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Abstract. This paper presents an architecture named K-filter able to model non-linear systems both memoryless and with 
memory. The most general version of the k-filter applies to any non linearity but sometimes at the cost of holding a 
considerable computational load, specially when the memory of the non-linear system increases. Thus, the paper is basically 
devoted to present how different simpler versions of the original k-filter can be obtained taking into account symmetrical 
properties of the input/output relation of the non-linear system to model. The theoretical points along with the simulation 
results will show how these symmetrical considerations simplify the k-filter without making worse the perfonnance. 

1. Introduction* 
Recently, the presence of non-linear functions in signal 
processing has increased surprisingly; such outstanding 
subjects as neural networks, chaotic series and high order 
statistics among others are strongly related to non-linear 
processing field. On the other hand, the architectures used to 
model non-linear systems (NLSs) are basically the ones 
proposed by Schetzen, based on the Volterra and Wiener 
functionals [1]. This paper presents the k-filter as a new option 
to model NLSs [2]. An important feature is the simplicity of the 
theoretical development done to obtain the k-filter, specially 
the basic mathematical tools used. The consequence is a direct 
relation between the parameters of the design and the 
characteristics of the real system. This fact provides the k-filter 
with the capability of being easily modified in front of 
different systems. 

The proposed architecture estimates the output of a 
given NLS by a linear combination of a family of non-linear 
functions, which consists in complex exponential 
transformations of the input signal. From this point of view, a 
similar structure can be found in Mulgrew's work [3] that relates 
the k-filter to the estimation of the output of an NLS in terms of 
orthonormal functions [1]. The theoretical approach followed 
in this paper to obtain the k-filter is completely different from 
the way in which Mulgrew focuses the problem. From the point 
of view of the authors, both works are complementary in the 
sense that they reinforce the final architecture. 

The third section includes the main topic of this work: 
the so-called odd k-filler, that consists in a different version of 
the original k-filter [4,5]. Nevertheless, it has been considered 
interesting to start with a review of the k-filter before arriving 
to the odd k-filter in order to give an overall view of the model. 

2. The k-filter 
This second section is devoted to present different schemes of 
the k-filter beginning by the memoryless one to the case with 
memory. All of them come from the same approach but 
particularized to different situations. 

2.1. The memoryless k-filter 
The modelling of a memory less NLS is the most elemental case 
found when dealing with NLSs but, at the same time, is the 
situation that gives more intuitive information about the model 
used, i.e. structure, parameters of design, gains/drawbacks ... 

* This work has been partially supported by a grant of the 
Generalitat de Catalunya and by Grant TIC-92-0800-COS-05. 
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Assume g[.] denotes the input/output (in/out) relation of an 
NLS. In case of dealing with a memory less one, the function is 
one-dimensional and the output is equal to y(t)=g[x(t)], being 
x(t) the input signal. Then, the output can be approximated by 
developing g[.J in terms of a Fourier series, eq.(1,2). 

N 
y(t) = g[x(l)] = >: G, ·exp[jnro0x(1)] 

n.=O 

1t 
roo ~--­

Xmax 

(I) 

(2) 

In fact, the approximation is a linear combination of 
exponential transformations of the input but the coefficients of 
this linear combination, Gn, are determined by the NLS. If 
eq.(1) represents a Fourier series, the coefficients must be 
related to the Fourier transform of the function that is 
developed. Eq.(2) shows how they coincide with the values of 
sampling the Fourier transform of g[x] at multiples of the 
principal frequency, roo. 

The approximation ~(t) can be viewed as the output of 
our model that is a new memoryless NLS characterized by the 

in/out relation&[.]. This function is periodic in the x domain, 
being the period repetition equal to To=(2n/ooo). Then, 
assuming the input signal belongs to the range [ -Xmax, 
Xmax], the frequency of the Fourier series must be bounded to 

roo<=(rr/Xmax) in order to avoid aliasing. In spite of being 8[.] 
and g[.] completely different out of the range [ -Xmax, Xmax], 

the output ~(t) is a "suitable" approximation of the output of 
the real NLS, y(t), whenever the input signal remains in the 
previous range. 

The structure that implements the approximation 
denoted by eq.(l) is called the memory less k-filter (Figure 1). It 
consists in applying an exponential transformation to the 
input signal and then to compute a polynomial series, which 
can be viewed as a memoryless Volterra series. 

N-order memory less 
Volterra series 

Figure 1. The memory less k-filter performing a Fourier 
series of N terms. 

