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ABSTRACT 

This work addresses the problem of spatial reference 
estimation in mobile scenarios. Novel techniques based on 
fuzzy logic are introduced to enhance the performance of a 
trackmg system. Specifically, the model-free function 
approximation capability of fuzzy logic is used to obtain high 
resolution angle estimates from the spatial spectral density. 
These estimates are used to improve the resolution of the 
tracker. To the authors knowledge it is the first time that fuzzy 
logic is introduced in array spectral estimation. This work also 
develops a fuzzy controller for acting as an interpolative 
supervisor of different trackers that apply in different 
operating conditions of the dynamic nonlinear system. The 
result is a localization and tracking system that attains a 
resolution comparable to that of high resolution techniques as 
the Minimum Variance or Capon estimator. One of the main 
features of the proposed technique is its low computational 
burden. In summary, the presented system supports the 
expectation of adaptive arrays for obtaining a communication 
front-end of affordable complexity, developing cost and good 
performance. 

1 INTRODUCTION 

In a recent work [l] the authors derive the Alternate 
Projection algorithm as a constrained phased array that is 
supposed to look at one source an block all the others. From 
this approach the authors solve the multiple source tracking 
problem as decoupled single source tracking problems;thus, 
reducing complexity. However, the concept of global tracker 
includes additional processing and data fusion, which enables 
to cope with eventual fadings of bounded time duration, as it 
may occur in crossing radial trajectories of two movils. That 
is why we introduce at each parallel branch i the additional 
processing outlined in figure 1 
In the system proposed in [I], at each parallel branch the 
Spatial Power Density is measured after the constrained 
scanning. Thus resulting a so-called notch periodogram 
(system P). If no other users interfer in this periodogram its 
maximum corresponds to the desired user location. However, 
the resolution of the constrained scanning beam is limited by 
that of the array; thus, degrading the behaviour of the tracker 
for close users. The switch block detects this resolution 

threshold and smoothly commutes to the proposed fuzzy 
DOA estimator (system F), which produces the estimates for 
the two closely located users (0i, 0j). 

Constrained + Max. Density 
Scanning beam Power Pi(@ 

Fuzzy DOA estimator 

0, from other branches 
j # i  

Figure I .  Proposed tracker at each parallel branch i 

The computational burden of the presented tracker is low as 
fuzzy techniques just require a fixed number of products/ 
additions or a fixed number of comparisons/ additions; thus, 
accomodating to real time software or hardware 
implementation respectively. 
First Section 2 formulates the problem. Next, section 3 
presents the different fuzzy systems involved in the tracker of 
figure 1: the system F for source location and the switch 
block. Finally, the simulations show the performance of both 
the fuzzy DOA estimator and the global tracker depicted in 
figure 1. Both, synthetic and real data are considered. 

2 PROBLEM STATEMENT 

We address a digital wireless communication system 
employing adaptive arrays for the localization of NS moving 
users using an array OF NQ identical radio receivers. ' f i t :  NS 
users operate simu1tant:ously in the frequency and time slot. If 
we suppose that the antenna m a y  consists of NQ sensors of 
known characteristics (calibrated array) and letting ai(0k) be 
the gain and phase response of ith sensor in the direction 0k, 
then the signal output of the ith sensor at time n will be 

where ni(n) is the noise generated at the ith sensor (usually 
thermal noise) and sk(n) is a scaled and phased-delayed 
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version of the signal emitted by user k. The data zi(n) from 
all the NQ sensors are collected in the so-called snapshot 
vector z(n). In this model we have assumed that the distances 
between the mobiles and the base station are large; therefore, 
the local scatterers in the vicinity of the mobile have 
negligible radius in comparison with the distance between the 
base station and the receiver and the fading of the antenna 
elements can be assumed to be fully correlated. We note that 
although of limited applicability to real-world problems, this 
clutter-free model lies at the core of many viable algorithms. 

Finally, in our work a small number of snapshots is 
necessary to carry out an angle estimate (less than 10 
snapshots); thus, the relative array velocity does not change 
over the observation interval and can be assumed zero. The 
problem of interest is to estimate and track the NS sources' 
angular positions 8k(n) from the data z(n). 

3 LINGUISTIC-BASED KNOWLEDGE FOR ROBUST 

LOCALIZATION AND TRACKING. 

It is well-known the introduction of expert knowledge in 
time or spatial frequency tracking and control. Fuzzy systems 
[2] especially have gained prominance due to the surprising 
ease with which fuzzy controllers can be designed. However, 
although fuzzy systems are model-free approximators of any 
continuous function, relatively few applications have been 
made to estimation problems [3-41. This paper focusses on 
this estimation capability of fuzzy systems and applies it to 
obtain high resolution DOA (Direction Of Arrival) estimates. 

