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Abstract * 
In order to maximise the ejficiency of the RF umplij'ier 

located in a transmitter, .for instance in bot?i analog nnd 
digital terrestrial TV links, it is forced to work near 
saturation introducing thus an undesiralble nonlinear effect. 
A common solution includes a predistortion system 
before the modulation that compensates as much as 
possible the posterior nonlinear distortion, in such a vvay 
that the overall perfornume @the transmitter results in a 
linear and eflcient anzplifel-. Polynonzicd models usuiilly 
implement the pi-edistortion, but in this paper we propose 
an alternative model based on the Foui-iel--exponential 
series that shows better peufcw"ce in the design stage 
without a signlficant increuse of the coniplexity. 

1 .  Introduction 

The distortion introduced by a High Power Amplifier 
(HPA) located in the transmitter of a terrestrial link is 
usually equalised by the so-called feed-foiward method, the 
negative feedback method or the predistortion method. 'The 
first one has a cost limitation since it needs two HPAs, 
which are quite expensive elements of the RF link. The 
so-called negative feedback method is another RF or 
intermediate frequency solul ion, which has an inherent 
instability problem. On the contrary, the predistortion 
method has no loop (avoiding thus any instability) and it 
results in a cheap solution since it cain be implemented at 
the baseband level by a DSP. Nevertheless, in order to be 
able to apply the predistortion at the symbol level, several 
aspects should be taken into account. First of all, the fact 
that the HPA is located in the transmitter ensures the 
introduced nonlinear distortion is memoryless. This 
property, along with the bandpass behaviour of the €IPA 
[l], allows a lowpass equivalent formulation where the 
HPA is completely characterised by the so-called AM/AM 
and AMPM curves which relates the input amplitude to 
the output amplitude and output phase, respectively. 
These curves are supposed, to be independent of the 
frequency for nmow bandpass signals and they can be 
obtained by measuring the aatput of the HPA when it is 
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driven with a pure tone of the carrier frequency. The 
AM/AM and AM/PM relations are needed for the design 
stage, where the parameters of the predistortion are set. In 
general., a memoryless Volterra system is chosen to model 
the predistortion, being its coefficients fitted by an 
adaptive learning that is applied periodically before the 
data transmission due to the slow-time variation in the 
HPA characteristics. 

In this paper, the authors propose an alternative system 
to model the predistortion that shows better performance 
in adaptive designs than the Volterra model does. Section 
2 is thus devoted to present this model, which is based on 
a Fourier series development. In Section 3, the particular 
HPA predistortion problem is focused emerging the role 
and design of the memoryless nonlinear models. Finally, 
the sirnulation results are included in Section 4 where the 
performance of the Fourier versus the Volterra model in 
this p a  ticular topic is compared. 

2 .  The Fourier model 

The Fourier model arises from the Fourier series 
development of the inputloutput relation of the actual 
nonlinear system (NLS). If g[x] denotes the relation of a 
given memoryless NLS, and x is the input, the 
approximation of a N-order Fourier is the following one. 

N 
g[x] = i [ x ]  = 

It is  important to remark that, in order to avoid 
aliasing in the approximation provided by the Fourier 
model, the input signal x should be bounded, i.e. XE [-  
Xmax, XIIWX], being also the principal frequency upper- 
bounded. 

Cc,, .e'""~' 
n=-N (1) 

2n 2n q)=-<--- 
2x0 2 x m a x  (2) 

Some previous works about the Fourier model have 
been already done, even with nonlinear problems with 
memory [2,3]. Without going into details, an important 
feature of this model is the fact that, once the order N and 
the principal frequency WO are chosen, the model is linear 
with the rest of coefficients, (cn}. This property allows a 
MMSE criterion for designing the coefficients {cn} and, 
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moreover, the use of classical adaptive methods to lead the 
model to this solution can be also applied [4]. 