It is important to remark that in a modelling problem where the 
in/out relation g[.] is known, the coefficients of the Fourier 
series can be computed with the Fourier transform of this 
function, eq.(2). On the other hand, the parameters to be 



determined in an identification problem are also these 
coefficients. Note that, as the output of the k-filter is a linear 
combination of them, a mean square error criterion will lead the 
system to the Wiener solution. Furthermore, all the adaptive 
techniques based in gradient or recursive methods can be also 
used to design the k-filter in an on-line problem. This 
important property of the k-filter is also shared by the k-filter 
with memory and all the versions included in this paper. 

2.2. The k-fi/ter with memory. 
When facing to the problem of modelling NLSs with memory, 
the first idea is to generalize the memoryless k-filter (Figure 1) 
to a new scheme that includes memory. Thus, the k-filter with 
memory consists in applying the exponential transformation 
of the memoryless k-filter not only to the input x(t) but also to 
previous values of it. As it can be inferred from Figure 2, the 
memory in the k-filter is supplied by a temporal diversity 
vector of the input signal, [x(t), x(t--r), ... , x(t-(Q-1)-r}. 

a, " 
La0• ·e:.:p [jn(ll 0x( t) j ... 

Volterra 
filterin 

Figure 2. The k-filter with memory. 
The approximation performed by the k-filter with memory can 
be expressed as follows: 

j(t)=ao+ Q:EI( ~ aq11 ·exp(jnroqx(t-qt))) 
q=O o=l (3) 

Nevertheless, this intuitive result must be supported by a 
quantitative approach similar to the one developed for the 
memoryless case. Following the same steps as in subsection 
(2.1), when the NLS to model has memory, the in/out relation 
results in a Q-dimensional (Q-dim) function. That is, the output 
depends not only on the actual value of the input signal, but 
also on (Q-1) previous values, eq.(4). 

y(t) = g[x(t), x(t _,), ... ,x(l- (Q-1),)] (4) 

The Q parameter is the memory of the NLS: the larger Q is, the " 
longer the memory of the NLS is. Note that the formulation of 
the problem is similar to the one of the memoryless case 
except that now it is a Q-dim instead of a one-dim problem. 

Given eq.(4), a possible approach of the output would 
consist in developing g[.J in terms of a Q-dim Fourier series as 
it is expressed in eq.(5). Similarly to the memoryless case, the 
coefficients of this series, eq.(6), arc equal to the values 
obtained from sampling the Q-dim Fourier transform of g(.] at 
multiples of the principal frequencies, roi. 

.. No N1 N(Q-1) { 
y(t)=Go+ L L··· L G 110 ,n1, ... ,n(Q-1J. 

ll()~lllt"'l fi(Q-1) 

e- i[llo·(llo·x(l)+nt·OOt·x(l-'t)+ ... +n(Q-I)"ro(Q-l)'x(t-(Q-l)'t)j} (

5

) 

0,.0 ,~1 •... ,"{(2-1) "'F{g(x(l), .•. ,x(I-(Q-l)'t)nii"O""'O•"l""'l•· ·•"(Q-l)""'(Q-l)l 

n;=l...Ni ro. >-"- 'v'i=O ... (Q-1) 
'- Xmax (6) 

At first glance the output of the k-filter, eq.(3), and the 
approximation obtained from the mathematical approach, 
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eq.(5), seem to be completely different. But actually, the k­
filter is related to the more general development of eq.(5) 
because the coefficients aqn of eq.(3) are samples of the axis of 
the Q-dim Fourier transform of g[.], being equal to certain Gn as 
it is denoted by eq.(7). 

aq11 = Go, ... ,O,nq.O •... ,O 'v'n = l..N,q = O .. (Q-1) 
(7) 

In consequence, it is possible to view the k-filter (Figure 2, 
eq.(3)) as a truncated version of the Q-dim Fourier series of 
eq.(4). The possibility of designing a modified k-filter that 
implements eq.(5) instead of eq.(3) is discussed in [5]. The 
structure is based on the k-filter of Figure 2 but inserting a 
functional module that combines exponentials of different 
temporal components of the input vector. The result is a new k­
filter named k-fiiter with modulation combiner which 
obviously requires much more computational load than the 
other one, specially if Q increases. But. on the other hand, the 
k-filtcr with modulation combiner include cross terms between 
different temporal components of the input vector whereas the 
k-filter does not. This fact is obviously a drawback of the k­
filter compared with another models that include these cross 
terms as the Volterra functionals. In this sense, the kMfilter 
with modulation combiner is necessary to provide the k-filter 
with a complete structure, able to face a wide variety of 
problems although at the cost of a high computational load. 

