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ABSTRACT 
In this paper, a method to design random variables (rv) 
generators with the same probability density function (pdf) as a 
given rv record is presented. The resulting rv generator is a 
nonlinear system that, when driven by a uniformly distributed rv, 
provides an output rv with the desired pdf distribution. The 
analytical description of the desired pdf is not needed; in fact, 
only a data record of the desired rv is used Inversion of 
nonlinear systems and nonlinear system adaptive design are used 
in this work. 

1. INTRODUCTION 

For simulation purposes, generators of random variables (rv) 
with a given probability distribution function (pdf) are often 
needed. For instance, in the model for a time-space radio channel 
of [l], it is shown that the wave azimuth distribution almost 
matches a Gaussian pdf, whereas their delay distribution 
approximately fits an exponential pdf. Nevertheless, the 
measured pdf could not always properly fit an analytic pdf 
distribution with an acceptable confidence level and over the 
entire range. For instance, in this radio channel model, the tails 
of the measured azimuth distribution are not well fit by a normal 
pdf. 

In this paper, a method to design rv generators with the same pdf 
distribution as a given rv record is presented. As shown below, 
the resulting rv generator is a nonlinear system (NLS) that, when 
driven by a uniformly distributed rv, provides an output rv with 
the desired pdf distribution. It is important to point out that the 
analytical description of the desired pdf is not needed; in fact, 
only a data record of the desired rv is used. As will be shown, 
NLS inversion and NLS adaptive design are involved in the 
design. 

The paper is organized as follows. In section 11, the “whitening” 
of a rv is presented. That is, we describe a procedure to obtain a 
uniformly distributed rv from a given rv record with another pdf. 
In section 111, the rv generator design problem leads to an N U  
inversion problem, which is solved adaptatively. Section IV 
presents simulations and, the paper ends with conclusions in 
section V. 

2. PDF WHITENING 

In [2], a parallelism between the role that a pdf function plays in 
nonlinear signal processing and the role that the power spectrum 
density function plays in linear signal processing is presented. 

This relationship allows us to solve the problem of pdf whitening 
(that is, to obtain a uniformly distributed rv from another N) 
similarly to whitening the power spectral density of a stochastic 
process. 

The pdf whitening problem involves the design of an NLS 
system, denoted by g[.], that provides a uniformly distributed rv 
output, denoted hereafter by u(n) with n discrete time index, 
whenever it is driven by a data record x(n)  of a given 
distribution. Thus, we have, 

u fn )  = L?&fn)l- (1) 
It is well-known [3] that such a system is, 

(2) 

with FAX) the input distribution function and U, the output 
range, i.e. UE [-Uo, Uo]. As (2) is monotonically increasing, the 
relation between the input pdf, PAX), and the output one, pdu) ,  
is 

(3) 

and it can be stated in the following integral form: 

-00 --oo 

Assuming that the input range is finite’, i.e. x~[ -Xo ,Xo] .  and 
stating the input pdf function PAX) in terms of the Fourier series 
approach, expression (4) leads to 

with v&v] the characteristic function of the rv x. Due to the 
Fourier series periodicity, (5) is valid only for U and x values 
within their respective ranges. It is straightforward to see that (5) 
leads to the following pdf whitening system 

I If it were not finite, a truncation of the input range would b; 
assumed with a certain ovefflow probability 
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' O [  +m ( . xo)y]. - j k z x  U=&]=- x +  c vx j k h  
xo k=--. - j k -  

(6 )  
k#O 

For practical purposes, the infinite summation in (6) is truncated 
to I k I SK and the characteristic function can be estimated by the 
sample estimator. Assuming N samples of x ,  the characteristic 
function estimate could be, 

N jk%n) 
@ x ( j k - ) = - - .  C e xo 

XO N n=l (7) 
leading to the approximate pdf whitening system, g[.]. 

