
1 23

Climate Dynamics
Observational, Theoretical and
Computational Research on the Climate
System
 
ISSN 0930-7575
 
Clim Dyn
DOI 10.1007/s00382-016-3176-6

Decadal climate prediction with a refined
anomaly initialisation approach

Danila Volpi, Virginie Guemas,
Francisco J. Doblas-Reyes, Ed Hawkins &
Nancy K. Nichols



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer-

Verlag Berlin Heidelberg. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



1 3

DOI 10.1007/s00382-016-3176-6
Clim Dyn

Decadal climate prediction with a refined anomaly initialisation 
approach

Danila Volpi1,2 · Virginie Guemas1,3 · Francisco J. Doblas‑Reyes1,4,5 · Ed Hawkins6 · 
Nancy K. Nichols2 

Received: 31 July 2015 / Accepted: 16 May 2016 
© Springer-Verlag Berlin Heidelberg 2016

An experiment initialised with this refined AI method has 
been compared with a full field and standard AI experiment. 
Results show that the use of such refinements enhances 
the surface temperature skill over part of the North and 
South Atlantic, part of the South Pacific and the Mediter-
ranean Sea for the first forecast year. However, part of such 
improvement is lost in the following forecast years. For the 
tropical Pacific surface temperature, the full field initialised 
experiment performs the best. The prediction of the Arctic 
sea-ice volume is improved by the refined AI method for the 
first three forecast years and the skill of the Atlantic multi-
decadal oscillation is significantly increased compared to a 
non-initialised forecast, along the whole forecast time.

Keywords Decadal climate prediction · Full field 
initialisation · Refined anomaly initialisation

1 Introduction

Decadal prediction aims at providing interannual to decadal 
climate information socially relevant to implement suitable 
strategies for adaptation. Decadal predictions have been 
shown to provide more skill than climate projections thanks 
to their initialisation from observational data, which allows 
the climate predictability arising from internal variability to 
be exploited (Doblas-Reyes et al. 2013). However, the 
choice of the most suitable technique to initialise the cli-
mate system is controversial and several techniques are 
currently explored. Full field initialisation (FFI) makes use 
of the best estimate of the observed climate system (Pohl-
mann et al. 2009), but model error causes the drift of the 
prediction towards the model attractor (Smith et al. 2013). 
Distinguishing between the climate signal to be predicted 
and the model drift is a challenging task. The application of 

Abstract In decadal prediction, the objective is to exploit 
both the sources of predictability from the external radiative 
forcings and from the internal variability to provide the best 
possible climate information for the next decade. Predicting 
the climate system internal variability relies on initialising 
the climate model from observational estimates. We present 
a refined method of anomaly initialisation (AI) applied to 
the ocean and sea ice components of the global climate fore-
cast model EC-Earth, with the following key innovations: 
(1) the use of a weight applied to the observed anomalies, 
in order to avoid the risk of introducing anomalies recorded 
in the observed climate, whose amplitude does not fit in the 
range of the internal variability generated by the model; (2) 
the AI of the ocean density, instead of calculating it from 
the anomaly initialised state of temperature and salinity. 
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a-posteriori bias correction has the risk of removing part of 
the variability signal one aims at predicting. With the aim 
of reducing the drift, the anomaly initialisation (AI) assimi-
lates the observed anomaly variables1 onto an estimate of 
the model mean climate (Smith et al. 2008).

