction inject
single faults to investigate the effects these have in the system.
In this work we show that single faults do not comprise the
whole picture, due to fault multiplicities and reactivations. Later
we prove that, by injecting complex fault models that consider
multiplicities and reactivations in higher levels of abstraction,
results are substantially different, thus indicating that a change
in the methodology is needed.

I. INTRODUCTION

Technology scaling has allowed processor’s semiconductors
industry achieving performance numbers beyond Gigaflops with
reduced power budget by including a vast number of computa-
tional nodes in the same chip [1]. In the safety critical domain
the huge amount of available processing power is expected to
fullfil the high demands for performance guarantees of new
applications like autonomous driving systems [10]. However,
hardware systems targeting safety critical applications need to
go through a certification process step validating its compliance
with the standards [9] [5].

The need for a thorough verification and test process that
certification standards poses to hardware systems may preclude
the use of complex hardware platforms in the context of critical
applications. Currently, the verification and test process takes
between 50% and 70% of the design effort for a simple
microcontroller [8]. Therefore, if high-complexity processors
are to be considered for highly critical applications, like ASIL-
D in the automotive domain, new methodologies and tools for
the robustness verification step have to be devised [2].

Safety-critical systems industry uses simulation-based veri-
fication as a way to reduce the costs associated with the ver-
ification and validation of complex designs. Simulation-based
verification allows reducing verification and validation costs
as design threats and certification mismatches can be detected
before manufacturing. Simulation-based robustness verification
is typically carried out at RTL and gate-levels by performing
extensive fault-injection campaigns that require huge computa-
tion effort to achieve meaningful results. Further increasing the
level of abstraction of simulation-based fault injection will allow
reducing verification costs of current designs and affording the
simulation effort of high-complexity processor designs. In the
case of microcontrollers, the instruction set simulator (a.k.a.
TSIM) has been regarded as a potential candidate to carry
out the robustness verification at a high level of abstraction.
However, for TSIM’s to be used in the robustness verification
process it must be proven that by leveraging them accurate
results can be achieved.

Several recent works [7], [22] have been carried out showing
the potential and limitations of TSIM-based fault injection. In
this paper, we tackle the problem of increasing the confidence on
TSIM-based fault injections from a different angle. Rather than
focusing on correlating the result of TSIM fault-injections with
higher-accuracy fault-injection methodologies like the RTL or
gate-level, we elaborate on the effective utilization of fault mod-
els for increasing the confidence on TSIM-based fault injections.
In particular we analyze the effect that applying low-level fault
models to the available nets in an RTL processor model causes
in architectural registers. Architectural registers are a typical
target for performing fault injection using TSIMs [13][25].

In this paper there are 2 main contributions: (i) our extensive
injection in the RTL description of a safety-related processor
reveals that a single fault activated in the combinational logic
or hidden registers propagates into multiple complex errors
manifestations in the architectural elements of the processor,
and (ii) injection of single error models in higher levels of
abstraction is shown to have different effects in terms of
dependability than more complex fault models derived from
contribution (i).

The analysis and results of this paper show that blindly
applying low-level fault models to perform fault injections using
TSIM might lead to wrong conclusions. Also, by injecting in
a TSIM faults according to the high-level behaviour of faults
injected at low-level (e.g., RTL) different error profiles are
achieved. In particular, we show that low-level permanent faults
manifest as intermittent faults in architectural registers, which
may compromise their effective detection.

The rest of this paper is organized as follows. Section II
describes the required background on fault models. Section III
shows the characterization of the low-level faults model mani-
festation in architectural registers. In Sections IV and V a case
study showing the impact of accurately capturing high-level
behavior of low-level fault models is presented and analyzed,
respectively. Finally, Section VI presents some related work and
our conclusions are drawn in Section VII.

II. BACKGROUND

The simulation-based robustness verification process requires
the definition of suitable fault models accurately representing
common cause faults of a given component. In this section we
review the most widely known fault models and how these fault
models are adapted to deal with several abstraction levels.

A. Low-level Fault Models
In this paper we consider those low-level fault models tar-

geting abstraction levels lower than the microarchitectural level
(TSIM) such as gate-level and RTL. Typical examples of low-
level fault models are the stuck-at fault model, the open-line, the
resistive bridging, and propagation delay. We refer the interested

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/46606119?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

reader to the fault catalogue given in [28] for a more detailed list
of typical microcontroller faults and their corresponding fault-
model.

