
Towards General Purpose Computations
on Low-End Mobile GPUs

Matina Maria Trompouki∗, Leonidas Kosmidis∗,†
∗Universitat Politècnica de Catalunya
†Barcelona Supercomputing Center

Abstract—GPUs traditionally offer high computational capa-
bilities, frequently higher than their CPU counterparts. While
high-end mobile GPUs vendors introduced recently general
purpose APIs, such as OpenCL, to leverage their computational
power, the vast majority of the mobile devices lack such sup-
port. Despite that their graphics APIs have similarities with
desktop graphics APIs, they have significant differences, which
prevent the use of well-known techniques that offer general-
purpose computations over such interfaces. In this paper we
show how these obstacles can be overcome, in order to achieve
general purpose programmability of these devices. As a proof
of concept we implemented our proposal on a real embedded
platform (Raspberry Pi) based on Broadcom’s VideoCore IV
GPU, obtaining a speedup of 7.2× over the CPU.

I. INTRODUCTION

High-end mobile GPUs, i.e. OpenGL ES 3 compliant,
are capable of general purpose programming using OpenCL,
however the vast majority of the market, still relies on mobile
GPUs in the low-end of the spectrum. In particular, as of
September 2015 more than 50% of the end users of games de-
signed with the popular multi-platform game engine Unity, use
low-end mobile phones [4], which support only the previous
version of the graphics API, OpenGL ES 2. This reduces sig-
nificantly the potential of leveraging the computational power
of GPUs on demanding and innovative mobile applications.

Furthermore, most single board computers (ODROID, Bea-
gleBoard, PandaBoard and others) feature an OpenGL ES 2
compliant GPU. Among them, Raspberry Pi, an affordable
($25) educational system for developing countries, relies on
the VideoCore IV GPU, capable of 24 GFlops. A general pur-
pose GPU programming model would increase significantly
its educational value, educating a new generation of parallel
programmers. In addition, due to its price it has been used by
millions of hobbyists for a great variety of applications. While
this GPU is capable of general purpose computations, this is
currently possible only with low level assembly programming,
resulting in a handful of people able to do so. For this reason
there are only few applications using its GPU [6][1][17]. How-
ever, many more powerful applications would be developed,
if general purpose programmability in a high level language
eased the 24 GFlops of its GPU to be used for computations,
instead of staying idle most of the time.

The mobile API supported by these low-end devices,
OpenGL ES 2, is a restricted subset of the OpenGL implemen-
tation for desktop computers, with similar functionality. How-
ever, the programming interface lacks fundamental operations
which are required to perform general purpose computations.

In this work, we present a set of solutions to overcome
the obstacles created by the OpenGL ES 2 specification [7],
to enable general purpose computations on low-end mobile

Fig. 1. The graphics pipeline. Dashed stages represent programmable stages.

SoCs. This way the programmability of these platforms is en-
hanced, enabling more powerful applications to be developed.
Moreover, the educational value of these systems is multiplied,
increasing the turn around on such efforts.

II. BACKGROUND AND PROBLEM STATEMENT

A. Graphics Pipeline and General Purpose Computations
General purpose computations over graphics APIs are exe-

cuted on the graphics pipeline, which is depicted in Figure 1.
The building block of such applications, is called kernel.
The programmer maps the data to be processed to geometric
primitives, typically to a rectangular quad and configures the
camera position in a way that the quad covers the screen
completely. Each input data is mapped to a texture, whose
coordinate corresponds to a specific position in the quad.
Constant values are passed to the kernel as uniforms. The
kernel is described as a vertex or fragment shader which
operates on the input data to produce the desired output. Next,
the output of the kernel is stored in the framebuffer or in a
texture. Finally, the output is obtained by reading the texture.

B. Mobile Graphics APIs
Mobile APIs are based on the stable version of the desktop

APIs, taking into account their intricacies, such as power, size
and bandwidth [5], resulting in stripped lightweight versions of
their desktop counterparts. We focus on the second generation,
OpenGL ES 2 which introduced programmable vertex and
fragment stages (Figure 1), using the OpenGL GLSL ES 1 (GL
Shading Language) [8]. As explained in the Introduction, most
mobile graphics processors are only compatible with OpenGL
ES 2, and will continue to power low-cost solutions where cost
is the primary constraint, for products such as Raspberry Pi,
for the next 5 years at least. Of course, since new versions of
OpenGL ES are backwards compatible with it, the proposed
solutions are also valid for newer hardware as well.