Previous studies (Smith et al. 2013; Hazeleger et al. 
2013; Bellucci et al. 2014) showed that the differences in 
skill of the two techniques at interannual time scales are 
small and limited to specific regions. Volpi et al. (2016) 
showed that the AI allows for reducing the drift but some 
residual drift is still present. It allows for increasing the 
skill for Arctic sea-ice volume and AMO for the first three 
forecast years compared to full field initialisation. In this 
work, we explore the possibility of refining further the 
anomaly initialisation technique used in Volpi et al. (2015) 
to aim at better skill. The use of the standard AI technique 
involves the risk of introducing anomalies recorded in the 
observed data whose amplitude does not fit in the range of 
the internal variability generated by the model. Figures S1 
and S2 of the Supplementary Material show how this can 
affect the prediction of the signal. Some further examples 
of this issue are shown in Sect. 2.3. The first idea devel-
oped in this work consists in scaling the observed anoma-
lies in order to take into account the different amplitudes of 
the observed versus the model variability. The second idea 
implemented aims at providing the most suitable initialisa-
tion for the density variable which plays a crucial role in 
the ocean circulation. In fact, the ocean variability on dec-
adal timescales is mainly driven by changes in temperature 
and density. On one hand, temperature has a key role in the 
heat fluxes, and on the other hand, the density gradients 
drive the thermohaline circulation (Broecker 1997). When 
implementing anomaly initialisation or anomaly nudging, 
density is often not directly assimilated. This is the case for 
DePreSys (Smith et al. 2007), the CNRM-CM5.1 (Germe 
et al. 2014), the MPI-OM (Matei et al. 2012) and the EC-
Earth (Hazeleger et al. 2013) forecast systems. Instead, it is 
computed by the model from the assimilated temperature 
and salinity fields through a non-linear relation. Section 2.4 
will describe an alternative method to initialise the tem-
perature and density variables instead of the temperature 
and salinity variables initialised in the standard method. 
Sections 2.1 and 2.2 describe respectively the model and 
the hindcast set-ups. The skill of the hindcasts initialised 
with the improved AI method is shown and compared to 
both an FFI and a standard AI set of hindcasts in Sect. 3. 
The discussion and the conclusions are in Sect. 4.

1 The anomaly of a field is defined as its deviation from the mean 
state (climate), calculated over a period of at least 30 years (accord-
ing to the World Meteorological Organisation definition).

2  Methodology

2.1  Climate model

The model in use is the coupled general circulation model 
EC-Earth version 2.3 (Hazeleger et al. 2010). The atmos-
pheric component is based on the European Centre for 
Medium-Range Weather Forecasts integrated forecasting 
system (IFS cy31r1), with 62 vertical levels and a TL159 
horizontal resolution. The ocean component is the NEMO 
model version 2.2 (Madec 2008; Ethe et al. 2006), with 
ORCA1 configuration (about 1 degree with enhanced tropi-
cal resolution) and 42 vertical levels. The sea-ice compo-
nent is LIM2 (Fichefet and Maqueda 1997; Goosse and 
Fichefet 1999) directly embedded into NEMO. The atmos-
pheric and ocean components are coupled via OASIS3 
(Valcke 2006). Information on the atmospheric chemistry 
and the dynamic vegetation are prescribed from observa-
tions. The atmospheric top is at 5 hPa, so the lower strato-
sphere is resolved.

2.2  Reference simulations: the NOINI and the FFI 
hindcasts

The benchmark hindcasts of this work are the FFI experi-
ment of Du et al. (2012) and an uninitialised model experi-
ment, i.e. a historical simulation (Guemas et al. 2013). 
They were both part of the CMIP5 exercise. In the FFI 
experiment, all the variables from each model component 
are initialised with observational estimates (reanalysis). 
The atmosphere and land surface initial conditions are 
taken from the ERA-40 reanalysis (Uppala et al. 2005) for 
start dates before 1989 and ERA-Interim (Dee et al. 2011) 
afterwards. The ocean initial conditions are taken from the 
3D-Var five-member ensemble ocean re-analysis NEMO-
VAR-ORAS4 (Mogensen et al. 2012), while the sea-ice ini-
tial conditions are produced with a simulation using NEMO 
v2.2 coupled to LIM2 driven by DFS4.3 ocean forcing data 
(Brodeau et al. 2009). The DFS4.3 forcing data are derived 
from ERA40 data with tropical surface air humidity, Arctic 
sea surface temperature and global wind field corrections 
based on high-quality observations.

The observed volcanic and anthropogenic aerosol load 
and greenhouse gas concentrations are prescribed using 
observed values up to 2005. After that date the RCP4.5 
scenario was used, as well as a background solar irradi-
ance level and a constant background volcanic aerosol 
load. Every 2 years between 1960 and 2004, on the 1st of 
November, a set of 5 new simulations were started and run 
for 5 years. The 5 members of the ensemble were gener-
ated from atmosphere initial perturbations based on sin-
gular vectors (Magnusson et al. 2008), which are added 
at the initial time to all the prognostic variables except for 
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humidity (Du et al. 2012), as well as from the 5 members 
of the NEMOVAR-ORAS4 reanalysis.