Important to remark is that, unlike a simpler whitening system 
consisting, for instance, of the direct estimation of (2), this pdf 
whitening system allows a recursive computation of 
\ j rx ( jkn /Xo)  and enables the system to whitening non- 
stationary rv. Additionally, although outside the scope of this 
paper, it is worth to point out that the previous pdf whitening 
system can be generalized to an arbitrary number of rv's (see [2] 
for details). 

In order to show the performance of the presented pdf whitening 
system, 2000 samples of a normall distributed rv x:N(O,l) are 
considered. Let us assume that rx IGo=3,  i.e. an overflow 
probability of I O 3  is allowed. From the estimated values of the 
characteristic function @ x ( j k n / X o )  for I k l S = l O  (7) and 
considering U,&, the pdf whitening system (8) is obtained. 
Figure 1 shows the normalized histogram of an x data record of 
8000 samples and the resulting "whitened" U samples obtained 
from (8). As seen, the output rv histogram has a flat shape. 
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3. RV GENERATOR 
From here on, we focus on the problem of designing a NLS 
system whose output has a given pdf function when it is driven 
by a uniformly distributed rv. Hereafter, such a system will be 
referred to as an rv generator. 

In the previous section, we showed that a data record of a rv x 
with a given pdf provides us with a NLS system able to generate 
a uniformly distributed rv when that NLS system is driven by x. 
Consequently, as shown in Figure 2, the design of a x rv 
generator system becomes a nonlinear inverse system design 
problem of the pdf whitening NLS in (8). 

I I I I 

RV GENERATOR PDF WHITENING 

Figure 2. NLS inversion to design the rv generator. 

According to (2), the ideal rv generator functionAu] is 

(9) 

For the sake of comparison, two different NLS designs are 
considered to model the rv generator: a Volterra model (10) 
denoted by fdu) and a trigonometric or Fourier model (1 1) 
denoted byfdu) [2]. 

Q 
q=o 

rv(.(n,)= C a v ( 4 ) . u 9 ( n )  = a y l . z v ( n )  (10) 

q=l 

+ a F ( 2 q + t ) . s i n ( ( 2 q - t ) w g u ( n ) ) I ~  a$.zF(n)  (11 )  

The linearity of both models with respect to the 
coefficients enables a vector notation as seen in (10) and 
(11). The  vectors of the nonlinear models are av, the 
Volterra coefficient vector, zdn) the Volterra functional 
vector consisting of the powers of u(n), aF the Fourier 
coefficient vector and zdn) the Fourier functional vector 
consisting of the sine or cosine functions of u(n). Also in 
(11) the so-called principal frequency is defined as 
wld(Wo). (See [2] for detail about the Fourier model). 
As shown in Figure 3, the design of the rv generator can be 
accomplished in an adaptive manner by means of the so-called 
Predistortion-LMS (PLMS) [4]. 

Figure 1. Histograms (8000 samples) ofx (a) and U (b). 
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Figure 3. Adaptive design of the rv generator. 

The PLMS update of the Volterra or Fourier coefficients follows 

substituting a(n) for the respective coefficient vector and z(n) for 
the respective functional vector, as defined in (IO) for the 
Volterra model and in (1 I )  for the Fourier model. In (12) ,U is the 
step-size parameter, ii(n) is the error signal, 

K(n) = u(n)-ii(n) (13) 

p(n + I) = P.p(n)  + (I - p). ~ ' ( n ) .  z (n ) .  (14) 

andp(n) is the estimate of the power of the functionals, 

The PLMS adaptive algorithm is a gradient algorithm useful in 
NLS inversion problems because it includes, due to the chain 
rule, the gradient V&x) of the function to be inverted. From (2). 
the gradient depends on PAX). 

(15) 

For practical purposes, the gradient of (8) can be used directly. 
Different pdf estimates could be also taken into account to 
estimate de gradient [2]. 

