
Towards Certification-aware Fault Injection
Methodologies Using Virtual Prototypes

Jaime Espinosa†, David de Andrés†, Juan-Carlos Ruiz†, Carles Hernandez‡, Jaume Abella‡
†Universitat Politècnica de València

‡Barcelona Supercomputing Center (BSC-CNS)

Abstract—Safety-critical applications are required today to meet
more and more stringent standards than ever. In the need of
reducing the costs associated with the certification step, early
robustness evaluation can provide valuable information, as long
as it is fast and accurate enough. Microarchitectural simulators
have been employed for testing reliability properties in several
domains in the past, but their use in the process of robustness
verification of safety critical systems has not been validated yet, as
opposed to RTL or gate-level simulations. In the present work,
we propose a methodology to improve the accuracy of fault-
injection results when targeting robustness verification, by using
microarchitectural simulators and virtual prototypes for an early
estimation of deviations with respect to the certification standards.

I. INTRODUCTION

To cope with the increasing functionality demands coming
from the safety-critical systems industry processor designs
offering more computation power are required. However, the
growing complexity together with the requirement for adhering
to certification standards causes processor designs targeting
safety critical markets rarely achieve reduced time to market.
In that context, new verification and test methodologies and
tools have to be devised for a quick and cost-effective way to
check whether robustness properties are achieved throughout the
whole design flow on top of complex processor designs.

Simulation-based fault injection is regarded as a suitable
methodology for the robustness verification process, as quick
and cheap corrections on misbehavior can be made. Unfortu-
nately, fault injection experiments are often carried out at gate
level, and so the testing process becomes excruciatingly slow.
This problem is alleviated when fault-injection is applied at
a higher level of abstraction like the Register Transfer Level
(RTL). Verification at the RTL level reduces the burden but
still results can get too slow for repeated use in the context of
complex designs.

Software-based fault injection techniques and in particular
fault-injection experiments using virtual prototypes (or mi-
croarchitectural simulators) are a potential candidate to reduce
the costs associated with the robustness verification process
[16][2]. The main benefits of these approaches with respect
to RTL-based fault injections are the simulation speed and the
possibility to anticipate deviations w.r.t. the safety requirements
before having an actual implementation of the system. Note that
the effort required to have a virtual prototype [22][14] of the
system is much lower than the one required to have an RTL
processor description1. However, for these approaches to be
employed in the robustness verification process of safety critical
processors their accuracy must be proven. It is important to
mention that fault-injections using microarchitectural simulators

1In fact virtual prototypes are already needed to enable software developers
to test their software before the actual processor is shipped.

are typically restricted to the register file [10][21] and the
different memory structures [20][1]. The reason is that the
majority of the potential injection nodes that are present at more
detailed abstraction levels like RTL or gate-level are missing at
this level of abstraction.

In this context, estimating accurate failure rate metrics using
virtual prototypes is challenging. On one hand, implementa-
tion details of virtual prototypes provided with commercial
tools [22] are typically protected. On the other hand, even if
implementation details were available, the existing information
in virtual prototypes implementation is reduced in comparison to
other detailed implementations like RTL. Taking these facts into
account, obtaining failure metrics as the ones required by safety
critical systems certification standards [7][19] using virtual
prototypes is a complex task. Our hypothesis is that for virtual
prototypes to be considered for the robustness verification
process, results obtained at this level must be correlated with
the ones obtained at lower levels of abstraction like the RTL or
gate-level as fault-injection at these lower abstraction levels has
already been shown to provide accurate enough results [18].

In this paper we propose a methodology that increases the
confidence on fault injection experiments into virtual prototypes
by using some key information extracted from more detailed
levels of abstraction (say for instance RTL or Gate Level).
In particular, we are interested in knowing the likelihood that
a fault in any [22] possible processor net, gate, or flip/flop,
propagates to the register file, system registers or the different
memory structures existing in the CPU virtual prototype. Note
that this architectural information represents the minimum im-
plementation details that need to be available in any virtual
prototype and visible to the user.