2.3. The aperiodic k-filter 
From the previous subsections, it can be inferred that the k­

filter implements an NLS with an in/out function denoted by 

g[.] which is onedimensional if it models a memoryless NLS 

and multidimensional in the case with memory. The function 

£[.] is periodic in the input domain and this property can be not 
desirable in situations such as the analogical amplifiers that 
the range of the input signal is not perfectly known. Hence, the 
purpose of this point is to find a filter that implements an 
aperiodic non-linear function g'[.] that approximates the actual 
non-linear function g[.] in the whole axis of x and not only in 
the range of [ -Xmax, Xmax]. The process will be developed in 
the memoryless case, which considers g[x] as a one-dim 
function, but the generalization of the final structure to the Q­
dim case when the NLS has memory can be found in [2,4,5]. 

Assume G(ro) is the Fourier transform of g[x], the 
in/out function of a memory less NLS. Then, it is possible to 
build a function g'[x] that consists in the inverse Fourier 
transform of sampling G(ro) randomly as eq.(8) denotes. 

y'(t)~g'[x(t)]~ 'i[ +fG(f)-ll(f-/,)]·exp(j2<fx)df 
-- •=-- (8) 

Bilinskis shows how using an appropriate random sampling to 
sample the Fourier transform , the expected value of g'[x] is 
equal to the real function g[xJ, [6]. This result implies that 
although the Fourier transform is sampled, the mean value of 
the function in the x domain does not suffer from aliasing o 
repetition. 

E[i (t)] ~ J: G(f) {:~~(/- /,)Jexp(j27tfx) df 

EL:~~(f-/,)]~cons!anl => E[y'(t)]=y(t) 
(9) 

The difficulty in this problem is to find the architecture that 
will perform the random sampling of eq.(8). An important 
characteristic of the sample frequencies fn is pointed out by 
Bilinskis. This variable is not itself a random variable, but the 
difference between two consecutive samples must be the 
random variable. Taking into account this fact, the following 



modified memoryless k-filter of Figure 3 is proposed to model 
the inverse of a function that samples randomly the Fourier 
transform of g[x]. 

I .-p " L, a · exp(jnco x(t)) 
,~.,.f(t) x(t) " ' .:::;: -j exp(j.>,.) Volterra "_, :.;;-filterinn 

" Y bn· exp(jncodX(t)) 

-texp( j<o' o· ) 
Volterra n ~1 
filterinP 

F1gure 3. The apenothc memoryless k-filter. 
The output of the aperiodic k-filter consists in two N-order 
Fourier series computed using two different principal 
frequencies, roo and c.oo'. These frequencies must be chosen in 
order to simulate the random sampling in the transformed 
domain [2]. 

3. Different approaches of the k-filter 
considering symmetrical properties 
Each one of the schemes presented in section 2 implements a 
truncated version of the development in terms of a Fourier 
series of the in/out relation of an NLS, g[.]. Hence, 
symmetrical properties of g[.] could be used to simplify the 
Fourier series and, in consequence, the k-filter. 

3 .1. Basic symmetrical properties of g[.] 
In case of dealing with a memoryless NLS that has an odd 
function g[.], the approximation of this function in terms of a 
Fourier series can be reduced to a sinus series, eq.(lO). 

N 
g[x(t)]=-g[-x(t)] '<tx(t) :=) j(t)= :Ea,·sin[nro0x(t)J 

•• , (10) 

The memoryless k-filter of Figure.! can be then modified to 
implement the sinus development instead of the Fourier series 
with exponentials of eq.(l). Whereas the performance holds 
because both are equivalent, the computational load is clearly 
reduced due to the real nature of eq.(10), both the coefficients 
and the sinus functions. 

This property also applies to the k-filter with memory 
where the condition of odd symmetry of the Q-dim in/out 
relation of the NLS to model is denoted by eq.(10). As 
previously, the approximation is built by reducing the Q-dim 
Fourier series of eq.(5) in the Q-dim sinus series of eq.(11). 

8 [.¥(t), .... .:c(t- (Q-l)"t)] = -s[-.:c(t), .... -.:c(t- (Q -l)"t)] (10) 

• No N1 N(Q-1) { 
y(l) = llo + ~ ~ . .. ~ ·""·"l·····"(Q-1) . 