The uninitialised experiment, called NOINI, is a 3-mem-
ber historical simulation up to 2005, and a 3-member simu-
lation following the representative concentration pathways 
4.5 (RCP4.5) after 2006 produced in the framework of 
CMIP5. In the NOINI experiment, the internal variability is 
not in phase with the observed variability since each mem-
ber has been initialised in 1850 from a different date of a 
pre-industrial control simulation. The NOINI experiment 
as well as all the experiments implemented in this study, 
employs the same external radiative forcing as described 
for the FFI.

2.3  Weighted anomalies

As mentioned in the Introduction, the variability of the 
model and the observations can have different amplitudes. 
An example is shown in Fig. 1 that illustrates the strength 
of the meridional overturning stream function averaged 
vertically and meridionally (30◦–40◦N band and 1–2 km 
depth). The model, shown in red, is the historical simula-
tion described in Sect. 2.1 (NOINI). Its meridional over-
turning transport is roughly 50 % weaker than NEMOVAR-
ORAS4 reanalysis (blue). Moreover its decadal variability 
is substantially less pronounced.

As another example of the difference in amplitude of the 
model and observed variability, Fig. 2 illustrates the vari-
ability of the horizontal barotropic stream function repre-
senting the horizontal transport integrated vertically. The 
maps of the left column show NEMOVAR-ORAS4 data, 
while the ones of the right column are from the NOINI EC-
Earth experiment. The rows represent respectively January, 

May and September. Independently from the month consid-
ered, EC-Earth has a weaker variability than NEMOVAR-
ORAS4 in the tropical band and in the North Pacific, but 
it has a stronger variability in the South Atlantic and South 
Pacific.

To avoid introducing anomalies that are outside the 
model internal variability range, the first modification in 
the initialisation proposed in this work consists in weight-
ing the observed anomalies to make their amplitude more 
consistent with the simulated variability. As a first attempt 
of weighting, we measure the model variability amplitude 
with its standard deviation, and we calculate the weight 
as the ratio between the standard deviation of the model 
anomalies and the standard deviation of the observed 
anomalies computed along the 1971–2000 period.

2.4  Density initialisation

The need for a proper initialisation of the density arises 
from the sensitivity of some areas, such as the North Atlan-
tic, to the density anomalies which represent the motor of 
the deep convection and the thermohaline circulation. The 
density is not a prognostic variable: it is calculated at the 
initial time from the initial values of temperature and salin-
ity. As a consequence in the standard AI method, the den-
sity is calculated from the values of temperature and salin-
ity obtained by placing the observed temperature and 
salinity anomalies onto the model climatology. Such an 
estimate of the density is different from the value that 
would be obtained if the density was anomaly initialised. 
This happens because the equation of state of the density 
(that we will call g(T, s)) is non-linear and therefore the 
function composition2 of g and AI is not commutative as 
shown from the inequality 1. Let us call AI(x) the anomaly 
initialisation equation (Carrassi et al. 2014) applied to any 
variable x (x in this case will be the ocean temperature T, 
salinity s, or density ρ). Thus, we define xa the anomaly ini-
tialised state after applying AI to x, AI(x) = xa (therefore 
AI(ρo) = ρa, where the superscript o indicates the observa-
tion). We call g(To, so) = ρo and g(Ta, sa) = ρstandard the 
equation of state of density calculated respectively from the 
observed ocean temperature and salinity, and from the T 
and s state after applying AI. ρstandard is the density used in 
the standard anomaly initialisation implementation.

2 The function composition is the application of one function on top 
of another function and it is indicated with the symbol ◦.

(1)

g ◦ AI �=AI ◦ g

g ◦ [AI(To
, so)] �=AI ◦ [g(To

, so)]

g(Ta
, sa) �=AI(ρo)

ρstandard �= ρa
.
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Fig. 1  Comparison of the Atlantic meridional overturning stream 
function averaged in the 30◦–40◦N band and 1–2 km depth, generated 
by NEMOVAR-ORAS4 (in blue) and the 3-member historical simu-
lation performed with EC-Earth v2.3 -NOINI- (in red)
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As shown in inequality 1 the standard density ρstandard used 
in the classical anomaly initialisation implementation is 
different from the density ρa obtained by applying AI to 

the observed density. In a study of the DePreSys decadal 
prediction system, Robson (2010) suggested the errors in 
the assimilated density anomalies (i.e. the use of ρstandard 
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Fig. 2  Standard deviation of the horizontal barotropic stream func-
tion representing the ocean counterclockwise horizontal transport 
integrated vertically. Left one member of NEMOVAR-ORAS4, right 
one member of the historical simulation performed with EC-Earth 

(NOINI). The rows represent respectively January, May and Septem-
ber. The standard deviation for each calendar month has been calcu-
lated over the 1971–2000 period after removing the annual cycle
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instead of ρa) as responsible for the rapid warming of the 
hindcasts in the sub-polar gyre region in the Atlantic at the 
beginning of the 1990s.