3.1. Fuzzy logic function approximation for  source 
localization 

By "observing" the periodogram P(B), the proposed fuzzy 
logic system produces DOA estimates even if the angle 
separation between two users is less than the resolution of the 
array. With suitable training pairs this simple fuzzy system 
can exactly map main lobe bandwidths into estimated source 
DOA's. 

3.1.1. Basic architecture of Fuuy  Logic System (FLS) 

The basis for a correct design and understanding of the 
system is the description of the input and output fuzzy 
variables (collected in vector x and y respectively). At each 
instant of time n, the two inputs are the maximum of the 
Periodogram, Bmax, and the main-beam normalized 
bandwidth, BW. As an answer to these two inputs, the FLS 
computes the distance, d, of each source to the measured 
maximum. The fuzzy system F: X -> Y is a set of IF-THEN 
rules that map inputs into outputs, in our case, it approximates 
the function f(BW,Bmax)=d. Specifically, the additive fuzzy 
system F that we are going to develop 
approximates the function f if X is compact 
continuous [3]. 

At time n the fuzzy DOA estimates OF of the 
sources i and j are 

O F L =  Bmax -d ;  OF,= e m a x  +d 

uniformly 
and f is 

two close 

(2 )  

Figure 2 shows the architecture of the proposed high 
resolution DOA estimator. We note that the 10 dB main-lobe 
bandwidth values (6,) for angles [0",10",20"] and NQ possible 
number of sensors should be stored in order to produce the 
normalized bandwidth BW from the measured one. 

Fuzzy Logic System (F) 

Figure 2. Proposed Fuuy DOA estimator 

The ranges of BW, Bmax and d are as follows: 
1 1 ~ ~ < 2 ; - 2 5 " s e , ,  ~ 2 5 " ; 0 s d < 6 , .  The parameter 6, 
refers to the resolution of the periodogram. In the field of 
view (+25") the fuzzy system is able to resolve sources 
closer than 6,. 

Once the input and output variables have been picked, the 
basic configuration of additive FLS comprises the four 
principle components shown in figure 2: a) the fuzzifier, b) 
the fuzzy rule base, c) the fuzzy inference engine and d) the 
defuzzifier. This components are going to be described next. 

A fuzzy set A in a universe of discourse, U, is 
characterized by a membership function pa, which takes 
values in the interval [0,1]; that is, pA:U +[0,1]. Thus, a 
fuzzy set A consists of a generic element U and its grade or 
membership function; that is, A = ( ( u , ~ ~ ( u ) ) / u  E U . A fuzzy 

variable is characterized by a set of fuzzy sets, T(u) (i.e. of 
linguistic or fuzzy values) of U. In this work A(.) and x will 
be used for the input term set and the input variable, 
respectively. Also B(.) and y will be used for the output term 
set and the output variable, respectively. In our case the 
variable x is a vector of two components. For instance, if the 
component x l  represents the location of the maximum Bmax, 
its term set may be chosen as {very negative (Al(xl), 
negative (A2(x1), zero (A3(x1), positive (A4(x1)), very 
positive (AS(x1))j. 

1 

negativeAr)positive 
very neg. A2 ze o A4 very pos. 

-20" -10" 0" 10" 20" Bmax 

Figure 3. Membership functions for  the fuzzy values of the 
maximum of the periodogram. 

Each of these terms or fuzzy membership functions can 
have different shapes. The triangular shapes shown in figure 
3 simplify computation. Later on we comment on the 
convenience of other shapes as Gaussian. Equally spaced 
membership functions as those in figure 3 are possible only if 

1146 



the mean values (centers) can be chosen by the designer. If 
these values are estimated by means of a training procedure, 
so that they adapt to the data that is associated with the rules 
(e.g. case of the input BW as described in sub-section 3.1.2), 
then unequally spaced functions are the norm. 

The fuzzifier in figure 2 is a mapping from an input space 
to fuzzy sets in a certain input universe of discourse. The 
most widely used fuzzifier is the singleton fuzzifier. Because 
of its simplicity and lower computational requirements, it is 
the fuzzifier that we are going to use in this work. A singleton 
fuzzifier maps a specific value xi(n) at time n to the fuzzy set 
Al(xi) with degree p (xi(n)) and to the fuzzy set A2(xi) with 

degree pA2 (x i (n) ) ,  and so on. We note, however, that in cases 

when the SNR (Signal to Noise Ratio) is low or there is high 
input uncertainty, non-singleton fuzzy sets as inputs can be 
used [5].  

