
HATCH: Hash Table Caching in Hardware for Efficient Relational Join on FPGA

Behzad Salami∗†, Oriol Arcas-Abella∗† and Nehir Sonmez†
∗Universitat Politecnica de Catalunya BarcelonaTech (UPC), Barcelona, Spain.

†Barcelona Supercomputing Center (BSC), Barcelona, Spain.
Email: {behzad.salami, oriol.arcas, nehir.sonmez}@bsc.es

Abstract—In this paper we present HATCH, a novel hash
join engine. We follow a new design point which enables us
to effectively cache the hash table entries in fast BRAM re-
sources, meanwhile supporting collision resolution in hardware.
HATCH enables us to have the best of two worlds: (i) to
use the full capacity of the DDR memory to store complete
hash tables, and (ii) by employing a cache, to exploit the high
access speed of BRAMs. We demonstrate the usefulness of
our approach by running hash join operations from 5 TPC-
H benchmark queries and report speedups up to 2.8x over a
pipeline-optimized baseline.

I. INTRODUCTION

Recently, with the rise of Internet of Things and Big Data,
faster query processing capabilities has gained significant
attention. One of the most time-consuming query operations
is the table join. Previous studies have demonstrated that
table joins can account for more than 40% of total execution
time [1]. The hash join consists of a build phase using the
smaller table to make the hash table and a probe phase where
all keys in the larger table are probed against the hash table
for matches.

II. HATCH: PROPOSED DESIGN

The most critical issue in table joins is hash collisions.
They happen when the hash function hashes different keys
to the same index. Collisions are inevitable and need to
be handled appropriately. This issue may convert into a
bottleneck if it’s handled in a non-optimized manner like
software fallback mechanisms [2] which can cause extra
latencies. Due to the scarcity of on-chip BRAM resources,
previous FPGA implementations envisioned building the
hash table in high-latency DDR memory. In this paper we
propose HATCH, a novel hash join engine that works fully
in hardware. HATCH better utilizes the FPGA resources
by employing caching of hash table entries in BRAM,
meanwhile resolving hash collisions in hardware.

The main components of HATCH are; hash table is made
in RAM, cached hash table in BRAM, buckets to store value
of tuples, a linear feedback shift register (LFSR)-based hash
function and a content addressable memory (CAM) to handle
read-after-write hazards in the build phase. In the proposed
architecture, bucket overflow issues and nested collided keys
are handled by employing a linked list structure. In HATCH,
BRAM is used to cache some entries of hash table. All

Table I
EXPERIMENTAL RESULTS FOR TPC-H QUERIES

Query
Size
(#Tuples)

Baseline
(#Cycles)

HATCH
(#Cycles)

Speed up

q03
q10
q12
q13
q14

7.50 M
1.10 M
15.3 M
30.0 M
2.70 M

50.2 M
1.10 M
94.9 M
91.8 M
11.6 M

17.7 M
1.10 M
42.6 M
53.6 M
5.90 M

2.8 X
1.0 X
2.2 X
1.7 X
1.9 X

the required look-ups for the hash table go to the cache
in BRAM first. If it is a miss, the look-up is forwarded
to the main hash table in RAM. Additionally cache entry
replacement policy (in both build and probe phases), is
considered for all the entries which has missed in the cache.

We have used Xilinx ISE version 14.1 and Bluespec
System Verilog compiler[3]. Our engine was design to work
at 200 MHz on a VC709 Evaluation board with a Virtex-7
xc7vx690tffg1761-2 FPGA and two DDR3 memories of 4
GB each. Simulation results for some TPC-H queries, are
reported in Table I for 10G dataset. In the baseline version,
BRAM is not employed to cache the hash table entries but
its other components are same as HATCH.

III. ACKNOWLEDGEMENT

The research leading to these results has received funding
from the European Unions Seventh Framework Programme
(FP7/2007-2013), for Advanced Analytics for Extremely
Large European Databases (AXLE) project under grant
agreement number 318633, and from the Ministry of Econ-
omy and Competitiveness of Spain under contract number
TIN2012-34557.

REFERENCES

[1] T. Hayes, O. Palomar, O. Unsal, A. Cristal, and M. Valero.
Vector extensions for decision support dbms acceleration. In
Proceedings of the 2012 45th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO-45, pages
166–176, 2012.

[2] L. Woods, J. Teubner, and G. Alonso. Less watts, more per-
formance: An intelligent storage engine for data appliances.
In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’13, pages
1073–1076, 2013.

[3] Bluespec, Inc. http://www.bluespec.com.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/46606073?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