The rest of the paper is organized as follows. Section II
reviews the state-of-the art in fault injection related to the
certification of safety-critical systems. Section III presents the
problem in detail and the proposed methodology towards en-
abling the use of Virtual Prototypes for injection. Section V
shows the preliminary evaluation data and finally, in Section VI
some conclusions are drawn.

II. RELATED WORK

Several techniques exist to perform RTL level fault injection.
A widely-used method is the injection in the HDL through
simulator commands [12], which works well for most of the
fault models described in the literature. In fact, some uncon-
ventional fault models such as those involving several injection
points –short-circuit, multi-bit injection– can be applied if
the more intrusive technique of saboteurs is used [3], but an
instrumentation of the model –and the consequent decrease in
simulation speed– is entailed.

Fault models representativeness has been validated for
logic/RTL levels [8]. On the contrary, for higher abstraction
levels like the microarchitectural one, some works have pointed

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/46606053?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CPU Baseline RTL
Implementation

Inject Faults

IP Protected
VP Implementation

A
rc

h
it

e
ct

u
ra

l

 R

e
g
is

te
rs

M
E
M

Inject Faults
in Registers
using RTL info

CPU Virtual Prototype

Fig. 1. Proposed methodology.

out the difficulties of correlating these results with the ones
obtained at the physical level [13]. In [4], a quantitative analysis
on the divergences was presented, though restricted to bit-flip
models injected in flip-flops. Further analysis on the impact at
instruction level of low-level (RTL and gate level) faults was
presented in [15]. In that work, stuck-at and bit-flip models are
injected to profile higher-level implication, but injections are
limited to the control logic and a reduced set of it in the case
of gate level.

III. CERTIFICATION-AWARE FAULT INJECTION IN VIRTUAL
PROTOTYPES

In this paper we present a methodology that targets per-
forming meaningful fault-injection experiments using virtual
prototypes. The proposed methodology consists of two separate
steps: (1) a characterization of the fault propagation in an RTL
description of the processor, and (2) the actual injection in the
virtual prototypes.

A. Characterizing Fault behaviour at RTL level

We are interested in analyzing the influence of faults in
the system towards the incorrect delivery of results, i.e. the
appearance of failures, and the moment at which those failures
may appear. To characterize fault propagation we propose a
methodology that consists of injecting faults in all possible
nets of an RTL processor description, using the tool FALLES
described in Section IV.

From the injectable nets we have excluded the register file
and cache memory structures due to the following reason: errors
occurring within these structures are effectively detected and/or
corrected by employing redundancy mechanisms (e.g., error
correction codes) and this is the case in most of the proces-
sors targeting safety-critical applications [25][11]. Moreover,
available nets in these structures do not realistically represent
their area. Memory structures are typically implemented using
SRAM cells to miminimize area and power and the RTL
includes only an instantiation of these components as a black
box and/or its behavioral description.

For every fault injection where a net has been forced to a
given value, we compare the outputs of architectural registers
(general purpose and control registers) and the data and address
buses of the core at the on-chip boundaries to the ones obtained
with a fault-free simulation. Furthermore, we account for the
time elapsed between a mismatch appearing in any of those
architectural registers and the subsequent mismatch in the
buses which appears in some cases. Gathering this information
enables, for instance, detecting the most sensitive registers,
which may be ideal candidates for mitigation, or the average

time it takes to show erroneous state to the buses, which can be
used to determine the maximum detection timespan in lockstep
systems [10]. More importantly, we can match it with the
information available at the architectural level to increase the
accuracy of the injections at such level [6]. In depth, if the
propagation information –the number of injected faulty nodes
which reflect the wrong value in any architectural register or
memory position– is used to inject precisely those nodes of the
virtual prototype (see Figure 1), an increase in the accuracy of
the high-level injection should be attained.