In fuzzy Logic theory, the behavior of a fuzzy system is 
characterized by a set of M IF-THEN rules R, that associate 
output fuzzy sets with input fuzzy sets. Our system is a two- 
inputkingle-output system where the mth fuzzy rule is R,: 

4 

( 4 9  B,) or 

R,:  I F  ( x l  i s  A , ( x l }  and  x 2  i s  A , n ( x 2 )  } 

THEN ( Y  i s  B,(Y)) 
Next section extracts these rules from numerical data. These 
associations are summarized in a bank of parallel fuzzy 
associative memory (FAM) [6] rules. We can easily 
construct, process and modify the FAM bank of FAM rules in 
software or in digital VLSI circuitry [7] 

The inference engine in figure 2 is to match the 
preconditions of rules in the fuzzy system rule base with input 
state linguistic terms and to perform implication. The 
procedure of implication used to develop the fuzzy DOA 
estimator is the so-called the correlation-product inference [2- 
41. Finally, before obtaining the DOA estimate, we need a 
defuzzification process to get a crisp value; the defuzzifier 
block in figure 2 serves this purpose. Among the commonly 
used defuzzification strategies, the center of area or fuzzy 
centroid-defuzzification methods yields a superior result. All 
centroidal fuzzy systems F try to approximate the function 
f(.) with a conditional mean: f(x)=E[Y/X=x]. Let yj be the jth 
sample support value in the universe of discourse, Y, at which 
the membership function, p(yj) represents its membership 
value. The defuzzification output (i.e. distance d to the 
peridogram maximum Bmax) is, therefore calculated by 

Z,y(Yj) d ( x , y )  = 

Notice that yj is called support value if p(yj)>O. 

(3) 

3.1.2. Derivation of the F u u y  Logic Rules. 

The selection of the fuzzy rules has a substantial effect on 
the performance of the FLS. The rules just translate the 
behaviour of the main lobe when two sources are closer than 
the array resolution (Q. As this resolution depends on Bmax 
(i.e. there is more resolution in the broadside than in the 
endfire), a different set of rules is developed for each Bmax. 

To reduce computation the whole field of view or range of 
Bmax has been quantized in 5 values [f20°,+100,~o:i (figure 
3). The fuzzy set values or terms associated with xll, Omax, 
(i.e. Aj(xl)), have a triangular membership function centered 
at each of the quantized values. 

To ellaborate the ]:AM's for each quantized Bmax a set of 
N training pairs have been collected. In these training pairs 
the output, d, has been quantized in N different values di=i 
(i=O.. .N-1). From these singletons the output membership 
functions B(y) are designed. For each Bmax, each distance di 
maps to the correspondig measured normalized bandwidth 
Bwi. These bandwidths are the support values to design the 
unequally spaced fuzzy set A(x2). Possible ambiguities are 
elliminated if Gaussian shaped membership functions are 
used in the set A(x2') instead of triangular shaped. Table 1 
shows the M= 9 rules; for the case of a 9 antenna array. The 
ratio between the powers of both sources is considered to be 
less or equal to 7 dBs. This assumption is valid in 
communication systems with power control, where power 
groups can be allocated in time-frequency space such that 
their dissimilar power does not negatively affect the SDMA. 

The FAM's table -iust associates the membership function 
of each training pair. Just by vectodmatrix multiplications, 
each input fires parallely [6]. Note that rules just come from 

Table 1. Rules from ,training pairs for an array of 9 antenna. 

numerical data: the data establish the fuzzy sets that appear in 
the antecedents and consequents of the rules. The system 
surface is the relationship between the input variables and the 
output or, alternatively, between the antecedents and the 
consequents. Certain points on the control surface correspond 
to the exact rules, where the conjunction of the antecedents is 
unity for a specific irule and none of the other rules fire. 
Between these points, the fuzzy logic system interpolates the 
output. This interpolation can be made exact by using the 
analytic expression for the output (3). This expression 
transforms the fuzzy inference system into a functional 
equivalent adaptive network. 

Other aspect is that the mapping in table 1 is only exact 
after computing the mean of the different BW for each di=P 
and when the periodogram is estimated with a large number 
of snapshots. However, as our work focusses on DOA 
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estimation for tracking, less than 100 (e.g. 10) snapshots are 
considered. For this reason and to improve the interpolation 
an LMS algorithm is used to learn the rules by learning the 
estimator parameters (i.e. width of the input membership 
functions and position of the output membership functions 
[3]). The rules are learned from varios periodogram 
realizations. For each realization k the rules and inpuvoutput 
fuzzy sets are adaptively designed in order to minimize the 
cost function 

where daCL is the actual distance of the sources to the 
measured maximum of the peridogram. By initializing the 
system with the proposed FAM's in table 1, the convergence 
of the system considerably speeds up. 