Below we list the differences between the desktop and the
embedded OpenGL versions, which pose limitations for per-
forming general purpose computations on the mobile version.
1) In the desktop version, the programmer can only use one

programmable stage, while relying on the fixed function-
ality on the other. However, in the ES 2 version, the
programmer is forced to program both, even if he/she
doesn’t apply any custom operations.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/46605938?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2) The desktop version provides many options for geometry
primitives as triangles, quads and polygons, as opposed to
the embedded version which supports only triangles.

3) Textures are typically two dimensional structures to store
images for graphics. Desktop OpenGL versions provide
also single dimensional variants, which were widely used
for GPGPU applications, when the kernel required single
dimensional arrays as inputs, in contrast with the ES
version, which supports only traditional 2D textures.

4) The texture coordinates which are used to obtain data from
the textures as input, in the desktop version can either be
normalised - ranging from 0 to 1 - or as is, that is taking
values up to the dimension of the texture. The latter have
been most popular in GPGPU applications, due to the ease
in programmability they offered. In the ES version though,
only normalised coordinates are allowed.

5) Despite most low-end GPUs (Mali-4XX, PowerVR SGX,
VideoCore IV, Adreno 2XX) support 32-bit floating point
operations, the API does not provide means to use floating
point textures, for bandwidth reasons. While some vendors
provide extensions for half floats, in general it is not
enough for general purpose computations.

6) In both specifications the pixel colour values, which are
the output of the fragment shader, are converted in the
range [0,1] when they reach the framebuffer. Non-image
processing general purpose computing applications, relied
on vendor extensions which allowed floating point values
for framebuffer data. However, in the embedded domain,
very few vendors provide a similar extension, to allow the
use of half float, which is neither enough nor portable.

7) While the embedded version supports texture rendering
(writing framebuffer data directly to a texture), it doesn’t
provide any mechanism to read a texture’s data back to
client’s (CPU) memory.

8) Desktop GL versions support multiple outputs from
each shader ”thread”, e.g. gl_FragColor, and
gl_FragData[N]. Conversely, the ES limits the output
to a single array element, either gl_FragColor or the
first element of gl_FragData[0].

III. DEALING WITH THE CHALLENGES

Below we present how the identified challenges can be
overcome in a system based on OpenGL ES 2, in order to
perform general purpose computations.
1) The GPGPU computations can be either implemented in

the vertex or the fragment processing stage (or both),
with the fragment one being the most popular. In this
case, the vertex computation remains unchanged. Since the
mobile API requires this functionality to be implemented
instead of relying on fixed functionality, the programmer
needs to implement a pass-through vertex shader. Note that
the processing requires the shading of a screen covering
geometry primitive and the camera viewing directly on that
primitive. If this wasn’t the case, the appropriate projection
should also be implemented in the vertex shader, however
the simple camera position allows to override this need. In
fact the only use of this pass-through vertex shader is to
pass all the required parameters (varyings) to the fragment
shader which implements the general purpose computation.

2) The absence of complex geometric primitives such as
quads can be overcome by using two triangles covering
the same region.

3) Previous works [11][9] in the early times of GPGPU com-
putations, presented transformations of single dimensional
array accesses, to two dimensional texture coordinates and
vice versa. Therefore we can reuse those techniques, which
have been developed for the desktop versions of OpenGL.

4) Similarly this problem has been addressed in the lit-
erature [9], for desktop GPUs which don’t allow non-
normalised texture coordinates. Therefore the equivalence
of the mobile API allows the reuse of these techniques.

5) The lack of support for 32-bit floating point and other
numerical formats except single byte for texture values,
requires the development of an appropriate mechanism
which can allow the transfer and representation of those
values for input in the kernel.