In the HPA predistortion problem, the simplified 
model versions that consider an even or odd symmetry in 
the NLS inpudoutput relation are specially interesting. 
Thus, the Fourier model allows a simplification when 
g[x] has an odd (eq.3.a) or an even (eq.3.b) symmetry. The 
complexity is considerably reduced in comparison with 
the general Fourier model (eq.1) due to the real character 
of the coefficients and the functions. 

r f g [ x ]= -g [ - x ]  9 i ( x ) =  Ca,.sin(nwox) 
N 

n=l (3.a) 

n=O (3 .b) 

N 
I f g [ x ] = g [ - x ]  3 j ( x ) =  Cb,.cos(nwox) 

Before dealing with the HPA predistortion problem, it 
is interesting to compare the Fourier model and the 
Volterra model in terms of complexity. Thus, an N-order 
Volteira model needs of the order of O(N) multiplications 
to provide the successive powers of the input signal, 
whereas an N-order Fourier model needs O(4N) real 
multiplications to compute the successive powers of the 
first order complex exponential, exp(iw0x). In fact, the 
memoryless Fourier model can be basically viewed as an 
N-order Volterra model preceded by an exponential 
transformation (fig. 1) and, in consequence, both models 
involve the same order of operations to generate the 
respective input data space (apart from the cost of 
computing the first complex exponential function). 

LC = Linear 

PG=Power 
Combiner 

Generator 

Figure 1. The memoryless Fourier model 
implementation 

In case of dealing with the symmetric models, the 
Volterra model uses the half of the operations, whereas 
the Fourier model (eq.3.a,3.b) needs the same because the 
cosinelsine functions are obtained as the realhmaginary 
parts of the respective exponential functions. Conceming 
the number of coefficients that determine the computation 
load in the adaptive design, the Volrerra model has N 
coefficients and the Fourier model has (2N+1) complex 
ones. Nevertheless, this number for the symmetric 
Volterra model is N/2, arid for the Fourier Cosine or Sine 
models becomes N real Coefficients. 

3 .  The HPA predistortion problem 

Let's consider a digital link with a transmitter as the 
one shown in figure (2). In a practical situation, the 

predistortion is located before the modulation, being 
usually designed by means of an adaptive method applied 
previously to the data transmission. 

I i -  \ 
A I -  

Predis tortion 
System 

Q- - 
/- Adaptive I 

Algorithm 

Figure 2. Adaptive learning of the predistortion 
system. 

The input to the HPA is denoted by x(t) and results in 
a narrow bandpass signal, centred round the frequency oc 
with an instantaneous amplitude and phase represented by, 
Rt and et, respectively. Thus, the output of the HPA can 
be approximated by the following bandpass signal, 

which involves the functions F[R] and @[RI that represent 
the so-called AMAM and AMIPM relations of the HPA. 
In the simulations, these functions approximate the actual 
MAM and AM/PM curves proposed in [5]. Whereas the 
amplitude distortion (fig.5.a) follows the relation, 

y ( f ) =  H P A [ x ( t ) ] =  F[&l.cos(wJ+or + 4[41) (4) 

F [ R ] =  sign(R)*0.62*(l-exp(-R2 /0.25)) 
(5) 

the phase predistortion @[RI (fig.5.b) is implemented by 
an even polynomial with 9 coefficients. 

The actual HPA output (eq.4) makes evident the fact 
that these curves completely characterise the HPA and, 
moreover, that they can be seen as a lowpass equivalent 
transformations. Thus, as it is shown in figure (3) for a 
discrete system, the predistortion design allows a lowpass 
formulation useful not only to find the design equations, 
but also for the simulations since we have not available 
real data. 

rlpLMsjL ; 
Predis tortion HPA R I  

L pqp!(k, - I 
A 

Figure 3. Lowpass design of the HPA 
pred istort ion. 
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Concerning the amplitude predistortion denoted by 
~ A / A [ . ] ,  it can be designed in order to minimise the 
amplitude error eR(k), defined as the difference between the 
HPA A M / M  output and the desired magnitude Rk (note 
that the HPA amplification is an scale factor, not included 
in the predistortion design). 