B. Microarchitectural Fault-models
We distinguish two main approaches to perform fault injec-

tions using microarchitectural simulators. The first approach
consists of using low-level fault models and applying them
directly to the possible injection targets. Typical TSIM injection
targets are the different memory structures like, RAM and
caches [24], and the architectural registers [13], [25]. The
second approach consists on defining specific microarchitectural
level fault models affecting specific microcontroller modules.
For instance, some failures produced in the register data flow
are the incorrect selection of input operands or the incorrect
access to the register file [4]. For the injection of such complex
microarchitectural fault models TSIM must be provided with a
detailed definition of the affected structures to be able to model
their buggy behavior.

Regardless of the approach used existing TSIM-based injec-
tion methodologies are not enough for the derivation of diagnos-
tic coverage and failure rate metrics as required by certification
standards such as ISO26262 [9]. However, by increasing the
accuracy of TSIM-based fault injection, design flaws can be
detected earlier in the design timeline, thus reducing verification
time and costs.

III. CHARACTERIZING THE BEHAVIOR OF RTL FAULT
MODELS

In this section we analyze RTL fault models behavior to un-
derstand how injection at the TSIM can be performed providing
the maximum possible degree of representativeness.

A. Methodology
We use an RTL description of the Leon3 [27] processor.

The Leon3 processor is an in-order processor with integer and
floating-point pipelines. Results and conclusions presented in
this section while not directly applicable to other processor
configurations will likely hold for similar processor architec-
tures but not for significantly different architectures like those of
out-of-order processors. From the available nodes of the Leon3
description we inject all the nodes within the integer unit of the
processor i.e. all available microcontroller nodes except those
representing the cache memories and the register file. The reason
for excluding those nodes is twofold. First, caches and register-
file data in microcontrollers targeting safety critical applications
are typically protected, meaning that faults originated within
these structures can be effectively detected. Second, fabs can
provide a model for faults directly affecting registers, but for
those faults which take place at elements which have a logic
path towards them, the only way to account for the impact they
have in the former ones is to perform thorough simulation.

Faults have been injected using an injection and analysis
tool named FALLES [6] that employs simulation commands
as described in [17]. For the faultload we use permanent and
transient single fault models. Permanent fault models considered
are stuck-at-1, stuck-at-0 and open-line while the transient fault
model considered is the transient indetermination [11]. For each
permanent fault model, every target node has been injected
once at the beginning of the workload, totaling 5246 injection
experiments per workload. However, for transient faults 10
injection experiments per target node have been performed,
each injection applied at different randomly chosen instants of

workload execution. These were active for 1.5 times the clock
period, to ensure no time filtering takes place. This allows to
improve coverage of the possible outcomes no matter the logic
state of the system at the time of injection. The total is 52460
experiments of transient faults per workload.

Several workloads comprising some EEMBC automotive [23]
and Mälardalen [12] benchmarks have been executed in the
RTL simulator. Results of the golden run (simulation in the
absence of faults) are compared with the ones after injection
to determine the outcome of fault injections. We have focused
on the register file and system registers to determine that an
error has been produced when a mismatch in the state of these
registers is found after comparison with the status of the golden
run registers. We focus on the architectural registers only as they
are a typical target for injection using TSIM. In the following
we present the results of the fault injection experiments at the
RTL level.

B. Error multiplicity
In this paper define error multiplicity as the number of differ-

ent architectural registers a single injected fault can reach and
upset during the execution of the workload. Error multiplicity
values are shown in Figure 1 for permanent faults and in Figure
2 for transient faults.

1,0

1,5

2,0

2,5

3,0

3,5

4,0

rspeed canrdr ttsprk matmult firFn

Error Multiplicity (Registers)

Stuck-at-1
Stuck-at-0
Open line

Fig. 1. Errors multiplicity, permanent faults.

1,0

1,5

2,0

2,5

3,0

3,5

4,0

rspeed canrdr ttsprk matmult firFn

Error Multiplicity (Registers)

Tr. Indetermination

Fig. 2. Errors multiplicity, transient faults.