IIQ=l 111 =1 II(Q-1)""1 

•sin( noro0.x(t)+ n1ro1.x(t-'t)+ ... +n:ca-l)ro(Q-l).x(t-(Q -l)'t))} ( 
11

) 

As it was done in subsection (2.2), the k-filter does not include 
all the coefficients of the Q-dim Fouricr series, only the ones 
that correspond to values taken from the axis of the Fourier 
transform. Thus, the approximation that the k-filter performs 
when g[.] has odd symmetry is reduced to eq.(12). 

Q-t( N ) 
j(l)=ao+ /':.o 

11

:

1 
aqn·sin(nroqx(l-qc)) 

(12) 

Figure 4 shows the k-filter with memory when the condition of 
eq.(lO) applies. It could also implement the complete 
approximation of eq.(11) instead of the simplified version of 
eq.(l2) just by inserting a functional module before the sinus 
transformations that combines different temporal components 
of the input vector. The resulting architecture would result in 
the k~filter with modulation combiner when g[.] is an odd Q­
dim function. 
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x(t) 

Figure 4. The k-filter with memory if g[.] is odd. eq.(lO) 
It is worthwhile to point out the case of having an in/out 
function g[.] with even symmetry. The development would be 
analogue to the one done for the odd case except that cosines 
functions would be obtained instead of sinus ones. 

3.2. The odd k-filter 
A part from the odd and even symmetries of function g[.], the 
authors have worked on the possibility of building an 
"artificial" function g'[.] that is equal to the real one in the 
range of [ -Xmax,Xmax] but that also has symmetric properties 
which simplify even more the k-filter. This function has been 
obtained taking into account different values of the sampling 
frequency. As it is well known. when the Fourier transform of 
certain function is sampled, this function is repeated with a 
period inversely proportional to the sampling period used in 
the transformed domain. If the repetition period is longer than 
the lenglh of the function, the empty sections are padded with 
zeros. Clearly the Gibbs phenomenon is a drawback in the k­
filter, furthermore when the NLS to model shows a saturation 
effect. The question that the authors asked themselves was how 
this empty section of the rebuilt signal can be padded in order 
to simplify the Fourier series. The proposed function g'[x] is 
formulated in eq.(13) in function of the real in/out relation of 
the NLS g[x], which is bounded to the range { -Xmax, Xmax]. 
Thus, the resulting Fourier transform G'(ro) is related to G(ro) at 
multiples of the sampling frequency roe as it denotes eq.(l4). 

g'(x)= g(x) -Xmax<x<Xmax 
{

-g(x+2Xmax) -2Xmax<x<-Xmax 

-g(x-2Xmax) Xmax<x<2Xmax (13) 

{
0 n even 

G'(ntoo)= 2G(nto
0

) nodd 
1t 

roo=---
2Xmax (14) 

Note that the output of an NLS with an in/out function g'[.] and 
another with g[.] would be the same whenever x(t) belongs to 
the range [ -Xmax, Xmax] but the Fourier series development of 
g'[.] only needs the odd harmonics. The resulting scheme of the 
memoryless k-filter would be equal to Figure 1 except that the 
Volterra filtering only would include odd terms. In case of 
dealing with an NLS with memory where g[.] is Q-dim, 
eq.(13,14) can be easily generalized to the Q-dim problem. As 
it has been inferred in the memoryless case, the resulting k­
filter with memory would be equal to Figure 2 except that the 
Volterra filtering only would include odd terms. The resulting 
approximation is denoted by eq.(15), which is the output of the 
so-called odd k·filter. 



jl(t) = ao + Qil( ~ aq(2n+l) ·exp(j(2n+ l)ooq;c(t- qt))) 
q=O n=ol (15) 

It is possible to verify that the development of g'[.] in 
terms of a Fourier series also allows a simplification to a sinus 
series when it is an odd function. According to eq.(l3), g'[x] is 
odd when g[x] is also odd. Thus, in the case with memory, 
eq.(15) is simplified to a Q-dim sinus series with only the odd 
harmonics. Any sinus of an odd multiple of a certain frequency 
can be expressed as an addition of odd powers of !.he sinus of 
this frequency. Then, the k-filter with memory allows the 
following structure to implement the Q-dim sinus series of odd 
harmonics. 

1 a, 
() £ a0(2~+l) ·Sin(Zul)(roo:c(t)] 
X~. ( )}LilCrra filter ~"1 

sm (l)u. ~rl1 

~ G 
x(t· 't) ~ sin( rot:.) HVo~~ ~Jtc 

GJ / x(t·(Q-l)'t)4 sin(ro . ) HVoltcna filte~ a 1 gdd u:ans 

F1gure 5. The odd k-f!lter w1th memory 1f g[.] 1s odd. 

