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ABSTRACT* 

This paper deals with the problem of modelling and 
identifying non-linear systems (NLSs). Although the final 
architecture applies to NLSs with memory, it is also 
important to bear in mind that the proposed filter consists in 
a generalisation of a previous scheme which was designed to 
model memoryless N U S .  In consequence, the simplicity of 
the memoryless filter is useful to intuitively understand the 
final architecture and how it can be improved when dealing 
with specific problems. On the other hand, the filter with 
memory shows the complexity and computational load that 
non-linear theory usually involves. But at the same time. it 
allows a large number of different possibilities depending on 
the concrete application and it also opens new ways of future 
work. 

1. INTRODUCTION 

An increasing motivation centred on non-linear 
processing has emerged in the last ten years due, in part, to 
the saturation of linear processing field. At the same time 
some emerging new methods based on high-order statistics, 
useful for non-linear analysis [I], new concepts such as 
chaotic series, strongly related to non-linearities [2] along 
with another subjects have contributed to this new trend. The 
authors would like to include in this context the work that is 
presented below. It can be viewed as a contribution to the 
non-linear processing at the architecture level since the 
filter that we propose is able to model NLSs both 
memoryless and with memory. 

As it will be seen along the paper this filter is 
based on the approximation of the input/output relation of 
the NLS to be modelled. This approximation consists in a 
truncated Fouricr series of those input/output function, 
becoming a multidimensional Fourier series when the 
system includes memory. Furthermore, this Fourier serics is 
obtained from a nonuniform sampling in thc transformcd 
domain. By means of this sampling proccss. the authors 
would like to emulate the result of sampling Lhe transformed 
domain with a discrete variablc whose difference between 
two consecutive values is random [3]. Thc resulting filter 
follows thc main guide lines of the Kolmogorov's mapping 
theorem [4]. This was thc reason that motivatcs thc authors 
to name h e  architccturc as Lhc "K-filtcr". 

* This work was supported by thc National Rcscarch Plan of 
Spain, CICYT. Grant numdcr TlC-Y2-OXo()-C05-05. 

2. THE K-FILTER 

Suppose an NLS with memory characterised by 
the Q-dimensional (Q-dim) input/output relation, g[ .], and 
whose input signal, x(t) is limited to the range [-Xmax, 
Xmax]. 

X(t) --)1 NLS with memory J-b 

y(tkg[x(t),x(t- T h-dt4Q-1)  T 11 
Fig.1.-Q-dim. inputloutput relation of a NLS. 

This function and, therefore, the output of the 
NLS allows a Q-dim Fourier series developed not in the time 
domain but in the input domain as it is shown in equation 
(1). The coefficients of this series (Eq.2) coincide with the 
values of the Q-dim Fourier transform of g[.] at frequencies 
multiples of the so-called principal harmonics, a i .  It is 
important to remark that in concordance with equation (l), 
the Fourier transform is also computed in the input domain. 
That is, the ith dimension of the Fourier transform 
corresponds to the transform of g[.] with respect to the 
variable x(t-(i-l)T). 
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As it has been mentioned previously. the K-filter 
consists in a truncated version of the Q-dim. Fouricr series 
(Eq.1). It may be inferred from figure (2) that the K-filter 
keeps the coefficients from equation (1) thar correspond to 
the axis of the Fourier transform, where only one frequency 
is different from zero. On the othcr hand, the K-filter takes N 
coefficients from each addition, which in general will bc less 
than Ni. These two features make the K-filter to be a short 
version of thc Q-dim Fourier series. Furthermore, the 
architccture performs a non-uniform sampling in the 
transformcd domain. This process is includcd in the K-filter 
by adding a sccond multidimcnsional Fouricr serics wilh 
slightly diffcrcnt principal harmonics, oi' Vi=O..(Q-l), as i t  
is shown in figurc (2). 
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Fig.3.-The K-filter(2,N) with modulation combine 
This new version of the K-filter (Fig.3) still 