3.1.3. Implementation of parallel FAM rules 

A decision table relating quantized measurements to crisp 
control actions can be generated off line using control rules in 
order to shorten the running time of the Fuzzy system. In 
other words, the calculations of fuzzification, correlation- 
product inference, and fuzzy centroid defuzzification can be 
performed on a computer on the basis of the control rules. 
After the calculations, each error/error-change pair will have 
its corresponding control input values. The decision table is 
sotred in memory in the form of a lookup table. Basically, the 
decision table is based on the discretization of both a universe 
of discourse and its associated membership function. The 
number of quantization levels should be large enough to 
provide an adequate approximation and yet be small enough 
to save memory storage. The choice of quantization levels has 
an essential influence on how much resolution can be 
obtained. 

3.2. Fuzzy Logic fo r  automated control 

The switch in figure 2 that commutes between the 
proposed fuzzy DOA estimator and the constrained scanning 
can be simply designed as a hard-decision threshold detector: 
"if the DOA distance between close sources is less than the 
array resolution, the DOA estimates are then produced by the 
fuzzy system". However, fuzzy systems are also highly 
suitable for automated control and fuse data from different 
controllers producing smooth transitions even in noisy 
scenarios. For this reason we implement the switch following 
the FLC theory. The rules for switching at branch of user i 
are : 
R": IF (tj -4)is T" THEN q isq:; j ,  i = I.. NS users, j # i; 

where (@-e)  measures the distance between the angle of 

user i and that of user j (produced at branch i and at each of 
the other (NS- 1) branches, respectively), T'" are the 
membership functions defined as in figure 4. Finally, q.: is 
the DOA estimate produced by either the scanning beam 
( k  = l.yn = 0') or by the fuzzy estimator ( k  = 24; = @). 

The fuzzy inference process we have been referring to in 
Section 3.1 is known as Mamdani's fuzzy inference method, 

m = 1.. M rules; k = 1,2 

U 

which it is the most commonly seen fuzzy methodology. 
However, when the output of each rule is a constant like in 
our case (i.e. crisp output membership functions e,) a Sugeno 
inference method is more suitable 

"'=I 

Because of the linear dependence of each rule on the 
system's input variables, the Sugeno method is ideal for 
acting as an interpolative supervisor of the two DOA 
estimators that apply in different operating conditions. We 
note that using product for inference and sum for combining 
the rules is mathematically equivalent to a Bayesian approach 
to decision making and control. 

T" 

- Fieldof -8, 
view 

Field of 
view 

8, 

Figure 4. Membershipfunctions for thefuzzy values of the 
maximum of the periodogram. 

4 SIMULATIONS 

The following simulations show the performance of both 
the fuzzy DOA estimator and the global tracker depicted in 
figure 1. First, table 2 shows the DOA mean squared error (30 
Monte Carlo runs) for two coherent sources of SNR=5 dB. 
The correlation matrix is computed from 100 snapshots and 
the fuzzy inference engine consists of 9 rules. The training 
positions (io; i=O ... 8) and the worst case of non-training 
positions (intermediate positions as: OS" ,  1.5", etc.) have been 
measured. This table illustrates that the performance of the 
fuzzy DOA estimator is far closer to that of the Capon 
method than the performance of periodogram is. Next, in the 
same scenario than in table 2,  figure 5 compares the 
performance the fuzzy DOA estimator and the Capon method 
when the training positions (i.e. the number of rules) are 
doubled but for i"=l" (io; i=0,2,2.5,3,3.5. ..8). The reader can 
observe the improvement in the performance of the fuzzy 
system. 

Next, figures 6 and 7 show the results after using some 
field trial data [8]. The scenario consists in 2 users of 30 dB 
each moving one each other with constant velocity. Figure 6 
compares the performance of the periodogram estimates 
against the performance of the system proposed in [I] with 
parallel Kalman trackers. Figure 7 compares the actual source 
positions against the estimates obtained with the system 
proposed in figure 1 (parallel Kalman trackers with the fuzzy 
logic detection and estimation sub-systems). 
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Figure 5 .  Power po,sition error (“2) (30 Monte-Carlo runs). 
The number of rules is 15. 
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Figure 6. Field trial data. Periodogram against Kalman truckers 
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Figure 7. Field trial data.Actua1 DOA against fuzzy  trackers 

Table 2. Power position error (“2) (30 Monte-Carlo runs) 
The number of rules is 9. 
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