6) Similarly, the lack of the aforementioned numerical for-
mats in the framebuffer, requires also a mechanism to allow
saving the kernel’s output in a format other than normalised
byte values.

7) The limitation of reading a texture back in the CPU
memory, can be overcome by using two complementary
ways. The first is to use a pass-through fragment shader
to copy the texture in the framebuffer, which can be
subsequently read to the system memory. However, with
careful kernel ordering the texture to be read can be already
mapped into the framebuffer, so that there is no need for
the additional shader.

8) The fact that a fragment shader cannot output more than
a single array means that if a GPGPU kernel does so, it
needs to be split in more than one shaders, one per output.
However, this is not a real limitation, since most GPGPU
kernels, provide a single output. In fact all benchmarks of
Rodinia[15] suite fit in these two cases.

Most of the limitations can be easily addressed. In fact the
most challenging ones are 5) and 6) which require a way to
support any input and output numerical format for the kernels.
Next we present a detailed solution for this problem.

IV. NUMERIC TRANSFORMATIONS FOR KERNEL I/O

The OpenGL ES 2 specification supports only the unsigned
byte format for texture and framebuffer values. The texture
values c, ranging from [0,255], are interpreted in the shader
as floating point values f in the range [0,1] as follows [7]:

f =
c

28 − 1
(1)

Similarly, before the data are ready to be written in the
framebuffer, the values are first clamped in the interval [0,1]
and are subsequently converted to unsigned bytes as follows:

i = bf × (28 − 1)c (2)

Based on these properties, we are after a set of transforma-
tions able to allow any numeric format to be represented as
input and output for compute kernels. The formats we want to
enable are the ones supported in the C language: unsigned and
signed variants of char and integer, as well as floating point.

A. Unsigned char
In order to use in the shader exactly the input values passed,

as values between [0,255], we define a bijective mapping M:

M : [0, 1] 7−→ [0, 255]

Based on (1) the interval [0,1] is quantised in 256 uniformly
distributed sub-intervals, representing values multiple of 1/255.
However, an unsigned byte represents multiples of 1/256.

The quantity δ by which 1/255 and 1/256 differ is given by:

1
28 − 1

+ δ =
1
28

=⇒ δ = −28 − 1
28

(3)

Therefore the reconstructed byte value in the shader is:

bu = M(f) = bf + δc · 255 (4)

Conversely for the output in the framebuffer we need first
to divide by 255, in order to normalise the value in the range
[0,1] and then increase the value by this quantity.

M−1(ub) =
ub

255
− δ (5)

Note that neither for the input nor for the output of the
kernel, the values require any CPU intervention. The transfor-
mation is applied in its entirety by the shader.

B. Signed char
For signed byte inputs, we define a bijective mapping M2:

M2 : [0, 1] 7−→ [−128, 127]

Building on the transformations for unsigned bytes and on
the 2-complement representation’s properties we have:

bs = M2(bu) =

{
bu if bu < 128,
bu − 256 if bu ≥ 128

In the same way, the inverse transform for the output is:

M2−1(bs) =

{
bs

255 − δ if bs ≥ 0,
bs+256

255 − δ if bs < 0

C. Unsigned Integers
Integers are represented in the CPU memory as a contiguous

set of bytes, each with a different significance. For an integer
iu consisting of 4 bytes bui

, i ∈ [0, 3] with 0 representing the
least significant byte, its numeric value can be computed as:

iu =
3∑

i=0

bui
· 256i (6)

building on the above transformations. Depending on the
hardware capabilities this can be either computed in integer
or floating point. In the latter case, we need to consider that
mobile GPU vendors support 32-bit floating point, with 8 bits
exponent and 23 bits mantissa (see next Section). Therefore
the maximum integer number which can be represented before
starting to skip numbers which are not multiples of powers of
2, is 224. Consequently the obtained precision is equivalent
to a 24-bit integer, enough for most integer operations in
an embedded system. For scientific computations it is not a
problem either, as they are based entirely on floating point.

Fig. 2. Floating point representation in CPU and GPU, with corresponding
byte values.