The design of the rv generator could have also been performed in 
reverse order, that is, & a )  could have been put in front of the 
i f . )  in Figure 3. In that case, a least square solution of the NLS 
model of the rv generator would be feasible because the signal 
error is linear with the coefficients. The limitation is that, in the 
reverse order, a large record of x would be needed, and the 
objective of the paper is precisely to design a generator of the x 
rv from a small record of x. 

v,g[.l= 2uo. V,g[W.)l= 2uo. P X ( X )  

4. SJMULATIONS 
Two sets of simulations are included. The first one uses the 
actual characteristic function, whereas in the second simulation 
only a record of a x  rv is assumed. 

First, let us consider a Laplacian rv whose pdf is, 

px (x) = a/2 . P I . 1  (16) 

with parameter a se t  to 1. The pdf whitening system is built from 
expression (8) with &=I and using the actual samples of the 
characteristic function for K=lO. 

Due to symmetry of the distribution function, the pdf whitening 
system and the inverse system both have odd inputloutput 
relations. Thus, the Volterra system (10) that models the rv 
generator only keeps the odd powers, whereas the Fourier model 
keeps only the sine functionals. Both models consist of 15 
coefficients. 

A 5000-length data record of a uniformly distributed rv is used in 
the adaptive design of the rv generator (3). The PLMS 
parameters (12) (14) are set to ,U = 2 and P = 0.99 for both 
models, The gradient function (15) is computed using the 
Laplacian pdf function (16). The final relations of f;.(u) and 

j ~ ( u )  together with the ideal ones (dashed line) are shown in 
figure (4.a) and (4.b). 
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Figure 4. Ideal N generator in dashed line. In solid line, 
Volterra (a) and Fourier (b) rv generator functions. 

Figure ( 5 )  compares the Laplacian pdf (dashed line) to the output 
rv histogram of the Volterra rv generator (Fig. 5.a) and Fourier rv 
generator (Fig. 5.b). Both histograms have been computed from 
Z104 length data records. 

Although not shown, the convergence of the Fourier coefficients 
is faster than that of the Volterra coefficients, but the Fourier 
model does not properly fit the tails of the Laplacian pdf function 
(Fig. 5.b). This is due to the fact that the ideal functionflu] has a 
sharp behavior at the boundaries of the input range (see Fig. 4) 
that the Fourier model does not match properly. In this case, the 
Volterra model provides better performance for such a NLS 
design. 
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IDEAL PDF AND OUTPUT RV HISTOGRAM OF THE VOLTERRA MODEL 
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Figure 5. Laplacian pdf function (dashed line). In the 
solid line, the output histogram of the Volterra (a) and 
Fourier (b) N generator systems. 

The second set of simulations uses only 2000 samples of a 
normal distributed N x:N(O,l). As shown in section 2, this data 
record allows the design of the pdf whitening system (in this case 
Uo=l). Once the pdf whitening system is obtained, the rv 
generator can be adaptatively designed using the scheme of 
Figure 3. 

For that purpose, a Volterra system (lo), &(U), with Q=15 is 
considered to model the rv generator. The coefficients are 
updated with Z104 samples of a uniformly distributed rv U and 
by means of the PLMS adaptive algorithm with ,&e2 and m . 9 9 .  
The Fourier series approximation of PAX) (K=lO) is used to 
compute gradient function, V&(x). 

IDEAL PDF AND OUTPUT RV HISTOGRAM OF THE VOLTERRA MODEL 
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Figure 6. (a) Ideal pdf (dashed line) and histogram of 
the N generator output (solid line). (b) Ideal rv generator 
function (dashed line) and actual rv generator function 
(solid line). 

Figure (6.b) shows the ideal input/output relation of the rv 
generator system in the dashed line along with the final one 
achieved by the Volterra system after the adaptive design. 
Additionally, figure (6.a) shows the actual pdf (dashed line) and 
the histogram of the Volterra rv generator output using Z104 
samples. 

5. REMARKS 

This paper shows how a nonlinear system that generates a rv with 
a given pdf can be designed from knowledge only of a data 
record of such a N. It has been shown that data records of 2000 
samples are large enough to obtain a reliable rv generator system. 
As a preliminary step, we also presented the design of nonlinear 
systems that are able to provide a uniformly distributed rv at the 
output when driven by an input signal with a given pdf. 
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