To illustrate the order of magnitude of the difference 
in density introduced by anomaly initialising temperature 
and salinity, Fig. 3 shows the ratio between the root mean 
square difference of the density ρstandard and the density 
ρa, over the root mean square anomalies (standard devia-
tion) of the observed density ρo. In this map, the dark blue 
areas are the ones where the typical difference in the den-
sity initial value is three times or even more (the maximum 
ratio reaches the value of 6) the typical amplitude of the 
observed anomalies. The regions that are affected the most 
by such difference are the Arctic, in particular along the 
sea ice edge, the North Atlantic, the Mediterranean Sea and 
some regions in the Antarctic. In other words those are the 
areas with the highest non-linearity of g.

The method implemented and tested in this work con-
sists in applying the weighted anomaly initialisation to 
density and temperature, and to find the salinity s which 
produces the ideal density ρa through g(Ta, s). Since the 
density function g(T, s) is not invertible, a bisection algo-
rithm has been applied as explained in the supplementary 
material.

2.5  The anomaly initialised simulations

The hindcasts initialised with standard AI are the ones 
from Volpi et al. (2015), with anomaly initialisation in all 

variables of the ocean and the sea-ice components (and 
referred to as OSI-AI hereafter). The land and the atmos-
phere components are initialised as in FFI. The hindcasts 
have been initialised on the 1st of November every 2 years 
from 1960 to 2005 and comprise a set of 5-year-long, 
5-member simulations. The choice of having start-dates 
every 2 years is a good compromise between the computa-
tional cost and the need for sufficient data to obtain statisti-
cally robust results.

The hindcasts initialised with the improved AI method 
have an analogous experimental set-up and will be called 
ρ-OSI-wAI (density, ocean and sea-ice weighted anomaly 
initialisation) hereafter.

2.6  Skill assessment

The metrics that we use to evaluate the skill of the hind-
casts are the anomaly correlation (AC) and the Root Mean 
Square Error (RMSE) as a function of the forecast time f 
applied to the ensemble mean forecast anomalies. The fore-
cast anomalies are calculated by subtracting the forecast 
climatology from each hindcast. In order to implement a 
fair comparison between the different experiments we have 
applied the same bias correction to all of them. In fact, 
there is still a residual drift present after applying anomaly 
initialisation. The forecast climatology at each grid point 
depends on the forecast time. It is estimated by averag-
ing the hindcast variable across the starting dates and the 
members using only hindcast values for which observations 

Fig. 3  Ratio between the root 
mean square difference between 
ρstandard and ρa over the stand-
ard deviation of the observed 
anomalies (i.e. the anomalies of 
ρo) from NEMOVAR-ORAS4 
at sea surface, calculated from 
the initial conditions of Novem-
ber between 1960 and 2004
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are available at the corresponding dates. This data selec-
tion process is referred to as per-pair (García-Serrano and 
Doblas-Reyes 2012). The implementation of the per-pair 
method guarantees the use of all the observational data 
available with a consistent estimation of the model and 
reference climatologies. Let call Xm,d,f  a model variable at 
forecast time f, start date d and member m. M is the total 
number of member and D the total number of start dates, 
that in this work is 23. Od,f  is the corresponding observa-
tion. The forecast climatology is given by:

when NA refers to a missing value. The difference between 
the observed and the model forecast climatology is the bias 
and section 3.1 looks at the drift defined as the evolution of 
such bias with forecast time.