B. Fault injection at Virtual prototypes
Typically, a CPU virtual prototype consists of two differen-

tiated parts: the functional emulator and the timing simulator.
Depending on the tool and the targeted CPU, the details of the
implementation for both the timing simulator and the functional
emulator might be not accessible. A functional emulator is
able to run application code that has been compiled for a
particular architecture and to perform its execution in such a
way that the memory data and architectural registers contain
an exact representation of the real processor state. Precisely,
the information of the processor state has to be disclosed to
allow compilers and system software to use the modeled CPU.
In that respect, we propose a fault-injection approach that uses
only architectural registers and memory contents to minimize
the intrusiveness of the fault injection in the virtual prototype.
Additionally, as mentioned before, to accurately capture the
behavior of the faults affecting the different processor nets,
fault-injections at the virtual prototype must be enriched with
meaningful information from the RTL. For example, in line with
the results shown in [5], if fault injections target architectural
registers only it is important to know the percentage of total
processor faults that are represented by such fault-injection
strategy. We let as future work the definition of the suitable
injection strategies in the virtual prototype.

IV. FALLES: FAULT INJECTION AND ANALYSIS FOR LOW
LEVEL EVALUATION SUITE

The tool FALLES is an injection and analysis tool comprising
a set of TCL and AWK scripts. It is designed to operate with
low level descriptions of a system, mainly RTL and Gate Levels,
by using the technique of simulation commands [12]. To do
so, it currently supports Modelsim [26] tool to perform the
simulation.The reason of its existence is accelerating the costly
process of simulating a complex system running a realistic
workload. The methods to achieve the improvement are quite
straightforward. First of all, it trims all the simulation generated
outputs to the minimum required amount of data, offering the
possibility to apply any type of post-processing to them. Second
it exploits massive parallelism of multi-core or grid computers
to run up to several thousand concurrent threads. Third, it uses
highly optimized text parser AWK to process the results.

When using a tool like FALLES, maintainability, extendabil-
ity, ease of use and versatility are paramount. It can perform
cycle-accurate simulations or, for an implemented design in
Gate level, optionally accept Standard Delay Files (SDF) as
inputs to study process corners. If such type of simulation is
performed clusters or grids are the preferred option to exploit
a huge amount of cores. Up to now Oracle Sun Grid Engine
(SGE) management system [23] is supported, but it is very easy
to add support for other grid managers.

Regarding the injectable fault models, stuck at 1 or 0, open
line, indetermination, pulse or bit-flip are supported, in the

Leon3

Integer
 Unit

Data
Cache

Inst
cache

M
em

o
ry

Data

Address

Fault Injection Analysis

FALLES tool

System
Registers Register

File

Fig. 2. RTL robustness verification framework

variations of transient, intermittent or permanent duration. New
fault models can be added at will just editing some TCL code.

V. EXPERIMENTAL RESULTS

In this section we present some preliminary results of the
characterization of how faults in any of the available nets in the
processor propagate to the architectural registers. The results
presented in this section correspond with fault injections per-
formed in a CPU RTL description and focus on the propagation
of faults in every processor net to the processor architectural
registers. In fact, this information is the one that will be used
in the future to feed fault injections in the virtual prototype.

A. Experimental Setup
For the experimentation a 32-bit LEON3 SparcV8 microcon-

troller is selected, mainly because an RTL model is available
along a microarchitectural description, and it is a processor used
in safety-critical systems [24]. The LEON3 comprises mainly
a 7-stage pipeline for integer operations (integer unit, IU) plus
data and instruction caches. Since a minimal configuration of the
processor has been chosen to limit the cost of RTL simulations,
all instructions use all pipeline stages, and there is no floating
point unit. The style of RTL description is homogeneous in
the integer unit, which is described in a structural synthesizable
VHDL. Such IU unit has been chosen as the target of injections,
in a test framework as described by Figure 2. Injection and
analysis points have been selected according to Section III. To
enable analysis of register faults in a timely manner LEON3
has been configured to use a flat register file2 as this reduces
the number of total registers that need to be studied in every
simulation.