agrees with the Fourier transform 2s it was explained in 
section 2. Actually it fits better the Q-dim Fourier series than 
the original K-filter (Fig.2). The reason lies in the fact that 
the K-filter with modulation combiner includes not only 
samples from the axis of the Fourier transform of g[.] but 
also some new samples out of these axis. These new samples 
are generated by the function named modulation combiner 
since it multiplies harmonics from different branches or, 
what it is the same, from different axis of the Fourier 
transform. The effect of the K-filter and the K-filter with 
modulation combiner over the Fourier transform in a 2-dim 
case is shown in figure (4). Assuming a uniform sampling, 
the original K-filter takes only samples of the axis (dots), 
whereas the K-filter with modulation combiner samples also 
outside the axis (crosses) following a squares. 

O 
NO=Nl=N 

: I : : : :  
xp '""t 00 x x .'. ... X + :  ) R  

00 200  ... ("0) 

Fig.4. Samples taken by the K-filter (dots) and the K-filter 
with modulation combiner (dors&crosses) in a 2-dim. case. 

Note that in a modelling problem where the 
inpdoutput function of the NLS is known, the coefficients 
of Lhe K-filter can be still obtained directly from the real 
values of sampling the Q-dim Fourier transform of that 
function. On the other hand, the K-filter with modulation 
combiner of figure (3) may be extended to any number of 
delays but note that the number of coefficients increases at 
the rate of NQ. Then, the computational load that the  
resulting filter would rcquirc makes the scheme not feasible 
for large valucs of Q. 

4. SIMULATION RESULTS 

This section is devoted to show the performance 
of the K-filter in the adaptive identification of a NLS with 
memory that consists in the model of a communication 
system (Fig.5). The non-linearity of the system is included 
by the amplifiers located at the transmitter and receiver 
whose in/out function is g[x]=sign(x) exp(x2/0.05). 

xin(n) wdq H(z) 

Fig.5. Model of a communication system. 

The input, xin(n), has been selected as a sampled 
band-pass normal distributed noise filtered through the 
system, H( z)=( ~ - ~ + 2 . 7  6 0 7  z - ~  + 3.8 1 0 6 ~ - ~ + 2 . 6 5 3 5  2- 
1+0.9238)-1. On the other hand, the channel is modelled by 
the filter Hch(z)=(z~3+0.0928z'2-0.3158z~1+0.2)/(z-1 
-0.5). An additive gaussian noise of 10 dB has been also 
taken into account. I t  is important to remark that the 
amplifiers are memoryless but the channel includes the 
memory to the whole system. Then. we face with the 
problem of identifying a NLS with memory (Fig.6) 

xidn) 

Fig.6. Identification problem. 
The coefficients of the filter are modified with the 

NLMS adaptive algorithm (Eq.3). The U variable is the data 
space vector, e is the error between the real output (d(n)) and 
the approximated one ( j ( t ) )  and w represents the 
coefficients vector. The p variable is a real parameter that 
along with the instantaneous power of the data space build 
the variable step-size of the NLMS algorithm. Note that the 
instantaneous power of the data space, (Ilu(n)l12), in the K- 
filter is equal to the number of coefficients independently of 
the power of the input signal. This feature of the K-filter is 
due to the fact that each component of the data space vector 
is equal to a complex exponential. 

In order to compare the results four kind of filters 
have been chosen to model the whole non-linear 
communication system: first of all the K-filter (Q.N) with 
and without modulation combiner, then a FIR filter and 
finally a Volterra filter with memory (N,P) (Eq.4).being N 
the memory of h e  filter and P the order of the maximum 
Voltcrra functional that the filter includes. 

P 

y ( ~ ) =  Lp[zl  ; ~ = I x ( t ) . x ( t - T )  ,... x ( t - ( N -  ])TI 
p-0 
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Fig.2.-The K-filter (Q.N): a model for NLSs with memory. 