The figures show a set of interesting information. First of all,
in Figure 1 we can appreciate a range which varies between
1.3 and 3.76 affected registers on average, depending on the
workload and permanent fault model. What that means is,
though executed workload and fault model have an influence,
the averaged value can go as high as nearly 4 affected ar-
chitectural registers per single fault occurred in the integer
pipeline. It is not common practice today to test wrong values
of 4 different registers concurrently, so the coverage of real-
world dependability threats happened at the combinational side

is suboptimal, not considering the extreme cases. Of course,
the higher the number of utilized registers by the workload
the potentially higher values of multiplicity can appear. It is
important to mention that at the RTL open-line faults are
propagated as an indeterminate value and thus not logically
masked. Therefore, open line multiplicity values instead of
representing the actual multiplicity of a physical open line
represent an upper bound of the actual error multiplicity.

Moving to Figure 2, a comparison with Figure 1 shows
interesting facts. The trend of permanent fault models is not
totally followed in this case, where rspeed, canrdr and ttsprk
show rather high values of multiplicity compared to permanent
faults, while matmult and firFn show smaller values. In general,
a lower maximum across benchmarks is found for transient
faults, what makes sense taking into consideration these faults
last much less time active so they should not have time to reach
so many registers. Even though, up to 2.14 average multiplicity
indicates that a single register injection will not cover adequately
the underlying reality.

C. Error repetitions
In order to understand the way a single fault model impacts

in the architectural registers throughout time, we perform an
analysis on the amount of times an error appears in the same
register while executing the benchmark (error repetitions). This
information is relevant since an error can ‘disappear’ when it
is overwritten, which masks the error, but then reappear when
the logic masking is no longer active. A number of repetitions
per benchmark, obtained by averaging the values for every
architectural register, is shown for permanent faults in Figure 3
and for transient faults in Figure 4.

1

2

3

4

5

6

7

8

9

rspeed canrdr ttsprk matmult firFn

Average error repetitions per Register

Stuck-at-1
Stuck-at-0
Open line

Fig. 3. Errors average repetitions per register, permanent faults.

1,000

1,005

1,010

1,015

1,020

1,025

rspeed canrdr ttsprk matmult firFn

Average error repetitions per Register

Tr. Indetermination

Fig. 4. Errors average repetitions per register, transient faults.

In the first chart, there is a wide disparity across benchmarks
and fault models. If we compare across permanent fault models,

stuck-at-1 shows the highest number of average repetitions as
compared to stuck-at-0 or open-line. This is due to masking
affecting more a high logic value than a low one in the case
of 4 out of 5 benchmarks, i. e. there are more ‘1’s than ‘0’s
in the logic alive values of those benchmarks. Interestingly, in
firFn the opposite happens, so there is a higher logic masking
for ‘0’s. For open-line a reduced value tells that those errors
are not easily masked, in the way that when they appear it is
strange to see them disappear (but not impossible, since it is
not a flat 1 value). This observation is supported with evidence
next.

Also, if attention is put on a specific fault model, for instance
stuck-at-1, the values change from 1.72 to 8.88 times according
to different benchmarks. This means that, contrarily to the
intuition of applying a permanent fault model to architectural
registers in the higher level assessment, the truth is that an
intermittent model will better mimic what permanent damage
in the combinational logic can cause. To illustrate this fact, in
the left hand side of Figure 5, the error duration histogram
shows precisely the fact that very few of the errors lasted until
the end of execution (i.e. appeared as permanent), as opposed to
those which lasted a finite amount of time and were recurrent.
If the open line model is studied, the situation is the opposite.
In right hand side of Figure 5 the duration histogram of such
hardly repeated errors tells that once an open line has hit the
architectural registers it is hardly masked since it is not later
rewritten with correct values.

0

5

10

15

20

25

<8280 End

o

f
e

rr
o

rs

ns

Err durations, ttsprk

Stuck-at-1k
k
k

k

k

0

0,3

0,6

0,9

1,2

1,5

<1300 End

o

f
e

rr
o

rs

ns

Err. durations, ttsprk

open linek

k

k

k

k

Fig. 5. Durations histogram of Errors in arch. registers for ttsprk, permanent
faults.

0

1

2

3

4

<2560 End

o

f
e

rr
o

rs

k

ns

Histograma

Tr. Indetermination

k

k

k

Fig. 6. Durations histogram of Errors in arch. registers for ttsprk, transient
faults.

Moving to Figure 4, what is pretty evident is that for transient
faults the values are barely above 1, meaning that hardly ever
a transient indetermination fault in the pipeline will cause a
recurrent error in an architectural register. In other words, when
such faults hit the architectural registers they are not masked
temporarily but a certain percentage of them is definitely cleared
after some time.