The anomaly correlation is defined as:

The root mean square error is given by:

In Eq. 3, xd,f  indicates the hindcast ensemble mean (for 
example ensemble mean global mean temperature) as a 

(2)

X̄m,f =
1

(M − 1)(D− 1)

∑

M

∑

D

Xm,d,f (Od,f �= NA)

Ōf =
1

D− 1

∑

D

Od,f (Od,f �= NA)

(3)AC(f ) =

∑D
d=1[xd,f ]

′[od,f ]
′

√

∑D
d=1[xd,f ]

′2
∑D

d=1[od,f ]
′2

(4)RMSE(f ) =

√

∑D
d=1[[xd,f ]

′ − [od,f ]
′]2

D

function of the forecast time f and the start date d, and D is 
the number of start dates. Note that ′ indicates the model or 
observed per-pair anomalies. The confidence interval is cal-
culated with a t-distribution for the AC, and with a χ2 dis-
tribution for the RMSE. The dependence between the hind-
casts is accounted for in the computation of the confidence 
interval using Von Storch and Zwiers (2001) formula. The 
confidence interval also takes into account the trend, that 
is not removed in the computation of the skill. The skill 
scores are computed after applying a one-year running 
mean in order to filter out seasonal climate variability and 
focus on interannual prediction skill, except for the PDO 
which is calculated with annual mean values.

3  Results

3.1  Forecast biases and drift

Figure 4 shows the bias of the experiments along the fore-
cast time for sea surface temperature (SST) and Arctic sea-
ice area. Its evolution (along the forecast time) is the drift. 
The SST drift (Fig. 4a) in NOINI is negligible because the 
initial state of NOINI is a random state within the range of 
the possible states of the model climate and therefore it is 
the most balanced with the model climate. Its bias is nega-
tive along the whole forecast time, consistent with the strong 
cold tropical bias of the model (Hazeleger et al. 2013). 
Moreover, Fig. 4a shows the overshoot of FFI (red line) that 
jumps to too high temperatures in only a few months and 
drops quickly towards too low temperatures as compared 
to the observations (as the bias gets negative) and even to 

Bias and drift

(a)        SST      (b)      Arctic sea-ice area   
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Fig. 4  Drift of a Mean SST between 60◦S and 65◦N calculated with 
ERSST reference (Smith et al. 2008), b Arctic sea-ice area calculated 
with the HistDfsNudg sea ice reconstruction (Guemas et al. 2014) 

as reference. FFI in red, ρ-OSI-wAI in green, OSI-AI in purple and 
NOINI in orange
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temperatures lower than the NOINI ones. This is due to the 
difference in timescales between the drift toward a warm 
bias in the Southern Ocean (a few months only) and the 
drift toward a cold state in the tropical band and the North-
ern hemisphere (a few years). FFI has the strongest drift 
because its initial state corresponds to the observed state 
and it is the furthest from the model climate. These results 
are consistent with Hazeleger et al. (2013). The AI method 
imposes the bias of the model from the initial state of the 
system. Consequently, the drift of both ρ-OSI-wAI and OSI-
AI are largely reduced with respect to FFI, and the over-
shoot is avoided in both cases. The drift is further reduced 
in ρ-OSI-wAI compared to OSI-AI. The bias for the Arctic 
sea ice area (Fig. 4b) of the AI experiments is very close to 
the NOINI bias along the whole forecast time and there is 
no drift. This is not the case for the FFI, for which the bias 
difference to NOINI in winter is still present after 5 forecast 
years although reduced compared with the first year.

3.2  Sea surface temperature

Figure 5 shows the improvements in SST skill of the refined 
AI technique (ρ-OSI-wAI) over the FFI (first panel) and 
the OSI-AI experiments (second panel), for the first fore-
cast year, measured as the ratio of their RMSE. While the 
refined method improves the skill in the Labrador Sea and 
in the Weddell Sea with respect to the FFI experiment, it 
also degrades the skill in the Bering Sea, the tropical Pacific 
and the Indian Ocean (left panel Fig. 5). The added value of 
the anomaly weighting and the density initialisation over 

the standard AI technique is seen in the the northern part of 
the North Atlantic, part of the North Pacific and the South-
ern ocean. The improved sectors of the Mediterranean Sea, 
the Labrador and the Gin Seas correspond to the region 
highlighted in Fig. 3 as being sensitive to the density error. 
The following sections will explore, through the study of 
the thermohaline circulation and the main modes of vari-
ability, the sources of such improvements in skill.