The workload chosen for investigation includes programs
from 2 different benchmark suites: the Mälardalen WCET group
suite [9], suitable to test real-time system properties and the
EEMBC Autobench suite [17], which reflects realistic tasks of
some automotive safety-critical systems. The selected programs
are: a finite impulse response filter over a 700 items long sample
(fir), a matrix multiplication of 4x4 size (matmult), a road speed
calculator (rspeed), a CAN bus reader (canrdr) and a tooth-to-
spark task, which locates the engine’s cog when the spark is
ignited (ttsprk).

Regarding the faultload, several permanent hardware fault
models have been chosen, specifically single stuck-at-1, stuck-
at-0 and open line. These have been injected using simulator

2Note that a typical SPARC configuration uses a windowed register file
configuration with around 144 32-bit registers. Tracking the contents of 144
32-bit registers even for relatively small benchmarks is currently unfeasible.

commands as in [12]. The campaign for each fault model and
workload has consisted of one experiment per injection node
(since permanent faults are applied), totaling 5,246 nodes. As
the focus of the experiments is to classify fault propagation,
each experiment applies a single injection in a fixed instant:
just before the execution of the main procedure, after the
initialization.

B. Results

After injections, Figure 3 shows the distribution of different
errors in the register file (’user registers’) and control registers
(’system registers’) of the integer unit. The axis shows the per-
centage of total injected faults which propagated to the registers
to become errors, for the specified fault models. Only one of
the different benchmarks, ttsprk, is shown for space reasons.
As observed, with the FALLES tool we have determined the
information regarding how are faults propagated throughout the
circuits to reach when applicable the analyzed registers, where
the critical positions of the register file appear to be numbers
15 and 129 for such benchmark.

In addition, Figure 4 shows the histogram of the distribution
of latencies for the same ttsprk benchmark for the 3 fault
models. The shown latencies account for the time spent since the
first moment an architectural register is altered until a mismatch
is detected at any of the peripheral buses (data or address).
Taking into account that the clock cycle of the considered
system was 10 ns, we can tell the number of cycles it takes to
propagate an error to a failure (considering the buses as outputs)
is mainly under 138, with some sparse cases taking longer time.
This latency information is helpful when assessing the behavior
of real time systems such as those meant to be certified.

VI. CONCLUSIONS

The use of virtual prototypes has recently arised as a promis-
ing approach to reduce the costs associated with the robustness
verification of safety critical processors. However, for this low-
cost simulation approach to be adopted its accuracy must be
validated. In this paper we presented a methodology to increase
the confidence on the fault injection experiments using virtual
prototypes. The proposed methodology uses some meaningful
information that is extracted from fault injection experiments at
the RTL to enrich the fault injections at the virtual prototype.
In the proposed methodology fault injections in the virtual
prototype target only memory and architectural registers of the
CPU to minimize its intrusiveness. The actual definition of the
fault injection strategies in the virtual prototypes is let as future
work.

ACKNOWLEDGEMENTS

The research leading to these results has received funding
from the Ministry of Science and Technology of Spain under
contract TIN2012-34557 and HiPEAC. Likewise, Jaume Abella
is partially supported by the Ministry of Economy and Compet-
itiveness under Ramon y Cajal postdoctoral fellowship number
RYC-2013-14717.

REFERENCES

[1] J. Abella, E. Quiones, F.J. Cazorla, M. Valero, and Y. Sazeides. Rvc-
based time-predictable faulty caches for safety-critical systems. In On-
Line Testing Symposium (IOLTS), 2011 IEEE 17th International, pages
25–30, July 2011.

[2] ARTEMIS Joint Undertaking. VeTeSS project: www.vetess.eu.