The memoryless case is framed with a dashed line. 
First of all we will focus our attention on the 

memoryless K-filter. framed with dashed line in figure (2). It 
implements a truncated Fourier series of the inputloutput 
memoryless relation g[x(t)J. Actually it performs two 
Fourier series with two different principal harmonics, 00 and 
WO'. in order to obtain the nonuniform sampling of the 
transformed domain. This process is carried out by both 
branches supplied with the input signal. ~ ( t ) .  Each branch 
consists of a FM modulator followed by an N-order 
memoryless Voltena series [5] which is another way of 
computing a Fourier series. Another third branch with unity 
input is also needed to fit the continuous component, since 
it is not included in the Volterra filtering. 

As it may be inferred from figure (2). the K-filter 
for the case of NLSs with memory emerges as a 
generalisation of the memoryless architecture [4,6]. Taking 
into account that the Volterra filtering performs a 
memoryless series, the K-filter includes memory just by 
means of the input temporal diversity vector. [x(t).x(t- 
~>,.. ,x(t-(Q-l)~)]. Each component is then used to compute a 
double Fourier series with principal harmonics wi and ai' in 
order to generate the nonuniform sampling in the 
corresponding axis of the Fourier transform. 

In a modelling problem the numbcr of delays (Q), 
the order of the Volterra filtering (N), the principal 
frequencies. a i  and ai' ,  and the cocfficicnts, (an;. hi). are 
parameters of the K-filter that vary from one design to 
another. Whereas the numbcr of delays is related to the 
memory of the NLS to be modelled, the rest of parameters 
depend on the Fourier transform of the inputloutput function, 
g[.]. Note that the coefficients can be computed dircctly from 
sampling the Q-dim Fourier transform of g[.] whenever this 
function is available. On the other hand, in solving an 
identification problem. a minimum mean square crror 
critcrion will lead the K-filtcr to thc Wiener solution since 
the output is a linear combination of Lhc series cocfficicnts. 
Therefore. all thc adaptive algorithms that converge to the 

Wiener solution as the gradient-based algorithms (LMS, 
NLMS) or recursive algorithms (RLS, SQRLS) can be apply 
to the K-filter as it will be shown in the next section. 

It is also important to remark that the values of 
the frequencies, mi and mi', determine the performance of the 
K-fiiter. First of all, we have to bear in mind that the K-filter 
takes samples in the transformed domain at multiples of the 
principal harmonics. Then, if any of these multiples does 
not match with signifcant values of the Fourier transform of 
g[.]. the approximation that the K-filter may achieve will be 
poor. Furthermore, when the Wiener solution is computed in 
solving, for instance, an identification problem, the well- 
conditioned or not of the autocorrelation matrix is snongly 
affected by the value of this principal harmonics. This two 
features make the selection of the principal frequencies a 
crucial point in the design of the K-filter. 

We may conclude that the proposed scheme 
allows an improvement of the results by increasing the order 
of the Volterra series and/or increasing the number of delays. 
Although these modifications will also increase the 
computational load of the K-filter. they can be necessary 
when certain accuracy is required. 

3. NEW VERSIONS O F  T H E  K-FILTER 

Once arrived at th is  point, the new goal was not 
only to check the performance of the K-filter when 
modelling NLSs but also to develop more accurate versions 
of it in order to improve the results. From the point of view 
of the authors a possible way would consist in enlarging the 
architecture, making it at the same time more complicated 
but also more general. This section is devoted to present the 
results that the authors have arrived to. Although it is only a 
new version of the K-filter, in our opinion it is necessary in 
order to complete the previous scheme. 