3.3  Predicting the ocean heat content

Figure 6a shows the anomaly correlation of the ocean 
heat content as a function of forecast time for the four 
experiments. The refined AI method (green line) shows an 
improvement in skill with respect to NOINI, although its 
correlation is lower than the other initialised experiments 
(FFI in red and OSI-AI in purple). The skill of the three 
initialised experiments degrades with forecast time toward 
the skill of NOINI which is nearly constant. The RMSE plot 
(Fig. 6b) illustrates the robustness of the conclusions drawn 
from the AC results. The supplementary material shows that 
the improvement in skill of the global ocean heat content 
does not come from the North Atlantic sector, where the 
best skill is obtained by the NOINI experiment (figure S5).

3.4  Predicting the thermohaline circulation

The correlation of the three initialised experiments (ρOSI-
wAI, OSI-AI and FFI) for the Atlantic Meridional Over-
turning Circulation (AMOC) index, calculated as in Fig. 1, 
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Fig. 5  Ratio of sea surface temperature RMSE maps for the first 
forecast year, calculated against ERSST data: the first panel is the 
ratio between ρOSI-wAI/FFI, the second panel between ρOSI-wAI/
OSI-AI. When the ratio is smaller than 1 (red, yellow areas) the ρ

OSI-wAI experiment has smaller RMSE, i.e. improves the skill of the 
prediction. Vice versa, when the ratio is larger than 1 (region in blue) 
the skill is degraded. The black dots over the colours indicates where 
the RMSE ratio is 95 % significant according to a Fisher test
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drops below the NOINI skill after the first forecast year 
(Fig. 7a) and the ACs confidence interval cross the zero 
line during the second forecast year, which means that the 
skill is not significant any more. This is consistent with 
the results of the North Atlantic sub-polar and sub-tropi-
cal gyres shown in figure S6 and S7 of the Supplementary 
Material. While the correlation shows minor differences 
between the initialised experiments at the beginning of 
the forecast time, the RMSE plot (Fig. 7b) shows a higher 

RMSE of the refined AI method than the other initialised 
experiments at the beginning of the forecast, but a lower 
RMSE and a higher correlation a the end of the forecast.

3.5  Predicting the sea ice cover

The performance for the sea ice cover is validated against 
the HistDfsNudg sea ice reconstruction (Guemas et al. 
2014), which has also been used for the initialisation. For 
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Fig. 6  Correlation and root mean square error for the global mean 
ocean heat content of the whole water column, with respect to 
NEMOVAR-ORAS4. Red for FFI, green for ρ-OSI-wAI, purple for 
OSI-AI and orange for NOINI. The thin lines represent the 95 % con-

fidence interval obtained with a t-distribution for the correlation and a 
χ2 distribution for the RMSE. The dependence between the hindcasts 
is accounted for in the computation of the confidence interval using 
the Von Storch and Zwiers (2001) formula

Fig. 7  Correlation and root mean square error for the Atlantic meridi-
onal overturning stream function averaged in the 40−55◦N band and 
1–2 km depth with respect to NEMOVAR-ORAS4. Red for FFI, green 
for ρ-OSI-wAI, purple for OSI-AI and orange for NOINI. The thin 

lines represent the 95 % confidence interval obtained with a t-distribu-
tion for the correlation and a χ2 distribution for the RMSE. The depend-
ence between the hindcasts is accounted for in the computation of the 
confidence interval using the Von Storch and Zwiers (2001) formula
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the Arctic sea-ice area, the forecast skill is improved for 
all the initialised experiments over NOINI during the first 
one to two forecast years. ρ-OSI-wAI is the experiment that 
has the highest correlation (Fig. 8a) and the smallest RMSE 
(Fig. 8b) during the first two forecast years, followed by 
OSI-AI and FFI. The results are less conclusive in the 
second half of the forecast. For the Arctic sea-ice volume 
(Fig. 8c, d), the skill of the experiments exhibit two types 
of behaviours: the anomaly initialised experiments (both ρ
-OSI-wAI and OSI-AI) with the highest correlation and the 
smallest RMSE, both improving over the NOINI experi-
ment for the first three forecast years, and the NOINI and 
FFI experiments with the lowest correlation and the largest 
RMSE.