D. Error bit upsets
Up to this point, we have acknowledged that multiple and

intermittent errors have to be introduced to improve coverage

of what can happen in the on-board embedded systems. In this
section we discuss about the error bit upsets i.e, the number of
affected bits of each register originated from a single fault.

Figure 7 shows the average number of error bit upsets in
architectural registers for permanent fault models, and Figure 8
does the same for transient fault models.

1

2

3

4

5

6

7

rspeed canrdr ttsprk matmult firFn

Average error bit-upsets per Register

Stuck-at-1
Stuck-at-0
Open line

Fig. 7. Average error bit-upsets per register, permanent faults.

0

1

2

3

4

5

6

7

rspeed canrdr ttsprk matmult firFn

Average error bit-upsets per Register

Tr. Indetermination

Fig. 8. Average error bit-upsets per register, transient faults.

In the permanent faults case, a minimum of 2.9 and a
maximum of 6.57 bits across benchmarks and models (out of 32
bit register sizes) are upset in average. These are rather elevated
values, far from single bit upset models.

For the transient faults case, the story is hardly different.
It is true though, that a smaller number of bit-upsets applies
in general for every benchmark, with special incidence in
some of them –see ttsprk dropping from 3.09 or more down
to 1.65. Only the ttsprk case shows average values below 2
considering permanent and transient faults, so again multi-bit
models for architectural registers seem to be the safest bet in
the representativity context.

IV. CASE STUDY: MODELED ARCHITECTURE

In this section we analyze how a high-level (TSIM) charac-
terization of low-level (RTL) faults behavior helps increasing
the effectiveness of fault injections at high level (TSIM) of
abstraction. To do so, we have modeled a lockstep architec-
ture resembling the AURIX [16] processor. Lockstep archi-
tectures like the Infineon AURIX [16] and ST microelectron-
ics SPC56EL60L5ST133 [26] processor are complex designs
widely employed in the context of highly critical automotive
applications for which using effective robustness verification
steps using high abstraction level simulators result very ben-
eficial [13], [14].

A. Processor Model
We consider a processor resembling the Infineon AURIX

5-core processor1 [16]. Such architecture has been modeled
with an enhanced version of the SoCLib simulation frame-
work [19] with TriCore binaries [29] to implement a cycle-
accurate pipelined in-order core architecture similar to the
AURIX processor [16]. We are interested in analyzing the
behavior of two of its cores operating in lockstep mode. As
in the AURIX processor, those cores operate in a way that
the leading thread runs few cycles ahead of the trailing thread.
A simple hardware checker is placed in between the trailing
core and the shared communication network. During lockstep
operation, the hardware checker stalls the bus accesses of the
trailing core and snoops leading thread activity (data, interrupts,
exceptions, etc.). On each bus access of the leading core, the
checker compares the values (address and data if any) against
those of the trailing core. On a mismatch an error is reported
raising the corresponding interrupt. If no mismatch is detected,
the trailing core remains in the same state as the leading core.
For instance, leading and trailing cores are allowed to proceed
if the memory or I/O request does not require any answer, as
for write operations.

B. Applications and System Software
Complex processor architectures like the Infineon AURIX

processor are ideal candidates for the consolidation of several
applications of different criticalities in the same chip. While
in current systems only one highly critical application (e.g.,
ASIL D) is executed in the platform in the future it is expected
having applications of different criticalities integrated onto the
same system to maximize the performance provided by recent
designs of multicore embedded processors [1].

Currently, with one application running in the lockstep archi-
tecture the most effective recovery mechanism consists of reset-
ing and re-starting the execution when an error is detected [15].
However, in a context where several applications can be sched-
uled to run simultaneously in the same processor this approach
is not valid anymore and efficient recovery mechanisms based
on effective checkpointing have to be deployed [14]. For this
case study we consider several mixed-criticality applications
executing simultaneously in the processor and the recovery
is based on the effective checkpointing mechanism proposed
in [14].

C. Error Injection Methodology
We have performed error injections in the register file using

a TSIM of the aforementioned processor. The fault injection
has been carried out using two different methodologies: (i) a
plain fault injection (PFI) methodology and (ii) a smart fault
injection (SFI) methodology. For the PFI we considered low-
level fault models cause an analogous low-level effect to the
architectural registers. For instance, a transient error is modeled
as a single-bit upset in a random bit position of an architectural
register whose value can be modified when it is overwritten.
We consider transient and permanent fault models.

