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ABSTRACT
The purpose of this communication is to calculate the orders of the Bessel functions that
satisfies the equationf,(r)=J(k,r)+4, Y, (k) when the contour conditions are

f(a)=f,(b)=0. We will see that when k. is a constant then the orders v may be complex.

L. INTRODUCTION

The solution to the wave equation in cilyndrical coordinates, that is widely used in
electromagnetics, has a linear combination of Bessel functions as follows:
£,(r)=1 (K, r)+4, Y, (k,-r). This fonction must satisfy the boundary condition forced
by the geometry of our structure. We will force electric wall conditions in r=a and in r=b.
That is f(a)=f,(b)=0.

The bibliography about this topic is scarce. In [1] we have one of the best treatises about
Bessel Functions. But there is not any reference to our problem. In [2], a reference from
the last century, we have this problem but without resolution. So we are in front of a
problem that has not been solved clearly. We will use the method proposed in [3] in order
to find a solution.

And, in addition, we will find out that this method allows to calculate the propagation
modes in lossy structures. So we can see the wide possibilies of the proposed numerical
method.

. THE WAVE EQUATION
The wave equation in cilyndrical coordinates has the following solution:

AO(r,@,z)+k2 ®(r,@,2)=0
]

1)
@(r.¢,2)=R(r) - F(9)-Z(2)
where F(¢) y Z(z) are:
1 3*F(e) 2 v -5
—_ =-v? = F(¢)=e’ LY RPN
Flo) oag?
1 3%Z(z) @
V4 2 jk.9 -jk,®
— =-k; = Z(z)=e"""+B, e
20 s e T AR
and R(r) is the solution of the Bessel equation:
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where k,2 =k? —k__z. Consquently, R(r) is:
R(r)=Jv(kr-r)+CV-Yv(k,'r) @)

0-7803-5639-X/99/$10.00 ©1999 IEEE.
2196



The three functions R(r), F(¢@) y Z(z) must satisfy the boundary conditions that are forced
by the structure. We will suppose that these conditions for function R(r) are R(a)=R(b)=0.
If k, is a constant we are supposed to find the values for v and C,. This last value is very
simple. We only have to force the boundary conditions in r=a or in r=b. So:

J (k.-

The main problem is to calculate the orderv..

III. SOLUTION OF R(r) AS AN EIGENSYSTEM
Following the method proposed in [3], we can write the equation (3) as:

v2
L R(r)= 22 R(r) ©
r
whereL, is an operator defined as:
2
Lké_a...+l‘_a_+kr1 )

* 9r® r or

Then we propose a R(r) solution in a series form:

R(r)= Zo dy - glr) (8)

where d,:’ are unknown coefficients and g, (r) are a set of basis function that agree with
the boundary conditions g,,(a)=g(b)=0.
Now we define an inner product as:

(f18)=[* J0)lr)r-dr o

If we substitute equation (8) in the Bessel equation and we use the inner product defined
in (9) we reach the following eigensystem:

?2.D=v*0-D (10)

where P and 6 are two matrices which elements are:
Q.= lg) : rt=0,1,2,..

P,r=<Lk,'gr!gl> ;o rt=0,1,2,.. av

and D is a vector contining the coefficients of R(r).
If we see the equation (10) carefully we discover that D y V* are, respectively, the
eigenvectors and the eigenvalues of the previous eigensystem. So, in order to obtain the
orders v of the Bessel functions and the coefficients, we are supposed to solve just an
eigensystem problem.
As basis functions g, (r) we can use the following ones:

r-a

gm(r)=sin( m~1|:~—-b_a] (12

The values of Q, y P, are:
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where each parameter I, ", 't

I,(",)=fab sen ( r-n-%g] “sen ( t-n-—z'—a) pdp=

) is:

_i.[_——.b'“ )]2-(4-r-r+(—1)”’-(r-z)2-(—1)"'-(r+t)2) L oret (19)
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R )
0 ; r=t

IV.EXAMPLE

In the first example we have that k=0, k=k =62, and that 2=0.2 m and b=0.3 m. In the

following table we have five values for v and their coefficients d,:

v d
13.4014 -0.9948 0.1020 0.0018 -0.0006 0.0003
j2.4542 -0.0311 -0.9986 -0.0424 -0.0031 -0.0040
j-17.4607 0.0010 0.1208 -0.9804 -0.1541 -0.0196
j26.9161 -0.0063 0.0121 -0.2334 0.9394 0.2465

We can see that only one order v is real. This is the only mode that propagates along the
structure consisting of a circular sector with two electric walls in r=a and r=b. The other
modes do not propagate. They are cut off modes because the order v is imaginary and they

do not transport energy.

We can state that the biggest is the distance between radii a and b, the biggest is the
number of modes that can propagate, and viceversa. So we can have an structure without

propagating modes.
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With this method we can even calculate the orders v when k (the wave number in free
space) is complex (this is a lossy media). Then the order v is complex, with real and
imaginary parts. The former one indicates the propagation and the last the attenuation.
In figure 1 we have the module of E, component in a circular sector with radii 2=0.2 m
and b=0.5 m and permittivity ¢=4-j when a sinus wave incides in ¢=n/2 at frequency
=3 Ghz. Note the attenuation inside the sector because of the losses in the dielectric.
In figure 2 we have the same E, component when a=0.2 m and b=0.22 m with dielectric
¢=1. In this case all the modes are cut off. The values of v are:

v

5302103 | 645909 | j9s001s | j131.1858 | 1642803

V. CONCLUSIONS

To sum up we can say that we have managed to find the modes, real and complex ones,
that appear in a cylindrical structure when there are electric wall boundary conditions in
two constant radii. The method is fast and simple. We only need to solve a simple
eigenvalue and eigenvector problem.
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