3.6  Impact on some modes of climate variability

The Atlantic multidecadal oscillation (AMO) is a multi-
decadal climate variability pattern consisting in alternating 
phases of warm and cold sea surface temperature over the 

North Atlantic (Deser et al. 2010). It is thought to be the 
surface fingerprint of the thermohaline circulation (Kerr 
2000; Knight et al. 2005). It is calculated here as the dif-
ference between the mean SST anomalies in the North 
Atlantic and the global mean SST anomalies between 60◦S 
and 60◦N following the definition of Trenberth and Shea 
(2006). Previous studies have shown that the predictive 
skill for AMO can be improved by initialisation (Meehl 
et al. 2014) The positive impact of the initialisation for the 
AMO index persists for the whole forecast time (Fig. 9). 
There is also a substantial improvement of ρ-OSI-wAI 
compared to FFI at every forecast time except for a few 
months in year 5 in which the skill of the two experiments 
are very close. ρ-OSI-wAI seems also to perform better 
than OSI-AI, although the skill of the two experiments are 
close and for a few months during the second year OSI-AI 
has larger skill. The improvements of the refined AI method 
over NOINI are significant along the whole forecast period 
(except for some months in year 3), whereas the difference 
between FFI and NOINI is significant for the first forecast 

Fig. 8  Correlation and RMSE 
of Arctic sea-ice area (a, b) and 
sea-ice volume (c, d). The refer-
ence data is the HistDfsNudg 
sea ice reconstruction. Red for 
FFI, green for ρ-OSI-wAI, pur-
ple for OSI-AI and orange for 
NOINI. The thin lines represent 
the 95 % confidence interval as 
in the previous figures
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year only. The RMSE results are consistent with what is 
shown in the correlation plot.

In addition, we focus on the Pacific Decadal Oscillation 
(PDO), the most long-lived sea surface temperature mode 
in the Pacific. The PDO is defined as the leading princi-
pal component of the Pacific annual SST variability cal-
culated in the domain 20◦N−65◦N (Mantua et al. 1997). 
The observed dominant EOF has been calculated from the 
detrended observed anomalies and then the model anoma-
lies have been projected onto the observed EOF. The PDO 
is known to impact the North Pacific and North American 
climates and it has also been linked to variations in sur-
face air temperature, snowpack, precipitation and marine 
ecosystems (Mantua et al. 1997; Anderson et al. 2009). 
For the PDO index (Fig. 10), there is an improvement in 
skill of ρ-OSI-wAI as well as OSI-AI and FFI, relative to 
NOINI for the first forecast year, but this improvement is 

not significant. This is consistent with the improvement 
seen in the North Pacific SST shown in Sect. 3.2 from the 
refined AI initialisation method relative to the standard AI. 
The correlation (Fig. 10) after the first forecast year drops 
for all the experiments.

3.7  Regional behaviour of the initialisation techniques

Figure 11 shows the minimum SST RMSE across all the 
experiments respectively for the first forecast year (left 
panel) and the average of the years two to five (right panel). 
Each grid point takes the colour of the experiment that has 
the minimum SST RMSE. The black dots appear in those 
regions where the minimum RMSE differs from the sec-
ond minimum RMSE by more than 0.05 K. There are a few 
areas where the NOINI experiment has the lowest RMSE 
during the first forecast year in the Southern hemisphere, 
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Fig. 9  Atlantic multidecadal oscillation a correlation and b RMSE with respect to ERSST data. Red for FFI, green for ρ-OSI-wAI, purple for 
OSI-AI and orange for NOINI. The thin lines represent the 95 % confidence interval as in the previous figures

Fig. 10  Pacific decadal oscil-
lation (20N–65N) a correlation 
and b RMSE with respect to the 
ERSST data. Red for FFI, green 
for ρ-OSI-wAI, purple for OSI-
AI and orange for NOINI. The 
thin lines represent the 95 % 
confidence interval as in the 
previous figures
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probably due to the lack of observations that does not allow 
for good initialisation or robust verification. The FFI experi-
ment has the lowest RMSE in the tropical Pacific and the 
ENSO region. This indicates that the mean state plays a 
key role on the variability and predictability in the Tropical 
Pacific and therefore the FFI might be preferred to the AI 
technique. Another possible cause of the poor performance 
of the AI in the tropical region might be the fact that the 
model and the observations reproduce a similar variability 
but in slightly different geographical positions. This would 
imply that when applying the anomaly initialisation, the 
observed anomalies are introduced in a shifted position with 
respect to the position where the model would simulate the 
corresponding anomalies. In most parts of the Atlantic and 
some parts of the Pacific, the ρ-OSI-wAI experiment per-
forms the best.