(6 ) 
e R ( k ) =  R k - F [ & ] =  R k - - F [ g A / A [ R k ] ] = O  

Thus, ideally, the relation g A / A [ R ]  should be the 
inverse transformation of F[F1]. With respect to the phase 
predistortion denoted by the function SAP[.], note thal the 
minimisation of the phase error, 

e Q ( k ) = e k  -&+$[k]  = O - B A / P [ ~ ~ ~ ] = - $ [ ~ k ] ( ~ )  

conveys to a basic identification prohleim since the phase 
predistortion is applied after the amplitude predistortion. 

It is important to remark: that, although some noise 
will be present at the output of the actual HPA, the 
predistortion design equations derived from expressions (6) 
and (7) are useful since the main goal of the predistortion 
is to compensate nonlinearitiles, without taking care off the 
noise. In the simulations, an additive Gaussian noise at 
the output of tlie HPA curves will be considered with a 
high SNR (as it usually happens in terrestrial RF 
transmission) that allows a good performance of the 
proposed predistortion design. 
3.1. The Predistorticm Models 

The odd symmetry of the AM/AM curve determines 
the model that implements the amplitude predistortion. In 
fact, the function ~ A / A [ . ]  should also follow an odd 
relation and two possible models arise from the respective 
Volterra or Fourier series. 

N I 

,i&fA [ ~k 1 = c u[’(n). sin(nwoRk) = (a:’) . 
n=l (8.b) 

The linear dependence of both models allows a vector 
notation in terms of the coefficient vector ak and the data 
vector uk, which gathers the power functions for the 
Volterra model and the sine functions for the Fourier-Sine 
model. The coefficients in both models are time dependent 
since they are modified during the lemiing stage in order 
to minimise the power of the amplitude error. In [5] ,  a 
kind of gradient adaptive algorithm is considered to update 
the value of the coefficients in the opposite direction of 
the instantaneous gradient. The resulting adaptive 
algorithm is called predistortion LMS (PLMS) algorithm 
and it involves the gradient of the AMIAM characteristic 
of the HPA with respect to the input value. 

In the simulations, the exact gradient of the proposed 
function F[.] has been used although in a real situation i t  
can be also estimated in sections and stored in a table. 

Similarly, the AM/PM curve follows an even relation 
and thus, the phase predistortion system should be also 
even. An even memoryless Volterra model (eq.1O.a) and 
also a Fourier-Cosine model (eq.1O.b) both of order N are 
proposed to implement the phase predistortion denoted by 
SAP[.]. 

g i / p [ R k ] =  C b[(n).&” = ( I [ )  . v l  N-1 I 

n=O (1O.a) 

The update equations for the coefficients bk involved 
in the phase predistortion models can be performed by 
classical adaptive methods (the NLMS algorithm is 
proposed), since the design problem consists in a basic 
identification problem with a model that is linear in terms 
of its coefficients. 

P b(k + 1) = b(k )  + - -es(k)v(k)  
Y(h-1 

The term p(k) denotes the estimated input power 
approximated by a Iowpass filtering of the input data 
vector vk with a memory factor named p. It is interesting 
to note that, since the output of the amplitude 
predistortion drives the phase predistortion, the learning of 
the coefficients of the g.wpC.1 model will be conditioned 
to the learning of the amplitude predistortion system. 

4 .  Simulation Results 

In this section, the results obtained in the simulation 
of the adaptive learning of the predistortion (fig.3) are 
presented. The input signal is a 64-QAM modulation 
generated from two %PAM signals, for the in-phase Ik 
and the in-quadrature Qk components. The resulting 
magnitude should be less than 0.62, which is tlie range 
capable of being compensated since the output of the 
normalised F[.] function of the BJT transistor is bounded 
to this range (eq.5). A Gaussian noise (SNR=GOdB) is 
also added to the output of the HPA distortion. 