For the inverse transformation, we use the remainder of
the corresponding power of 256, depending on the byte’s
significance, to transform back to the host format:

bui
= iu mod 256i (7)

D. Signed Integers
Signed integers, are reconstructed as unsigned and adjusted:

is =

{
iu if bu3 < 128,
iu − 2563 if bu3 ≥ 128

Similarly for the reverse transform:

bsi
=

{
is mod 256i if is ≥ 0,
(is + 2563) mod 256i if is < 0

E. Floating Point Numbers
The general form of floating point numbers is the following:

(−1)sign · 1.mantissa · 2exponent . The CPU uses the IEEE
754 floating point format, which defines for single precision
floating point numbers 1 bit for sign, 23 for mantissa and 8
bits for the exponent. The exponent is stored in biased form,
using bias = −127, which is the number to be added to its
value, in order to obtain the actual value of the exponent.

While the internal GPU format is vendor dependent, the
number of bits used for mantissa and exponent can be obtained
by the glGetShaderPrecisionFormat API call. Most
mobile GPUs (VideoCore IV, PowerVR SGX, Adreno 2XX,
Mali-4XX1), match the IEEE 754 number of bits, which allows
to retain the same precision for both CPU and GPU.

Unlike the previously described formats that use the same
memory representation for CPU and GPU, this is not the case
with the floating point format, which requires reversing the
order of the exponent and the sign from the CPU as shown in
Figure 2, to have the exponent bits packed in a single byte.

In order to reconstruct the floating point number in the GPU
we reconstruct first its components:

exponent(ub3) =

{
bu3 − 127 if bu3 < 128
bu3 − 256− 127 if bu3 ≥ 128

sign value(ub2) =

{
1 if bu2 < 128,
−1 if bu2 ≥ 128

mantissa(ubi) = (
2∑

i=0

bui · 255i) · 2−24

Therefore:

f = (1 +mantissa) · 2exponent · sign value

1in vertex processor only

For the reverse transformation we decompose them:

exponent(f) = blog2(f)c

sign value(f) = sign(f)

mantissa(f) = (f · 2−exponent − 1) · 224

Then we only need to pack the exponent with the sign bit in
a single byte, and store each byte of the significand:

ub3(f) = exponent− 127 + sign value · 128

ubi
= mantissa mod 256i , i ∈ [0, 2] (8)

These transformations can optionally preserve special values
such as infinities and not-numbers (NaNs), which are required
in high performance and scientific computing, by checking the
exponent value and using the corresponding constant.

V. RESULTS

For the experimental demonstration of our proposal, we use
a widely used low-end mobile GPU, VideoCore IV, capable
of 24 GFlops [2], featured in the Raspberry Pi. We use 2
benchmarks with one configuration per input type (integer and
floating point) described in Section IV. The applications are
developed from scratch to show that GPGPU computations are
possible on low-end GPUs over graphics API, while providing
performance benefit over CPU computations.

The first application, sum, applies a simple streaming oper-
ation (addition) on two arrays, while the second implements
the sgemm benchmark. We use matrix sizes of 1024 random-
value elements and validate the results with the CPU. The
measurements compare application wall times, including time
spent in data transfers and kernel compilations.

For the floating point versions, the GPU output is accurate
with respect to the fp32 format used by the CPU, within the 15
most significant bits of the mantissa. This results in precision
higher than half-float (fp16) supported by extensions in some
other GPUs and between fp24 that desktop GPUs used in the
early days of GPGPU computing and fp32. This difference
comes from the GPU platform (hardware and software), since
the same transformations on the CPU are precise.

The sum shows a speedup of 7.2× over the CPU for integer
and 6.5× for floating point, while sgemm 6.5× and 6.3×
respectively. This is in line with speedups reported for a hand-
optimised assembly code for this benchmark on this GPU [3].
The current implementation of our proposal is not optimised,
which would increase performance further. Fp versions have
lower speedups, since in the CPU the integer operations are
faster than the fp ones. In general we see that both kernels
are able to provide faster execution times than the CPU, even
with the extra burden of packing and unpacking inputs and
outputs for the computation on the GPU, and the partial bit
re-arrangements for the floating point data on the CPU.