For the SFI we consider that both transient and permanent
faults do not necessarily manifest in architectural registers in
the same way they manifest when applied directly to an RTL
net. In particular, we use the main properties shown in previous
section to build a more complex fault model where multiplicity,

1Only 3 cores can be used effectively since the other 2 operate in lockstep
mode with 2 of the usable cores.

repetitions, and heterogeneity are taken into account as detailed
in the next section.

V. CASE STUDY: RESULTS

For the comparison of PFI and SFI methodologies we ran
several EEMBC benchmarks in the simulator and collected
statistics. Next, we present the comparison of the approaches
focusing on the impact of multiplicity, repetitions, and the
multiple bit upsets.

A. Multiplicity
To quantify the impact of error’s multiplicity we compare the

results of injecting errors using PFI and SFI methodologies. To
decouple the rest of effects for this study we consider SFI only
takes into account multiplicity effects. In particular, for every
fault injection we poison a variable number of registers ranging
from 1 to the expected multiplicity value according to the low
level fault model considered. We show results only for the case
of transient fault models. The analysis for permanent faults is
not shown due to lack of space, but conclusions are analogous
as for transient faults.

Figure 9 shows the impact of error’s multiplicity in the
architectural system and user registers. Following the results
of the analysis in Section III we consider that the maximum
expected multiplicity for the transient indetermination fault
model is 2. Results show that even for multiplicity 2 (M2) the
error profile changes significantly. On average the percentage of
masked faults varies from 39% to 16.6% for the cases of M1
and M2, respectively.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8

m
as
ke
d

de
te
ct
ed

la
te
nt

m
as
ke
d

de
te
ct
ed

la
te
nt

m
as
ke
d

de
te
ct
ed

la
te
nt

m
as
ke
d

de
te
ct
ed

la
te
nt

cacheb rspeed a2time aifirf

Pe
rc

en
ta

ge
 o

f F
au

lt
s
(%

)

M1

M2

Fig. 9. Effect of multiplicity on error distribution.

B. Error Repetitions
As shown in Section III permanent errors affecting processor

internals manifest intermittently in the architectural registers.
While the intermittent behavior of permanent errors does not
challenge the detection coverage of the lockstep architecture
per se, this behavior compromises the effectiveness of error re-
covery. The reason is that even using a fine-grain checkpointing
mechanism like the one proposed in [14] where checkpointing
frequency can be increased at low cost, permanent errors might
not be effectively (on a timely manner) detected if they are not
present in the architectural register at the time the checkpointing
mechanism exposes architectural registers to the on-chip bus.
Figure 10 shows the percentage of permanent errors that can be
detected. Only values for stuck-at-1 (s1) and open-line (ol) fault
models are shown in the plot as they represent the two extremes:
highly intermittent behavior (s1) and quasi-permanent behavior
(ol). For injections we have considered as fault duration the
one obtained in the analysis in Section III. As shown in the
figure even for the highest checkpointing frequencies in [14]

the percentage of faults not effectively detected (per checkpoint)
is around 94% for stuck-at-1 but just 3% for open line. When
going to lower checkpointing frequencies, those recommended
to avoid heavily impacting the performance, the rates for unde-
tected (per checkpoint) stuck-at-1 faults and open line stay the
same for the case of an inter-checkpointing interval of 10,000
cycles.

The immediate conclusion we draw from these results is that
using a PFI can lead to erroneous conclusions. For example
100% permanent errors detection coverage is expected for
permanent fault models when injection is applied directly to
the architectural registers [13]. However, as shown, this is far
from being the case when faults occur in other components and
propagate to the registers since faults can manifest intermit-
tently, hindering detection.

0%

20%

40%

60%

80%

100%

%
 e

rr
o

rs

Clock cycles

Err. durations, ttsprk

Stuck-at-1

0%

20%

40%

60%

80%

100%

%
 e

rr
o

rs

Clock cycles

Err. durations, ttsprk

open line

Fig. 10. Percentage of detected errors per checkpoint according to checkpoint-
ing period.