4. Simulation results. 
This section is devoted to basically compare the k-filter with 
memory eq.(3) with the odd-filter, with exponentials eq.(l3) 
and with sinus (Figure 5). The simulations consist in 
identifying (adaptatively or not) a communication channel 
where the amplifiers of the transmitter and receiver show non­
linear effects. The input has been chosen as a sampled band­
pass normal distributed noise filtered through the system, 
H(z)=(z-4+2.7607z-3+ 3.8106z-2+2.6535 z-1+0.9238)"1 The 
channel is modelled by the filter Hch(z)=(z-3+0.092&z·2_ 
0.3158z-1+0.2)/(z-1 -0.5) and an additive gaussian noise of 10 
dB has been also taken into account just at the output of the 
channel, before the amplifier of the receiver. 

Two different functions have been considered to model 
the amplifiers of the system in order to test the behaviour of 
the odd k~filtcr. The first function is odd, g[x}=sign(x) 
exp(x2/0.01), whereas the second one has not symmetry and 
consist in a polynomial relation, g(x)=0.3x4+0.8x2+x for the 
amplifier of the transmitter and g(x)=0.7x2+x for the receiver. 
It is important to remark that although the amplifiers arc 
memoryless, the channel includes memory to the whole 
system. Hence, we face with the problem of identifying an NLS 
with memory. 

The simulations of Figure 6 show the evolution of the 
mean square error (MSE) of the approximation when the 
communication system is identified adaptatively. The weights 
of the filter that identifies the system are updated by the NLMS 
algorilhm with an step~size parameter denoted by J.l. Figure 6a 
is to the simulation done when the amplifiers are modelled with 
the odd function, whereas Figure 6b corresponds to the 
polynomial model. Five different filters have been checked to 
compare the results. First of all, the k~filter(Q=2,N=8) with 
wo=n"/Xmax and 49 coefficients is included. Then, two odd k~ 
filters(2,16) with wo=1t/2Xmax are also checked: one with 
exponentials (49 coefficients) and the other one with sinus (25 
coefficients). Finally, a FIR filter of 49 coefficients is 
considered along with a 5th-order Volterra filter of 2 delays (56 
coefficients). Figure 6 also includes the MSE got when an off~ 
line design is used (Wiener solution). 
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Figure 6. Evolution (3000 samples) of the MSE of a 
FIR(49), Volterra(2,5), k-filter(2,8) and two odd k­

filters(2,16) one with exponentials and the other one with 
sinus. Except the Volterra filter with ~=0.01, the rest of 

them have J-L=O.l. The% values included in the titles are the 
MSE values computed with an off-line solution. 

Different aspects can be pointed out from the results of Figure 
6. First of all, the k-filter and the odd k-filter show a better 
performance in the adaptive solution than the FIR filter and the 
Volterra filter. Secondly, the odd k~filter with sinus only has 
good results in Figure 6a where an odd function models the 
amplifier. On the other hand, the odd k-filter with exponentials 
has a similar performance to the k-filter in both simulations as 
it was suspected from the theoretical approach. 

5. Remarks 
This paper presents a wide overview of the so-called k-filter [2] 
along with different versions of it. The aim of the authors have 
been to give a global sense to all these architectures by 
showing how they come from the same approach adapted to 
different situations. An special attention is paid to the odd k­
filter because, as it is justified theoretically and with 
simulation results, it shows the same performance as the k~ 
filter but with a considerably less computational load. 

References 
[1] M. Schetzen (1980): The Volterra/Wiener theories of 

nonlinear systems, John Wiley & Sons. · 
[2] M.A. Lagunas (1994): The Kolmogorov mapping 

theorem in signal processing, Proc. 7th SP Workshop on 
SSAP (to be published), Quebec (Canada), June 1994. 

[3] B. Mulgrew (1994): Orthonormal function for 
nonlinear signal processing and adaptative techniques, 
Proc. Jnt. Conf. /CASSP-94, vol.II, 509-512, Adelaide 
(Australia), April 1994. 

[4] A. Pages~Zamora and M.A. Lagunas (1994): A 
novel architecture to model nonlinear systems, Proc. lnt. 
Conf. /CASSP-94, vol.//, 509-512, Adelaide (Australia). 
April 1994. 

[5] A. Pages~Zamora and M.A. Lagunas (1994): A 
new model of nonlinear systems with memory, Proc, 7th 
SP Workshop on SSAP (to be published), Quebec 
(Canada), June 1994. 

[61 I. Bilinskis and A. Mikelsons (1992): 
"Randomised Signal Processing", Prentice Hall. 