VI. RELATED WORK

Several works performed general purpose computations over
graphics APIs for desktop systems. Strzodka and Göddeke,
pioneers at the early days of GPGPU computing, developed
several methods and applications for accelerating scientific
computations on GPUs[14][12][13][16]. An exhaustive survey
of GPGPU literature on desktop GPUs can be found in [10].

The only work of that era similar to ours is [12], which
is centred on emulating 16-bit integer operations on GPU
hardware supporting 8-bit fixed-point numbers. Consequently
the suggested representation of the 16-bit integer numbers in
memory, is a custom format, not the common 2’s complement
that we use. This reduces the interoperability between CPU
and GPU, while our integer solution utilises unmodified 32-bit
integers. The biggest and most important difference though, is
that our solution covers not only integer formats, but floating
point, too, which are indispensable for GPGPU computations.

Although GPGPU is nowadays common place, no work in
the literature has shown general-purpose computations on low-
end GPUs (e.g. supporting OpenGL ES 2). The main reasons
for this, were the challenges described in the Section II and
specifically the lack of support for any numeric formats as
input and output in graphics shaders for mobile APIs.

VII. CONCLUSION

In this work we explain the need for general purpose
computation on low-end mobile GPUs and the limiting factors
that prevent such an implementation over their graphics APIs.
We propose solutions for each one and we specifically address
the need to pass data in and out from GPU shaders in any
numerical format. We have demonstrated the feasibility of
performing GPGPU computations on a real mobile platform
and we have shown that it can offer significant speedups.
We expect this solution to enable developers designing new
performance-demanding applications taking advantage of mo-
bile GPUs for general purpose computations.

ACKNOWLEDGMENTS

This work has been partially supported by the Spanish
Ministry of Science and Innovation under grant TIN2015-
65316-P and the HiPEAC Network of Excellence. Leonidas
Kosmidis is also funded by the Spanish Ministry of Education
under the FPU grant AP2010-4208.

REFERENCES

[1] Hacking the gpu for fun and profit. https://rpiplayground.wordpress.com.
[2] How powerful is it? https://www.raspberrypi.org/help/faqs/#performanceSpeed.
[3] Optimized GEMM performance on Raspberry Pi.

https://www.raspberrypi.org/blog/more-qpu-magic-from-pete-warden.
[4] Unity Mobile Hardware Stats. http://hwstats.unity3d.com/mobile/gpu.html.
[5] Akenine-Möller T. and Strom J. Graphics processing units for handhelds.

Proceedings of the IEEE, 96(5):779–789, May 2008.
[6] Andrew Holme. GPU FFT. http://www.aholme.co.uk/GPU FFT/Main.htm.
[7] Khronos Group. OpenGL ES Common Profile Specification Version 2.0.
[8] Khronos Group. The OpenGL ES Shading Language Version 1.0.
[9] Aaron Lefohn, Joe Kniss, and John Owens. Implementing efficient

parallel data structures on gpus. In GPU Gems2. Addison-Wesley.
[10] Owens, Luebke, Govindaraju et al. A Survey of General-Purpose

Computation on Graphics Hardware. In Eurographics 2005.
[11] Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Hanrahan. Ray

tracing on programmable graphics hardware. SIGGRAPH ’02.
[12] Strzodka R. Virtual 16 bit precise operations on RGBA8 textures. In

Proceedings of Vision, Modeling, and Visualization (VMV’02), 2002.
[13] Strzodka R. Hardware Efficient PDE Solvers in Quantized Image

Processing. PhD thesis, University of Duisburg-Essen, 2004.
[14] Rumpf M. and Strzodka R. Using Graphics Cards for Quantized

FEM Computations. In Visualization, Imaging and Image Processing
Conference, 2001.

[15] Shuai Che et al. Rodinia: A benchmark suite for heterogeneous
computing. In IISWC ’09.

[16] Turek, Göddeke et al. UCHPC – Unconventional high-performance
computing for finite element simulations. ISC’08.

[17] Peter Warden. Deep Learning on the Raspberry Pi.
http://petewarden.com/2014/06/09/deep-learning-on-the-raspberry-pi.