0,0%

2,0%

4,0%

6,0%

8,0%

10,0%

12,0%

r.
f.

p
c

r.
d

.c
w

p

r.
a.

ct
rl

.t
t

r.
a.

e
t

r.
e

.ic
c

r.
m

.y

r.
x.

n
p

c

r.
w

.s
.t

b
a

r.
w

.s
.w

im

r.
w

.s
.p

il

r.
w

.s
.e

c

r.
w

.s
.e

f

r.
w

.s
.p

s

r.
w

.s
.s

r.
w

.s
.a

sr
1

8

rf
d

(8
)

rf
d

(9
)

rf
d

(1
0

)

rf
d

(1
1

)

rf
d

(1
2

)

rf
d

(1
3

)

rf
d

(1
4

)

rf
d

(1
5

)

rf
d

(1
6

)

rf
d

(1
7

)

rf
d

(1
8

)

rf
d

(1
9

)

rf
d

(2
0

)

rf
d

(2
1

)

rf
d

(2
2

)

rf
d

(2
3

)

rf
d

(2
4

)

rf
d

(2
5

)

rf
d

(2
6

)

rf
d

(2
7

)

rf
d

(2
8

)

rf
d

(2
9

)

rf
d

(3
0

)

rf
d

(3
1

)

rf
d

(1
2

8
)

rf
d

(1
2

9
)

rf
d

(1
3

0
)

rf
d

(1
3

1
)

rf
d

(1
3

2
)

rf
d

(1
3

3
)

rf
d

(1
3

4
)

rf
d

(1
3

5
)

%
 E

xp
e

ri
m

e
n

ts
 w

it
h

 e
rr

o
r

System registers User registers

Stuck-at-1

Stuck-at-0

Open line

Fig. 3. Errors distribution in system and user registers, ttsprk

0
20
40
60
80

100
120
140
160
180
200
220

0

1
3

7
,5

2
7

5

4
1

2
,5

5
5

0

6
8

7
,5

8
2

5

9
6

2
,5

1
1

0
0

1
2

3
7

,5

1
3

7
5

1
5

1
2

,5

1
6

5
0

1
7

8
7

,5

1
9

2
5

2
0

6
2

,5

2
2

0
0

2
3

3
7

,5

2
4

7
5

2
6

1
2

,5

2
7

5
0

2
8

8
7

,5

3
0

2
5

3
1

6
2

,5

3
3

0
0

3
4

3
7

,5

3
5

7
5

3
7

1
2

,5

3
8

5
0

3
9

8
7

,5

4
1

2
5

4
2

6
2

,5

4
4

0
0

4
5

3
7

,5

4
6

7
5

4
8

1
2

,5

4
9

5
0

5
0

8
7

,5

5
2

2
5

5
3

6
2

,5

5
5

0
0

5
6

3
7

,5

5
7

7
5

5
9

1
2

,5

6
0

5
0

6
1

8
7

,5

6
3

2
5

6
4

6
2

,5

6
6

0
0

an
d

 m
o

re

H
it

s

Latency (ns)

Stuck-at-1

Stuck-at-0

Open line

Fig. 4. Histogram of propagation latencies from error to failure, ttsprk

[3] J.-C. Baraza, J. Gracia, S. Blanc, D. Gil, and P.-J. Gil. Enhancement of
fault injection techniques based on the modification of vhdl code. Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on, 16(6):693–
706, June 2008.

[4] Hyungmin Cho, S. Mirkhani, Chen-Yong Cher, J.A. Abraham, and S. Mi-
tra. Quantitative evaluation of soft error injection techniques for robust
system design. In Design Automation Conference (DAC), 2013 50th ACM
/ EDAC / IEEE, pages 1–10, May 2013.

[5] Jaime Espinosa, David de Andrés, Juan-Carlos Ruiz, Carles Hernandez,
and Jaume Abella. Towards certification-aware fault injection methodolo-
gies using virtual prototypes. In Proceedings of the 21st International
Online Testing Symposium (IOLTS15) Elia, Halkidiki, Greece. 6-8 July
2015, 2015.

[6] Jaime Espinosa, Carles Hernandez, Jaume Abella, David de Andres, and
Juan Carlos Ruiz. Analysis and rtl correlation of instruction set simulators
for automotive microcontroller robustness verification. In Proceedings of
the 52Nd Annual Design Automation Conference, DAC ’15, pages 40:1–
40:6, New York, NY, USA, 2015. ACM.

[7] International Organization for Standardization. ISO/DIS 26262. Road
Vehicles – Functional Safety, 2009.