Concerning the amplitude distortion, ~ A / A [ . ] ,  two 
different models are considered: an odd Volterra (oV) 
model (eq.8.a) and a Fourier-Sine (FS) model (eq.$.b), 
both with N=S coefficients. The principal frequency for 
the Fourier model is chosen equal to wo=nl(2*0.62) since 
the input value R is bounded to 0.62. The coefficients are 
updated by the PLMS algorithm (eq.9), where the step 
size parameters are normalised to the power estimate of 
the respective data vector U (~~ov(k)=O.Qo3/(p~ov(k)) with 
pov(-l)=O, p~s(k)=2/N). At this point it is worth valued 
to remark that the diversity inanaged by the Fourier 
model, i.e. the sine functions of successive harmonics, 
has not so scattered power values as tlie Volterra model. 
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This feature, together with other aspects concerning the 
correlation between the components of the vector uk  [3], 
usually provides the Fourier model with a better 
performance than the Volterra model in adaptive 
solutions. A clear example is shown in figure (4.a) that 
represents the squared amplitude error achieved by both 
models averaged over 25 independent realisations (the 
better result is achieved by the FS model). The step-sizes 
have been fitted after various tests to achieve a similar 
convergence rate for both models. Additionally, the 
amplitude predistortion system implemented by the 
Fourier model and Volterra model after the leaming stage 
are included in figure (5.c). 

AMIAM Predistortion Odd Vokerra 5 coef Fwrer-Sine 5 coef 
, - [  
E-lo 

500 1000 1503 Z W O  25W 3000 
-e” 

Time Slap (a) 
AMIPM Predistortion. Even Vokerra 9 coef. Fourier-Cosine 9 coef 

,--IO 

........ :. . . . . . . . .  i . .  ............. . . . . . .  . . . . . . . . .  
0 

I 
500 1000 1503 2WO 2500 3000 

Time Step (b) 

Figure 4. Squared envelope error (a) and 
squared phase error (b) averaged over 25 
real isat ions. 

Similarly, the averaged squared phase error achieved by 
the AMPM predistortion is included in figure (4.b) (the 
Fourier model also shows the better results). For this 
nonlinear system, an even Volterra (eV) model and a 
Fourier-Cosine (FC) model with 9 coefficients are used. 
The respective coefficients are updated by the NLMS 
algorithm (eq.11) with the following step-sizes @ ~ e = 0 . 0 5  
pve(-l)=O, p~c=0.3 pFC(-1)=1). In this case, the principal 
frequency of the Fourier model is chosen equal to 
00=71/(2) because the input to our model, denoted by ”Rk 
is bounded to one. At the beginning of the learning, this 
assumption does not hold and the phase predistortion 
learning could be in troubles. Thus, in the simulations, 
the output of the amplitude predistortion system is forced 
to be less than one in order to avoid this problem. From 
the error performance, it can be seen how the phase 
predistortion is conditioned to the convergence of the 
amplitude predistortion as it was expected. Finally, the 
AM/PM predistortion implemented by both models after 
the learning stage are also shown in figure (5.d), where 
the superior performance of the Fourier model becomes 
evident. 

HPA AMIAM Charauermtic 

r-02 

g-0 4 

O-06 
-1 - 0 5  0 0 5  1 

InPLIt HPA Amplitude (a) 

HPA AMlPM Characteristic 

O 27 

. .  . .  
Dewred(-) VoRerra(--) Fourier-sin(:) Desired(-) Vokerra(-) Fourier-cas(:) 

Figure 5. (a) HPA AMlAM relation. (b) HPA 
AM/PM re lat ion.  ( c )  Idea l  ampl i tude  
predistortion (solid) and final amplitude 
predistortion of the  Fourier-Sine model 
(dotted) and odd Volterra model (dashed). (d) 
Ideal phase predistortion (solid) and final 
phase predistortion of the Fourier-Cosine 
model (dotted) and odd-Volterra model 
(dashed).  

Remarks 

In this paper the HPA predistortion implemented by a 
Fourier model is compared with the performance achieved 
by the classical solution of using polynomial models. 
Although the Fourier model requires more computational 
load than the Volterra model, the existing fast DSP 
processors as well as the considerably superior 
performance achieved in this particular problem by the 
Fourier model seem to justify the use of this last one. 
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