C. Error Bit Upsets
To analyze the effects of multiple bit upsets we have carried

out fault injection experiments varying the number of bits that
are affected in the architectural registers. Figure 11 shows the
profile of errors for a single bit affected in the architectural
registers (BU1) and when considering two bits (BU2). As shown
in the figure the effect of having multiple bit upsets in the
architectural registers that are generated within the core is not
as important as the effect of multiplicity or error repetitions. For
example the masking of faults is decreased only by 7% when
considering 2 bit upsets while for the case of a multiplicity of
2 (M2) the masking factor decreased by 2.3×.

0

0,1

0,2

0,3

0,4

0,5

0,6

m
as
ke
d

de
te
ct
ed

la
te
nt

m
as
ke
d

de
te
ct
ed

la
te
nt

m
as
ke
d

de
te
ct
ed

la
te
nt

m
as
ke
d

de
te
ct
ed

la
te
nt

cacheb rspeed a2time aifirf

Pe
rc

en
ta

ge
 o

f F
au

lt
s
(%

)

BU1

BU2

Fig. 11. Effects of multiple bit upsets on error distribution.

VI. RELATED WORK

Fault injection methodologies are widely employed for the
microcontrollers robustness verification in the automotive do-

main [22]. Fault injection experiments can be performed at
several abstraction levels to exploit the existing accuracy cost
trade-off [2]. RTL and gate-level fault injection experiments
are the most adopted approaches to perform the certification
of hardware products against standards [9].

Practitioners have performed fault injection at the logic and
RTL levels using different techniques. A widely-used method
is the injection in the HDL through simulator commands [17],
which works well for most of the fault models described in the
literature.

The majority of works on estimating reliability at the microar-
chitectural level (TSIM) focus on determining the architectural
vulnerability factor (AVF) [21]. The AVF is computed by
obtaining the percentage of the architectural bits contributing
to the processor’s reliability. A similar approach is the one in
[3] where the concept of instruction vulnerability factor (IVF)
is proposed to evaluate how faults in every instruction affect the
final application output.

The suitability of fault models targeting different levels of
abstraction was studied in [11] were fault model representa-
tiveness was validated for logic/RTL levels. On the contrary,
for higher abstraction levels like the TSIM some works have
pointed out the difficulties of correlating the results with ex-
periments at the physical level [18] because low-level fault
models cannot be directly applied to architectural simulators. A
first attempt of correlating TSIM and logic/RTL fault injection
experiments was done in [20] focusing on the correspondence
between low-level fault models and microarchitectural failure
scenarios. Later, authors in [7] showed that RTL fault injection
experiments can be correlated with architectural metrics for
the case of permanent faults. However, up to our knowledge,
none of the previous studies analyzed the main manifestation
properties of RTL fault models in the architectural registers for
the presented fault models and how high-level fault models can
be derived effectively to perform TSIM-based fault injection.

VII. CONCLUSIONS

Microcontroller verification based on fault-injection is a key
approach to carry out the robustness verification step of safety-
critical systems. TSIM fault injection has been regarded recently
as a low-cost, flexible and accurate framework platform for fault
injection. However, so far fault models have been applied in the
registers of a TSIM in the same way as in the nodes of RTL or
gate-level descriptions.

In this paper we show that the behavior of faults in the
registers – the main visible component in a TSIM – differs
significantly from the original fault models injected in combi-
national nodes. Therefore, our analysis proves that fault models
in low-level descriptions need to be applied differently in the
registers of a TSIM. We support this conclusion by comparing
the error detection capabilities of an automotive microcontroller
in front of the original fault models applied to registers and
their true manifestation in the registers obtained from RTL fault
injection.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the Ministry of Science and Technology of Spain under
contract TIN2015-65316-P and the HiPEAC Network of Ex-
cellence. Carles Hernández is jointly funded by the Spanish
Ministry of Economy and Competitiveness (MINECO) and
FEDER funds through grant TIN2014-60404-JIN. Jaume Abella

has been partially supported by the MINECO under Ramon y
Cajal postdoctoral fellowship number RYC-2013-14717.

REFERENCES

[1] Nvidia tegra k1 embedded platform design guide, 2015.
https://developer.nvidia.com/.

[2] ARTEMIS Joint Undertaking. VeTeSS project: www.vetess.eu.
[3] D. Borodin and B. H. Juurlink. Protective redundancy overhead reduction

using instruction vulnerability factor. In CF, 2010.
[4] J. Carretero, P. Chaparro, X. Vera, J. Abella, and A. González. End-to-end

register data-flow continuous self-test. In ISCA, 2009.
[5] I. E. Commission. IEC 61508 Functional Safety of Electri-

cal/Electronic/Programmable Electronic Safety-related Systems.
[6] J. Espinosa, D. de Andres, J. Ruiz, C. Hernandez, and J. Abella. Towards

certification-aware fault injection methodologies using virtual prototypes.
In FDL WiP, 2015.