[8] Pedro Gil, Jean Arlat, Henrique Madeira, Yves Crouzet, Tahar Jarboui,
Karama Kanoun, Thomas Marteau, Joo Dures, Marco Vieira, Daniel
Gil, Juan Carlos Baraza, and Joaqun Gracia. Fault representativeness.
Technical report, DBench project, IST 2000-25425 [Online]. Available:
http://www.laas.fr/DBench, 2002.

[9] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The
Mälardalen WCET benchmarks – past, present and future. In Björn Lisper,
editor, WCET2010, pages 137–147, Brussels, Belgium, jul 2010. OCG.

[10] C. Hernandez and J. Abella. Live: Timely error detection in light-lockstep
safety critical systems. In DAC, 2014.

[11] Infineon. AURIX - TriCore datasheet. highly integrated and
performance optimized 32-bit microcontrollers for automotive
and industrial applications, 2012. https://www.infineon.com/
dgdl?folderId=db3a304412b407950112b409ae660342&fileId=
db3a30431f848401011fc664882a7648.

[12] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson. Fault injection
into VHDL models: the mefisto tool. In FTCS, 1994.

[13] Man-Lap Li, P. Ramachandran, U.R. Karpuzcu, S.K.S. Hari, and S.V.

Adve. Accurate microarchitecture-level fault modeling for studying
hardware faults. In HPCA, 2009.

[14] LiP6. Soclib, 2003-2012. http://www.soclib.fr/trac/dev.
[15] M. Maniatakos, N. Karimi, C. Tirumurti, A. Jas, and Y. Makris.

Instruction-level impact analysis of low-level faults in a modern micro-

processor controller. Computers, IEEE Transactions on, 60(9):1260–1273,
Sept 2011.

[16] J.-H. Oetjens, N. Bannow, M. Becker, O. Bringmann, A. Burger,
M. Chaari, S. Chakraborty, R. Drechsler, W. Ecker, K. Grüttner, Th. Kruse,
C. Kuznik, H. M. Le, A. Mauderer, W. Müller, D. Müller-Gritschneder,
F. Poppen, H. Post, S. Reiter, W. Rosenstiel, S. Roth, U. Schlichtmann,
A. von Schwerin, B.-A. Tabacaru, and A. Viehl. Safety evaluation
of automotive electronics using virtual prototypes: State of the art and
research challenges. In DAC, 2014.

[17] J. Poovey. Characterization of the EEMBC Benchmark Suite. North
Carolina State University, 2007.

[18] P. Ramachandran, P. Kudva, J. Kellington, J. Schumann, and P. Sanda.
Statistical fault injection. In Dependable Systems and Networks With FTCS
and DCC, 2008. DSN 2008. IEEE International Conference on, pages
122–127, June 2008.

[19] RTCA and EUROCAE. DO-178B / ED-12B, Software Considerations in
Airborne Systems and Equipment Certification, 1992.

[20] Daniel Sánchez, Yiannakis Sazeides, Juan M. Cebrián, José M. Garcı́a,
and Juan L. Aragón. Modeling the impact of permanent faults in caches.
ACM Trans. Archit. Code Optim., 10(4):29:1–29:23, dec 2013.

[21] B. Sangchoolie, F. Ayatolahi, R. Johansson, and J. Karlsson. A study of the
impact of bit-flip errors on programs compiled with different optimization
levels. In EDCC, 2014.

[22] Synopsys. Platform Architect. http://www.synopsys.com/Prototyping/
ArchitectureDesign/Pages/platform-architect.aspx.

[23] http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html.
Sun Grid Engine. Oracle.

[24] http://www.gaisler.com/cms/index.php?option=com content&task=
view&id=13&Itemid=53. Leon3 Processor. Aeroflex Gaisler.

[25] http://www.gaisler.com/index.php/products/processors/leon3ft. Leon3
fault-tolerant Processor. Aeroflex Gaisler.

[26] http://www.mentor.com/products/fv/modelsim. ModelSim Simulator.
Mentor Graphics.