When averaging the forecast years 2–5, the benefits 
of ρ-OSI-wAI are still shown in some parts of the Arctic 
region, around Europe and in some regions of the tropical 
band. The areas of the tropical Pacific and Atlantic are still 
best predicted by FFI, although the regions where NOINI 
has the lowest RMSE have increased. Similar results are 
found when computing the maximum correlation for each 
grid point (not shown).

4  Summary and conclusions

With the aim of improving the prediction skill on dec-
adal time scales, this work has introduced a new anomaly 

initialisation (AI) method (ρ-OSI-wAI) that tackle some of 
the limitations of the classical AI technique. The innova-
tions implemented are:

–– the weighting of the observed anomalies by the ratio 
between the amplitudes of the model and observed vari-
abilities, to avoid the risk of introducing anomalies that 
are outside the range of the model variability in the ini-
tial state

–– the anomaly initialisation of the ocean density, instead 
of calculating it from the anomaly initialised state of 
temperature and salinity.

We have evaluated the effect of the refinements on the per-
formance of the predictions through the skill assessment of 
a set of variables that have been compared with experiments 
initialised with classical techniques (full field initialisation 
FFI, classical anomaly initialisation OSI-AI and with a free 
run -NOINI-). Although the lack of computational resources 
did not allow to test separately the weight of the variabil-
ity amplitude and the density correction, the combination of 
these two innovations improves the skill globally compared 
to the other classical methods of initialisation presented in 
this work. In particular the refined method:

–– allows the drift of sea surface temperature (SST) and 
Arctic sea-ice area to be further reduced with respect to 
the FFI and the standard AI.

–– allows for a higher skill than the other methodologies 
presented in this study in the Arctic sea-ice area (first 

SST mimimum RMSE

FFI ρ-OSI-wAI    OSI-AI   NOINI
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Fig. 11  Minimum RMSE of SST respectively for the forecast year 
1 (left panel ) and 2–5 (right panel). Each grid point takes the col-
our of the experiment with the smaller RMSE over the first forecast 
year on the left and over the forecast years 2–5 on the right. The black 

dots indicate the regions where the minimum RMSE differs from the 
second minimum RMSE by more than 0.05 K. In red the FFI experi-
ment, in green the ρ-OSI-wAI, in purple the OSI-AI and in orange 
the NOINI experiment

Author's personal copy



D. Volpi et al.

1 3

two forecast years) and volume (three forecast years), 
although the improvements are not statistically signifi-
cant.

–– improves the Pacific Decadal Oscillation skill over the 
first forecast year with respect to the other methodolo-
gies presented in this study, but the improvements are 
not significant.

–– increases the SST skill over the standard AI method for 
forecast year 1 in the Labrador Sea, the Mediterranean, 
part of the North Pacific and the Southern ocean.

–– improves the skill in AMOC in the first forecast year 
and the skill in AMO along most of the forecast.

The Mediterranean, the Labrador Sea and the Southern 
Ocean, where the refined AI method improves the forecast 
quality over the standard ocean and sea ice AI implementa-
tion, are also some of the areas with high density difference 
with a standard AI technique at the initial time. This rela-
tion suggests a potential attribution to the density anom-
aly initialisation for the improvements in these regions. It 
might not be then by chance that the skill of the Atlantic 
Multidecadal Oscillation is significantly improved by the 
refined AI method compared to a historical simulation 
along the whole forecast time. In comparison, a full field 
initialisation technique allows for a significant improve-
ment only during the first forecast year while a standard 
ocean and sea ice AI only for the first 2 forecast years. The 
large density differences between the standard and refined 
AI methods in key areas where ocean dynamics might play 
a key role for the decadal predictability would suggest a 
large impact of this correction on the skill. The relatively 
small differences in skill found point towards the need 
of a further understanding of how to best implement this 
approach in current models, with coarse resolution and sub-
stantial systematic errors. The weighting of the observed 
anomalies as it is implemented has some limitations. The 
use of the standard deviation as a measure of the model 
variability amplitude is fully representative of this variabil-
ity only when the distribution of the anomalies is Gaussian 
and the sample size is large enough to allow for a robust 
estimate, which is generally not the case. Further efforts 
could be invested into refining the weight implementation 
and further enhancing the skill of the predictions. The other 
open issue to address is the geographical shift between the 
model and the observed variability, that could be the cause 
of the loss in skill of the anomaly initialised predictions in 
the tropical region.
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