3.1. The K-Filter with modulation combiner. 

When the K-filter (Q,N) is compared with the 
model built from a Q-th order Volterra functional [SI, an 
important difference seems to make it less suitable to model 
certain NLSs than the other one. In fact, the K-filter does not 
include cross-products between different components of the 
input temporal diversity whereas the Volterra functional 
does. A possible way to overcome this disadvantage is to 
insert in the K-filter a function that combines variables from 
different branches. This function can be applied to the input 
temporal diversity vector just at the beginning of the K- 
filter, but also to the output of the exponential 
transformation or even to the output of the Voltena filtering 
bcfore the last addition. From the point of view of the 
authors the best place is inside the Volterra filtering just 
before making the linear combination with the coefficients. 
By inserting the combination function in this place. the 
resulting filter can bc still viewed as a Q-dim Fourier series. 
It also completes mathematically the original scheme, as it  
will be shown later. The new version is shown in figure (3) 
where only one delay has been considered in order to 
simplify thc scheme. 
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The simulations show the evolution of the mean 
square error (MSE) with respect to the input power achieved 
by different models. Two different criteria have been 
considered in order to compare the results: the number of 
coefficients and the memory. Hence that figure (7) 
corresponds to filters with the same number of coefficients, 
whereas figure (8) shows the results achieved by different 
models that have the same number of components of the 
input temporal diversity vector, that is. the same memory. 
First of all, three different models with, approximately, the 
same number of coefficients have been checked: a Volterra 
filter (3,4) with p=O.O1 (51 coef.), a FIR filter (37 coef.) 
with p=O.l, a K-filter (2.3) with p=O.l and principal 
frequencies OIO= wl= 02= pV(l.3Xmax) and om'= wl'= w2'= 
3.66010. Henceforth, the K-filter has 18 complex 
coefficients and one real. This is the reason to have chosen a 
37-tap FIR filter. Even in this situation where the FIR filter 
has more temporal information than the K-filter, this last 
one performs better. Figure (7) also includes the result 
obtained from a K-filter (1,Z) with modulation combiner . 

K-filter(2.3). FIR(37). Voltena(3.4), K-Biter(l,Z) Wdh MC 
I 1 

I 
5w 1000 1500 2ooo Z W  3000 3500 

DKnet time 

Fig. 7. Evolution of the mean square error (MSE). 
The final value of the error of the FIR filter has an 

important misadjustment in relation to the minimum MSE 
obtained when the coefficients are computed off-line with 
the Wiener solution. That is, having a 1000 sampled input 
signal, the MSE of the FIR filter is 35%, of the K-filter is 
25%, the Volterra filter gives 23% and the K-filter with 
modulation combiner has one of 15%. It is possible to think 
that the best performance of the K-filter is due to the fact that 
it has more coefficients (81). Hence. figure (8) shows the 
results obtained with a FIR filter with 81 coefficients, a 
Volterra filter (2.12) and the K-filter (1.2) with modulation 
combiner. Note that the Volterra filrer includes the same 
temporal components and has approximately thc samc 
number of coefficients, 91. The results of a FIR filtcr with 3 
coefficients have been also includcd. 

K-finer(l.2) wdh MC. Vonona(2.1~). FIR(81), FIR(3) 

I 
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Fig. 8.- Evolution of the mean square error. 

Figures (7.8) only want to show how the K-filter 
performs in the adaptive identification of a NLS with 
memory. Obviously, it does not avoid the inherent 
characteristics of the LMS algorithm as the trade-off between 
the step-size parameter and the misadjustment error, or the 
strong dependence on the spread of the eigenvalues. This 
problem can be solved by using another algorithms less 
sensible to these problems. At any rate, it is possible to 
infer that the IC-filter with or without modulation combiner 
gives good chances when adaptive techniques are used. 

REMARKS 

A new architecture able to model NLSs both 
memoryless and with memory has been presented. This filter 
is named K-filter because it fallows the main guide lines of 
the Kolmogorov's mapping theorem. It has been also 
deduced the K-filter with modulation combiner, a new 
version that completes the original scheme from the 
mathematical point of view. The performance of both 
versions have been checked in the adaptive identification of 
a NLS. Future works will be centered on studying the 
behaviour of the K-filter in new applications and on the 
possibility of simplifying it taking into account 
characteristics that NLSs usually share, without affecting the 
performance. 
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