[7] J. Espinosa, C. Hernandez, J. Abella, D. de Andres, and J. C. Ruiz.
Analysis and rtl correlation of instruction set simulators for automotive
microcontroller robustness verification. In DAC, 2015.

[8] ETAS. Solutions for embedded testing, 2014. http://www.etas.com/data/
presentations/SolutionsforEmbeddedTesting.pdf.

[9] I. O. for Standardization. ISO/DIS 26262. Road Vehicles – Functional
Safety, 2009.

[10] E. Francis. Autonomous cars: no longer just science fiction. Automotive
Industries, 193, 2014.

[11] P. Gil, J. Arlat, H. Madeira, Y. Crouzet, T. Jarboui, K. Kanoun, T. Marteau,
J. Dures, M. Vieira, D. Gil, J. C. Baraza, and J. Gracia. Fault represen-
tativeness. Technical report, DBench project, IST 2000-25425 [Online].
Available: http://www.laas.fr/DBench, 2002.

[12] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. The Mälardalen
WCET benchmarks – past, present and future. In WCET Workshop, 2010.

[13] C. Hernandez and J. Abella. Live: Timely error detection in light-lockstep
safety critical systems. In DAC, 2014.

[14] C. Hernández and J. Abella. Low-cost checkpointing in automotive safety-
relevant systems. In DATE, 2015.

[15] C. Hernández and J. Abella. Timely error detection for effective recovery
in light-lockstep automotive systems. IEEE Trans. on CAD of Integrated
Circuits and Systems, 34(11):1718–1729, 2015.

[16] Infineon. AURIX - TriCore datasheet. highly integrated and
performance optimized 32-bit microcontrollers for automotive
and industrial applications, 2012. https://www.infineon.com/
dgdl?folderId=db3a304412b407950112b409ae660342&fileId=
db3a30431f848401011fc664882a7648.

[17] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson. Fault injection
into VHDL models: the mefisto tool. In FTCS, 1994.

[18] M.-L. Li, P. Ramachandran, U. Karpuzcu, S. Hari, and S. Adve. Accurate
microarchitecture-level fault modeling for studying hardware faults. In
HPCA, 2009.

[19] LiP6. Soclib, 2003-2012. http://www.soclib.fr/trac/dev.
[20] M. Maniatakos, N. Karimi, C. Tirumurti, A. Jas, and Y. Makris.

Instruction-level impact analysis of low-level faults in a modern micro-
processor controller. Computers, IEEE Transactions on, 60(9):1260–1273,
Sept 2011.

[21] S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt, and T. Austin. A
systematic methodology to compute the architectural vulnerability factors
for a high-performance microprocessor. In MICRO, 2003.

[22] J.-H. Oetjens et al. Safety evaluation of automotive electronics using
virtual prototypes: State of the art and research challenges. In DAC, 2014.

[23] J. Poovey. Characterization of the EEMBC Benchmark Suite. North
Carolina State University, 2007.

[24] D. Sánchez, Y. Sazeides, J. M. Cebrián, J. M. Garcı́a, and J. L. Aragón.
Modeling the impact of permanent faults in caches. ACM Trans. Archit.
Code Optim., 10(4):29:1–29:23, dec 2013.

[25] B. Sangchoolie, F. Ayatolahi, R. Johansson, and J. Karlsson. A study of the
impact of bit-flip errors on programs compiled with different optimization
levels. In EDCC, 2014.

[26] STMicroelectronics. 32-bit Power Architecture microcontroller for auto-
motive SIL3/ASILD chassis and safety applications, 2014.

[27] http://www.gaisler.com/cms/index.php?option=com content&task=
view&id=13&Itemid=53. Leon3 Processor. Aeroflex Gaisler.

[28] VeTeSS project: www.vetess.eu. D5.2: Analysis of Fault Types and
Common-Cause Faults.

[29] J. Wetzel, E. Silha, C. May, B. Frey, J. Furukawa, and G. Frazier. PowerPC
User Instruction Set Architecture. IBM Corporation, 2005.

